
Journal of Digital Forensics, Journal of Digital Forensics,

Security and Law Security and Law

Volume 15 Article 5

February 2021

Backup and Recovery Mechanisms of Cassandra Database: A Backup and Recovery Mechanisms of Cassandra Database: A

Review Review

Karina Bohora
College of Engineering, Pune, bohoraka16.it@coep.ac.in

Amol Bothe
College of Engineering, Pune, botheap16.it@coep.ac.in

Damini Sheth
College of Engineering, Pune, daminihs16.it@coep.ac.in

Rupali Chopade
College of Engineering, Pune, rmc18.comp@coep.ac.in

V. K. Pachghare
College of Engineering, Pune, vkp.comp@coep.ac.in

Follow this and additional works at: https://commons.erau.edu/jdfsl

 Part of the Computer Law Commons, and the Information Security Commons

Recommended Citation Recommended Citation
Bohora, Karina; Bothe, Amol; Sheth, Damini; Chopade, Rupali; and Pachghare, V. K. (2021) "Backup and
Recovery Mechanisms of Cassandra Database: A Review," Journal of Digital Forensics, Security and Law:
Vol. 15 , Article 5.
DOI: https://doi.org/10.15394/jdfsl.2021.1613
Available at: https://commons.erau.edu/jdfsl/vol15/iss2/5

This Article is brought to you for free and open access by
the Journals at Scholarly Commons. It has been
accepted for inclusion in Journal of Digital Forensics,
Security and Law by an authorized administrator of
Scholarly Commons. For more information, please
contact commons@erau.edu.

(c)ADFSL

http://commons.erau.edu/jdfsl
http://commons.erau.edu/jdfsl
https://commons.erau.edu/jdfsl
https://commons.erau.edu/jdfsl
https://commons.erau.edu/jdfsl/vol15
https://commons.erau.edu/jdfsl/vol15/iss2/5
https://commons.erau.edu/jdfsl?utm_source=commons.erau.edu%2Fjdfsl%2Fvol15%2Fiss2%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/837?utm_source=commons.erau.edu%2Fjdfsl%2Fvol15%2Fiss2%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=commons.erau.edu%2Fjdfsl%2Fvol15%2Fiss2%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.15394/jdfsl.2021.1613
https://commons.erau.edu/jdfsl/vol15/iss2/5?utm_source=commons.erau.edu%2Fjdfsl%2Fvol15%2Fiss2%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:commons@erau.edu
http://commons.erau.edu/
http://commons.erau.edu/
/creativecommons.org/licenses/by-nc-nd/4.0/
/creativecommons.org/licenses/by-nc-nd/4.0/

BACKUP AND RECOVERY MECHANISMS
OF CASSANDRA DATABASE: A REVIEW

Karina Bohora, Amol Bothe, Damini Sheth, Rupali Chopade, V. K. Pachghare
College of Engineering, Pune

bohoraka16.it,botheap16.it,daminihs16.it,rmc18.comp,vkp.comp@coep.ac.in

ABSTRACT
Cassandra is a NoSQL database having a peer-to-peer, ring-type architecture. Cassandra
offers fault-tolerance, data replication for higher availability as well as ensures no single
point of failure. Given that Cassandra is a NoSQL database, it is evident that it lacks
research that has gone into comparatively older and more widely and broadly used SQL
databases. Cassandra’s growing popularity in recent times gives rise to the need to address
any security-related or recovery-related concerns associated with its usage. This review paper
discusses Cassandra’s existing deletion mechanism and presents some identified issues related
to backup and recovery in the Cassandra database. Further, failure detection and handling
of failures such as node failure or data center failure have been explored in the paper. In
addition, several possible solutions to address backup and recovery, including recovery in case
of disasters, have been reviewed.

Keywords: Cassandra, NoSQL, Data Recovery, Backup, Node Failure

1. INTRODUCTION

1.1 Architecture and Working
Cassandra’s data structure’s basic compo-
nent is the column, which consists of a (key,
value) pair for each row that combines to
form a partition key. As shown in Figure
1, partitioning of data is done based on its
partition key which is passed through a hash
function. Data with the same partition key
will be stored on the same node within the
cluster.

