
The Case for Shared Nothing

Michael Stonebraker
University of California

Berkeley, Ca.

ABSTRACT

There are three dominent themes in building high transaction rate multiprocessor systems, namely
shared memory (e.g. Synapse, IBM/AP configurations), shared disk (e.g. VAX/cluster, any multi-ported
disk system), and shared nothing (e.g. Tandem, Tolerant). This paper argues that shared nothing is the pre-
ferred approach.

1. INTRODUCTION
The three most commonly mentioned architectures for multiprocessor high transaction rate systems

are:

shared memory (SM), i.e. multiple processors shared a common central memory

shared disk (SD), i.e. multiple processors each with private memory share a
common collection of disks

shared nothing (SN), i.e. neither memory nor peripheral storage is shared among processors

There are several commerical examples of each architecture. In this paper we argue that SN is the most
cost effective alternative. In Section 2 we present a "back of the envelope" comparison of the alternatives.
Then in Sections 3 through 5 we discuss in more detail some of the points of comparison.

2. A SIMPLE ANALYSIS
In Table 1 we compare each of the architectures on a collection of 12 points. Each architecture is

rated 1, 2 or 3 to indicate whether it is the best, 2nd best or 3rd best on each point. For certain points of
comparison, there are apparent ties. In such situations we give each system the lower rating. Most of the
ratings are self-evident, and we discuss only a few of our values.

The first two rows indicate the difficulty of transaction management in each environment. SM
requires few modifications to current algorithms and is the easiest environment to support. Hence it
receives a "1" for crash recovery. The "2" for concurrency control results from the necessity of dealing
with the lock table as a hot spot. SN is more difficult because it requires a distributed deadlock detector and
a multi-phase commit protocol. SD presents the most complex transaction management problems because
of the necessity of coordinating multiple copies of the same lock table and synchronizing writes to a com-
mon log or logs.

The third and fourth points are closely related. Data base design is difficult in current one-machine
environments, and becomes much harder in an SN system where the location of all objects must be speci-
fied. The other environments do not add extra complexity to the one-machine situation. Balancing the load

This research was sponsored by the U. .S. Air Force Office of Scientific Research Grant 83-0254 and the Naval Electronics Sys-
tems Command Contract N39-82-C-0235

1



System Feature shared nothing shared memory shared disk

difficulty of
concurrency 2 2 3
control

difficulty of
crash 2 1 3
recovery

difficulty of
data base 3 2 2
design

difficulty of 3 1 2
load balancing

difficulty of 1 3 2
high availability

number of 3 1 2
messages

bandwidth 1 3 2
required

ability to
scale to large 1 3 2
number of machines

ability to have
large distances 1 3 2
between machines

susceptibility to 1 3 2
critical sections

number of 3 1 3
system images

susceptibility to 3 3 3
hot spots

A Comparison of the Architectures

Table 1

2



of an SN system is complex, since processes and/or data must be physically moved. It is obviously much
easier in the other environments. The next five points are fairly straightforward, and we skip forward to
critical sections. They hav e been shown to be a thorny problem in one-machine systems [BLAS79], and an
SN system does not make the problem any worse. On the other hand, an SM system will be considerably
more susceptible to this problem, while an SD system will be in-between. SN and SD systems have one
system image per CPU, and system administration will be more complex than an SM system which has
only a single system image. Lastly, all architectures are susceptible to hot spots.

Several conclusions are evident from Table 1. First an SM system does not scale to a large number of
processors. In my opinion this is a fundamental flaw that makes it less interesting than the other architec-
tures. Second, an SD system excells at nothing, i.e. there are no "1"s in its column. Lastly, one should note
the obvious marketplace interest in distributed data base systems. Under the assumption that every vendor
will have to implement one, there is little or no extra code required for an SN system. In order to justify
implementing something else (e.g. SD) and paying the extra software complexity, one should be sure that
SN has some insurrountable flaws. In the next section we discuss the issues of data base design, load bal-
ancing and number of messages, which are points of comparison where SN was the poorest choice. In each
case we argue that the problems are unlikely to be very significant. Then we discuss hot spots in Section 4,
and argue that these are easier to get rid of than to support effectively. Lastly, we discuss concurrency con-
trol, and suggest that scaling to larger data bases is unlikely to change the ratings in Table 1. Hence, we
will conclude that SN offers the most viable and cost effective architecture.

