Cassandra A Decentralized, Structured Storage System

Avinash Lakshman and Prashant Malik Facebook

Published: April 2010, Volume 44, Issue 2 Communications of the ACM http://dl.acm.org/citation.cfm?id=1773922

> Presented by James Owens Old Dominion University For CS795 on 11//2014

About the Authors

Avinash Lakshman

- Currently:
 - Hedvig / Quexascale ? 2013
- Notable Works:
 - **Dynamo:** amazon's highly available key-value store 2007
 - **Cassandra:** a decentralized structured storage system 2010
 - **Cassandra**: structured storage system on a p2p network 2009
 - System and method for providing high availability data - 2010

Prashant Malik

- Currently: ○ LimeRoad ? – 2013
- Notable works:
 - **Cassandra:** a decentralized structured storage system 2010
 - **Cassandra:** structured storage system on a p2p network 2009
 - Asynchronous communication within a server arrangement -2007
 - Publishing digital content within a defined universe such as an organization in accordance with a digital rights management (DRM) system - 2009

Rank 4 search results on author name - Google Scholar 11/14/2014

http://www.bizjournals.com/sanjose/news/2013/06/25/ex-facebook-amazon-data-engineer.html

Significance

Provides a platform for data storage and retrieval which supports very high write throughput and tolerates continuous component failure.

Integrates strategies from many other technologies, cited over 916 times. [Google Scholar, Nov 2014]

Difficulties

• Dense reading.

- No Diagrams.
- Simultaneously defines a general purpose tool(Cassandra) and specific implementation (Inbox Search)

No clear separation of the above.

Approach

• Handling Density:

- Inbox Search
 - Big-Picture View of Cassandra
 - Data Model
 - API
 - Read/Write Model

How Cassandra solves Inbox Search

Cassandra Internals...

Why was Cassandra Created?

Solution to the Inbox Search problem

Consider the Facebook context:

 Many simultaneous users
 Billions of writes per day
 Need for Scalability

 Cassandra is used for multiple services within Facebook.

Inbox Search Problem

 A user wants to search his or her inbox for messages using one of two strategies

- Term Search keyword
- Interactions name

Coordinator 8e0a7d7-eebc-11d8-9669-0800200c9a66

What is Cassandra?