Figure 2 shows that when a read operation
is called, it first searches in the MemTable
(Problems we see in support is data going
"missing". | Datastax , 2020), which is the
cache for the data in the RAM. If it is unable
to find, then it checks in the SStable, which is

Figure 1. Partition Key Mechanism

1

JDFSL 2021 BACKUP AND RECOVERY MECHANISMS

on the disk. When a write operation is called,

Figure 2. Architecture of a Node

it writes in the MemTable and to the commit
log for durability. Once the MemTable is
full, it flushes the data to the SSTable and is
permanently written there.
There is more than 1 replication factor

in Cassandra, and hence, there’s high avail-
ability and no single point of failure. It has
the property of ‘Linear scale performance,’
wherein as more nodes are added, the perfor-
mance of Cassandra increases. The data is
automatically replicated to multiple nodes for
fault-tolerance. Replication across multiple
data centers is supported.

1.2 Existing Provision for
Security in Cassandra

For immediate deletion, i.e., without waiting
for any period of time, Cassandra supports
the ‘DROP KEYSPACE’ and ‘DROP TA-
BLE’ statements (Problems we see in support
is data going "missing". | Datastax , 2020).
Besides these two statements, there are two
other methods of deletion, as shown in Figure
3, in which immediate deletion does not take
place. These methods are:

1. user issues a delete command

2. user marks record (row/column) with
TTL (time to live).

Figure 3. Delete Methods

In the 1st method, when the delete com-
mand is issued, a tombstone, which marks
the record for deletion, gets added to a partic-
ular record. The tombstone is then written
to the SSTable. When the built-in grace
period (expressed as gc_grace_seconds) ex-
pires, the tombstone is deleted. The default
value for grace period is 864,000 seconds (ten
days) (Apache Cassandra 3.0 for DSE 5.0.
How is Data Deleted , 2020). However, each
table can have its own value for the grace
period. In order to identify the grace pe-
riod of a tombstone, the ‘cassandra.yaml’
file can be used. The ’cassandra.yaml’ file
consists of configuration properties, one of
which is the ‘gc_grace_seconds.’ The value
in ‘gc_grace_seconds’ denotes the grace pe-
riod associated with a tombstone.

In the 2nd method, the user marks row/col-
umn with a TTL value. In order to identify
the TTL associated with a record, one can use
the ‘TTL function’. The TTL function takes

Page 2 © 2021 JDFSL

BACKUP AND RECOVERY MECHANISMS JDFSL 2021

1 argument, which is a column name, and
returns the corresponding associated TTL.
After the TTL value expires, that particular
record is marked with a tombstone, and then
this tombstone is written to SSTable. Then,
the tombstone is deleted when the grace pe-
riod expires.
In order to identify whether a record has

a tombstone associated with it, it is required
to check if the associated SSTable dump
output of the corresponding partition has
the ‘deletion_info’ tombstone marker. The
‘deletion_info’ tombstone marker present
in the SSTable dump output includes a
‘marked_deleted’ timestamp which indicates
the time at which a record was requested to
be deleted as well as a ‘local_delete_time’
timestamp indicating the local time at which
the Cassandra server received a request to
delete a record. Hence, the ‘marked_deleted’
timestamp is specified by the user or the
user application, and the ‘local_delete_time’
timestamp is set by the Cassandra server.

The SSTable event log dump has the ‘dele-
tion_info’ associated with a deleted record.
To read the log dump of SSTable, ‘cassandra-
tools’ can be installed, and ‘nodetool’ can
then be used to create a snapshot, and con-
sequently, an ‘sstabledump’ can be generated
and stored in a file. An analyst can access
this log dump to identify information pertain-
ing to the deletion of a record.