3. Problems with Shared Nothing
It appears that most data base users find data base design to require substantial wizardry. Moreover,

tuning a data base is a subject that data base vendors have clearly demonstrated proficiency relative even to
the wisest of their customers. To ordinary mortals tuning is a "black art".

Consequently, I expect many automatic tuning aids will be constructed for most data managers, if for
no other reason than to lower the technical support burden. There is no evidence that I am aware of that
such tuning aids will be unsuccessful. Similarly, there is no evidence that automatic data base design aids
will fail in an SN environment where the data base is partitioned over a collection of systems. Furthermore,
balancing the load of an SN data base by repartitioning is a natural extension of such a design aid. More-
over, applications which have a stable or slowly varying access pattern will respond successfully to such
treatment and will be termedtunable. Only data bases with periodic or unpredictable access patterns will
be untunable, and I expect such data bases to be relatively uncommon. Hence, load balancing and data base
design should not be serious problems in typical environments.

Consider the number of messages which an SN system must incur in a typical high transaction pro-
cessing environment. The example consists of a data base with N objects subject to a load consisting
entirely of transactions containing exactly k commands, each affecting only one record. (For TP1 the value
of k is 4). For any partitioning of the data base, these k commands remain single-site commands. Suppose
that there exists a partitioning of the data base into non-overlapping collections of objects such that all
transactions are locally sufficient [WONG83]. Such a data base problem will be termeddelightful . Most
data base applications are nearly delightful. For example, the TP1 in [ANON84] has 85% delightful trans-
actions.

Assume further that the cost of processing a single record command is X and the cost of sending and
receiving a round-trip message is Y. For convenience, measure both in host CPU instructions, and call T =
X/Y the technology ratioof a given environment. Measured values of T for high speed networks and rela-
tional data bases have varied between 1 and 10 and reflect the relative efficiency of data base and network-
ing software in the various situations. An environment where each is tuned well should result in a T of
about 3. We expect the long term value of T to stay considerably greater than 1, because it appears much
easier to offload network code than data base code.

As long as T >> 1, network costs will not be the dominent system cost in delightful data bases; rather
it will be processing time on the local systems. Moreover, data bases that are nearly delightful will require
a modest number of messages. (With a reasonable amount of optimization, it is conceivable to approach 2

3



messages per transaction for locally sufficient transactions.) Hence, the number of messages should not be
a problem for the common case, that of nearly delightful data bases.

4. Hot Spots
Hot spots are a problem in all architectures, and there are at least three techniques to dealing with

them.

1) get rid of them
2) divide a hot spot record into N subrecords [ANON84]
3) use some implementation of a reservation system [REUT81]

It has never been clear to me why the branch balance must be a stored field in TP1. In the absence of
incredible retrieval volume to this item, it would be better to calculate it on demand. The best way to elimi-
nate problems with hot spots is to eliminate hot spots.

Unfortunately, there are many hot spots which cannot be deleted in this fashion. These include criti-
cal section code in the buffer manager and in the lock manager, and "convo ys" [BLAS79] results from
serial hot spots in DBMS execution code. In addition, the head of the log and any audit trail kept by an
application are guaranteed to be hot spots in the data base. In such cases the following tactic can usually be
applied.

Decompose the object in question into N subobjects. For example, the log can be replicated N times,
and each transaction can write to one of them. Similarly, the buffer pool and lock table can be decomposed
into N subtables. Lastly, the branch balance in TP1 can be decomposed into N balances which sum to the
correct total balance. In most cases, a transaction requires only one of the N subobjects, and the conflict
rate on each subobject is reduced by a factor of N. Of course, the division of subobjects can be hidden
from a data base user and applied automatically by the data base designer, whose existence we have specu-
lated in Section 3.