A structured data storage system

Logical ring of servers

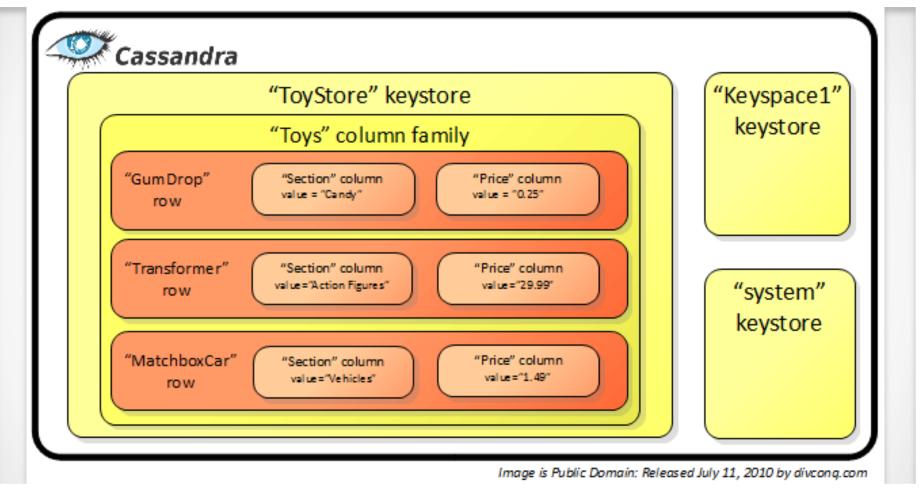
Migration

 Designed to support multiple, B continuous component failures

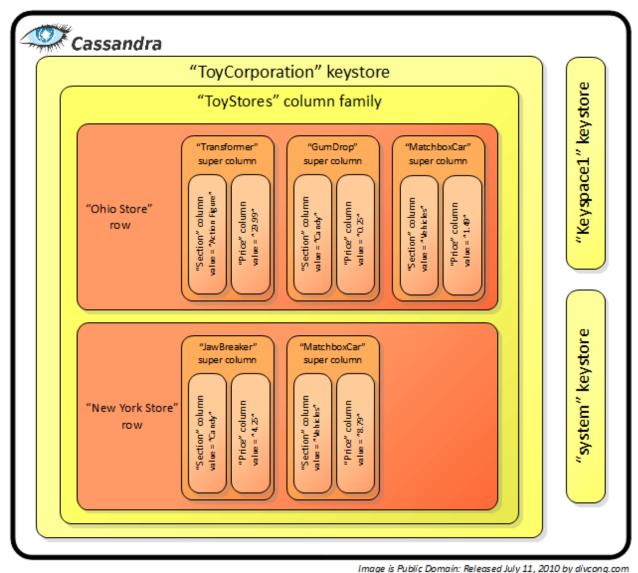
58e0a7d7 No central point of failure 0a7d7-eebc-1/d8-9669-0800200c9a66

- Highly Configurable
- Runs on commodity hardware
- o *It is not a full relational DBMS

http://www.datastax.com/wp-content/uploads/2012/03/migration-distribution.png


Distributed Multidimensional Map
 < Key : Value > Pairs
 String Key
 Typically 16 – 36 B
 Object Value

Column Types:


- Column Families
- Super Column Families

 A superset of column families
 (The Value Model supports recursion)

o A Visual...

http://www.divconq.com/category/cassandra/page/2/

http://www.divconq.com/category/cassandra/page/2/

API

o insert (table, key, rowMutation)
o get (table, key, columnName)
o delete (table, key, columnName)

columnName – (Path)

 May refer to any column, column family, super column family, or a column within a super column

Read/Write Overview

- *Read and Write requests are processed by any node.
- The searching node determines which particular nodes contain the data.
- o Writes
 - Issues write to all nodes, waits for a quorum of commits
- Reads (Variable)
 - Closest Node Low integrity
 - All nodes + quorum High integrity

Inbox Search Problem

 A user wants to search his or her inbox for messages using one of two strategies

- Term Search keyword
- Interactions name

Term Search

Key – user ID

- Super Column (Inverted index)
 - oCF words that make up a message
 - C Individual Message Identifiers

Search by Interactions

Key – user ID

Super Column – (Inverted index)

oCF – Recipient ID

• C -Individual Message Identifiers

Inbox Search Problem

- Cassandra provides 'hooks' for intelligent caching:
 - e.g. user clicks on 'inbox', primes index
 - Production Performance numbers

Latency Stat	Search Interactions	Term Search
Min	7.69 ms	7.78 ms
Median	15.69 ms	18.27 ms
Max	26.13 ms	44.41 ms

Inbox Search Solution

 The full solution requires understanding of the underlying architecture.

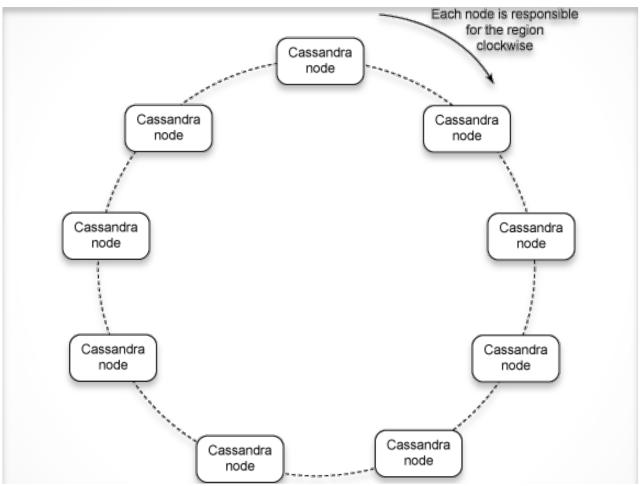
Key points are:

- Any node can service a query

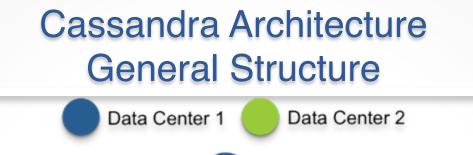
 Global knowledge of data stores
- Query all relevant data stores
- Take most-recent, good response

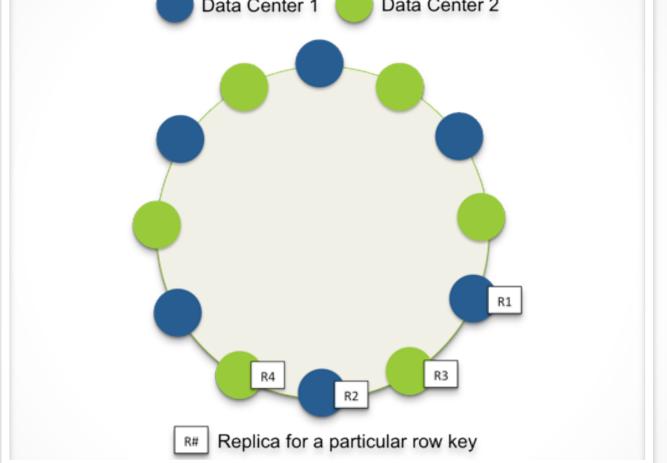
 Quorum, flexibility
 Time Threshold

Questions



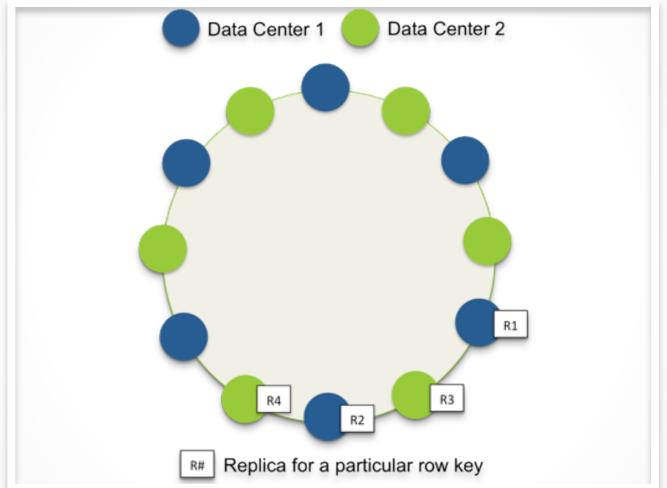
My Question


What should I emphasize in the architecture?



Cassandra Architecture General Structure

http://www.ibm.com/developerworks/library/osapache-cassandra/figure003.gif

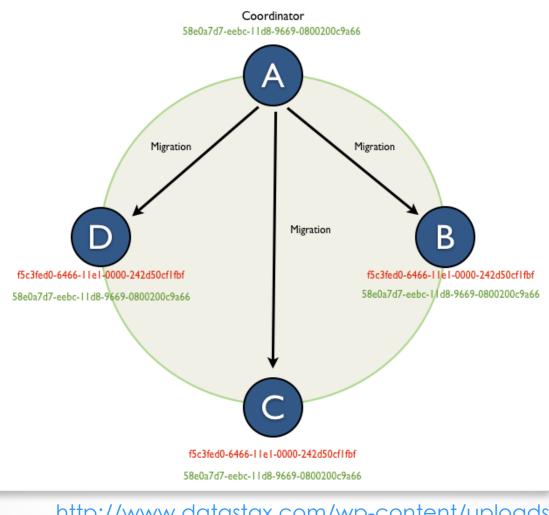


http://www.datastax.com/docs/1.0/cluster_architecture/replication

Cassandra Architecture Data Partitioning

- Consistent Hashing Algorithm
 - Logical Ring of hash values
 - Each node is given a position on this ring
 - Each node is responsible for a LEFT range of hashes.
 - Each data item's RIGHT neighbor is responsible for storage and replication
- Recall the nodes communicate about ranges so any one node knows the locations which should contain data for a particular key.

Cassandra Architecture Data Partitioning


http://www.datastax.com/docs/1.0/cluster_architecture/replication

Cassandra Architecture Replication Schemes

- Configurable:
 Number of replicas
 - Replication Policies
 - Non-coordinator replicas are chosen by picking N-1 other nodes on ring.
 Rack Unaware
 - Zookeeper (Elected leader) Abstraction

 Rack Aware
 Datacenter Aware

Replication Coordination

http://www.datastax.com/wp-content/uploads/ 2012/03/migration-distribution.png

Cassandra Architecture Domain Awareness

- Each node has full awareness handwaving

 Cassandra nodes communicate via a
 Gossip Protocol
 - Based on "Scuttlebutt"

Cassandra Architecture PHI Accrual Failure Detection

Failure detection (prediction) via Gossip

A sliding window is used to calculate likelihood of failure, based on gossip:
(Phi, P(Failure))
{ (1, 0.1) (2, 0.01) (3, 0.001) ... }

Cassandra Architecture Failure Response

- System architecture does not reconfigure

 The server will return eventually.
 Recall: Scuttlebutt, sliding window and PHI
- Permanent modification of the ring is an administrator task.
- Phi represents a level of suspicion a particular node is down or unreachable
 (*) This is used for timeout avoidance?
- (*) Protocols account for failure by design