Lastly, when updates are restricted to increment and decrement of a hot spot field, it is possible to use
field calls (e.g. IMS Fast Path) or a reservation system [REUT82]. It is clear that this tactic can be applied
equally well to any of the proposed architectures; however, it is not clear that it ever dominates the "divide
into subrecords" tactic. Consequently, hot spots should be solvable using conventional techniques.

5. Will Concurrency Control Become a Bigger Problem?
Some researchers [REUT85] argue that larger transaction systems will generate a thorny concurrency

control problem which may affect the choice of a transaction processing architecture. This section argues
that such an event will probably be uncommon.

Consider the observation of [GRAY81] which asserts that deadlocks are rare in current systems and
that the probability of a transaction waiting for a lock request is rare (e.g. .001 or .0001). The conclusion to
be drawn from such studies is that concurrency control is not a serious issue in well designed systems
today. Consider the effect of scaling such a data base application by a factor of 10. Hence, the CPU is
replaced by one with 10 times the throughput. Similarly 10 times the number of drives are used to acceler-
ate the I/O system a comparable amount. Suppose 10 times as many terminal operators submit 10 times as
many transactions to a data base with 10 times the number of lockable objects. It is evident from queuing
theory that the average response time would remain the same (although variance increases) and the proba-
bility of waiting will remain the same. The analyis in [GRAY81] can be rerun to produce the identical
results. Hence, a factor of 10 scaling does not affect concurrency control issues, and today’s solutions will
continue to act as in current systems.

Only two considerations cloud this optimistic forcast. First, the conclusion is predicated on the
assumption that the number of granules increases by a factor of 10. If the size of a granule remains a con-
stant, then the size of the data base must be linear in transaction volume. We will term such a data base
problemscalable. Consider the transactions against a credit card data base. The number of transactions
per credit card per month is presumably varying slowly. Hence, only a dramatic increase in the number of
cards outstanding (and hence data base size) could produce a large increase in transaction rates. This data

4



base problem appears to be scalable. In addition, suppose a fixed number of travel agent transactions are
generated per seat sold on a given airline. Consequently, transaction volume is linear in seat volume
(assuming that planes are a constant size) and another scalable data base results.

One has to think hard to discover nonscalable data bases. The one which comes to mind is TP1 in an
environment where retail stores can debit one’s bank account directly as a result of a purchase [ANON84].
Here, the number of transactions per account per month would be expected to rise dramatically resulting in
a nonscalable data base. However, increasing the size of a TP1 problem will result in no conflicts for the
account record (a client can only be initiating one retail transaction at a time) and no conflict for the teller
record (a clerk can only process one customer at a time). Hence, the only situation with increased conflict
would be on summary data (e.g. the branch balance). Concurrency control on such "hot spots" should be
dealt with using the techniques of the previous section.

The following conclusions can be drawn. In scalable data bases (the normal case) concurrency con-
trol will remain a problem exactly as difficult as today. In nonscalable data bases it appears that hot spots
are the main concurrency control obstacle to overcome. Hence, larger transaction systems in the best case
present no additional difficulties and in the worst case aggravate the hot spot problem.

6. CONCLUSIONS
In scalable, tunable, nearly delightful data bases, SN systems will have no apparent disadvantages

compared to the other alternatives. Hence the SN architecture adequately addresses the common case.
Since SN is a nearly free side effect of a distributed data base system, it remains for the advocates of other
architectures to demonstrate that there are enough non-tunable or non-scalable or non delightful problems
to justify the extra implementation complexity of their solutions.

REFERENCES

[ANON84] Anon et. al., "A Measure of Transaction Processing Power", unpublished working
paper.

[BLAS79] Blasgen, M. et. al., "The Convo y Phenomenon," Operating Systems Review, April
1979.

[GRAY81] Gray, J. et. al., "A Straw Man Analysis of Probability of Waiting and deadlock,"
IBM Research, RJ3066, San Jose, Ca., Feb 1981.

[REUT82] Reuter, A., "Concurrency on High-Traffic Data Elements," ACM-PODS, March
1982.

[REUT85] Reuter, A., (private communication).

[WONG83] Wong, E. and Katz, R., "Distributing a Data Base for Parallelism," ACM-
SIGMOD, May 1983.

5