Cassandra Architecture Request Handling

- Request arrives at any node:
 - 1. Servicing node looks up the data hosts.
 - 1. All nodes have knowledge of the data partition
 - 2. (*) Request is routed to all data hosts.
 - 3. If requests timeout, failure is returned
 - 4. Identify the response containing data with the youngest timestamp, return it.
 - 5. Schedule update of nodes with older timestamps. This ensures quorum integrity

Cassandra Architecture Local Data Persistence

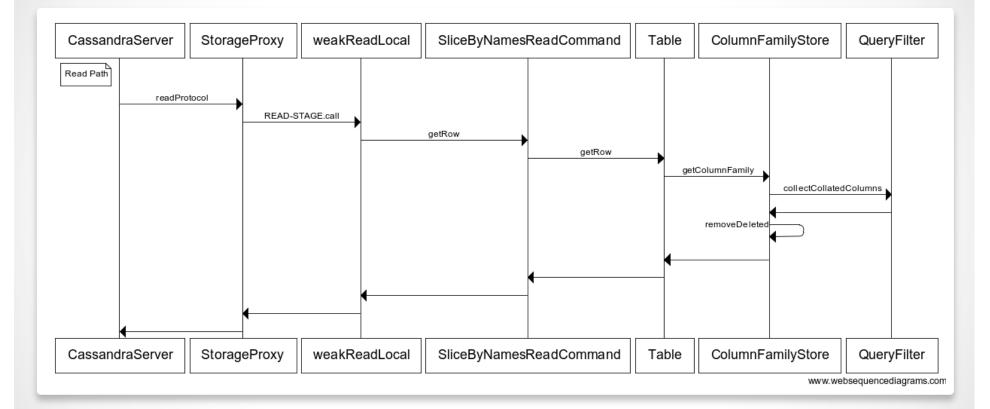
Typical Write:

- 1. Write to commit log Dedicated Disk
- 2. Update to in-memory structure

When in-memory structure crosses threshold (data size, number of data items)

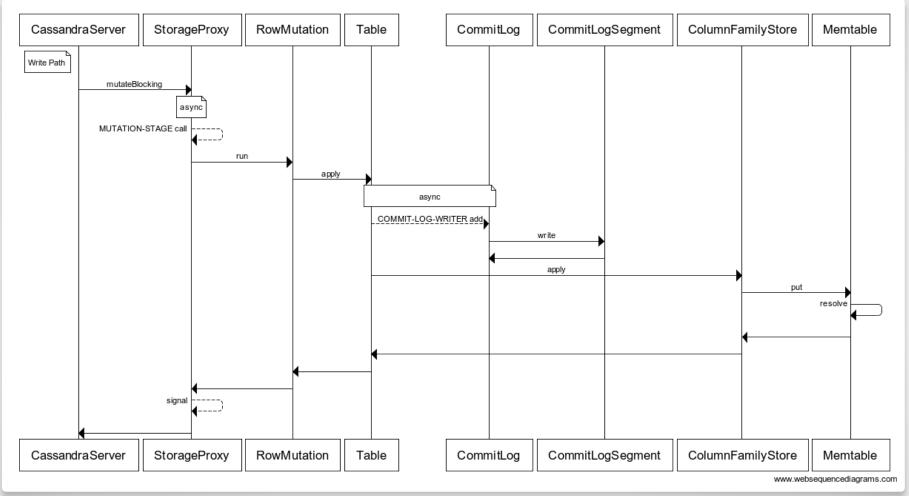
Data is sequentially written to commodity disks. Over time these files are merged and reorganized ala BigTable

Cassandra Architecture Local Data Persistence


Typical Read: (A key can be in many files)

- 1. Bloom filter (index of keys in each file)
- 2. Get Values (reverse chronological order)
 - 1. Values (CF) have Column Indices allowing for direct access of columns.

I've left out much of the chunking details. Optimizations, included at almost every conceivable point, are our of scope.



Read Path

http://prettyprint.me/prettyprint.me/2010/05/02/ understanding-cassandra-code-base/index.html

Write Path

http://prettyprint.me/prettyprint.me/2010/05/02/ understanding-cassandra-code-base/index.html

Questions

- Additional Information:
 - <u>http://www.slideshare.net/DataStax/an-overview-of-apache-cassandra</u>