There are 3 main reasons why the backup
of data is very necessary:

(a) due to defect in application logic, good
data might get overwritten and repli-
cated across nodes

(b) SSTables can become corrupted

(c) a disaster recovery plan will be of no use
if the multi-data center failure occurs.

Cassandra has two mechanisms of backup
and three types of backup (Problems we see in

support is data going "missing". | Datastax ,
2020). The backup mechanisms are

(a) snapshot

(b) incremental backup.

The main difference between these two is
that snapshots provide full backup, while
incremental backup includes changes made
for a period of time. The types of backup
are: full, incremental, and differential.

The difference between incremental backup
and differential backup is that incremental
backup includes all changes since the previous
incremental backup, while differential backup
has all changes since the previous full backup.
Basically, a series of incremental backups to-
gether constitute a differential backup. As
mentioned, Cassandra has a provision for
backup and restore but lacks data recovery
of missing/deleted data (Apache Cassandra
3.0 for DSE 5.0. Backing up and Restoring
Data| Datastax , 2020). Since it operates with
hundreds of thousands of nodes spread across
data centers, it will be common for several
small and large components to fail simulta-
neously, and so they must be treated as a
norm and not an exception. If Cassandra
can recover data successfully, then it will im-
prove the system’s reliability, performance,
efficiency, and scalability.

2. FAILURE
HANDLING, BACKUP &

RECOVERY
As thoroughly explored in (Wang & Tang,
2012), NoSQL databases such as Cassandra
are based on the theories of CAP theorem,
BASE theorem as well as the Eventual consis-
tency theorem. One of the biggest challenges
that NoSQL deployments, including Cassan-
dra, face is data protection and retention.
Even the replicas get damaged in the cases of

© 2021 JDFSL Page 3

JDFSL 2021 BACKUP AND RECOVERY MECHANISMS

ransomware attacks, data corruption, or ac-
cidental deletion. For NoSQL databases, the
key challenges in backup and restore include
cluster-wide consistent backup, removing re-
dundant copies, and being resilient to topol-
ogy changes. Cassandra effectively addresses
agility and scaling required in new-age appli-
cations such as IoT, which has caused times
series data to become more common. The
paper (Arous et al., 2019) shows how this
time series data can be recovered using Re-
covDB, a system that is enhanced to support
the recovery of multiple blocks. It can be
used for Online Trading System applications,
as demonstrated in (Wang & Tang, 2012).
Cassandra can also be used to manage Big
Data, as explained in (Mangle & Sambhare,
2013).

2.1 Failure Detection of One
Node by Another Node in

the System

Detecting the failure of a node in the system
or detecting whether a node is up or down
is crucial because if failure detection is not
implemented, a node might try to communi-
cate with unreachable nodes while operating.
In Cassandra, for detecting failures of nodes,
the use of a modified version of the φ Accrual
Failure Detector is suggested. This module
(Lakshman & Malik, 2010) is based on the
idea that every node that is monitored will
have a suspicion level associated with it in-
stead of a plain Boolean value (0 if node is
down and 1 if node is up). This suspicion
level value associated with each of the mon-
itored nodes is called φ. The value that φ
takes on depends on the amount of load at
that particular node and other network condi-
tions. In simpler words, φ is a threshold value
that tells us about the likelihood of making
a mistake in marking a node as either up
or down. The more the value of φ, the less
likely it is that we are making a mistake in

Figure 4. Failure Detection of One Node by
Another

our decision. A value of φ=1 indicates that
there is a chance of 10% that our decision
will be contradicted in the future. Likewise,
φ=2 and φ=3 indicate a likelihood of 1% and
0.1%, respectively for error in the decision.
An important aspect in this whole method
of Accrual Failure Detector is determining
the value of φ. To determine the value of
, the inter-arrival times of gossip messages
from other nodes to a given node are ana-
lyzed. Figure 4, shows the existing as well as
the φ Accrual Failure Detector method. It is
observed and inferred that the distribution
of these inter-arrival times can be better ap-
proximated as an Exponential Distribution
as compared to a Gaussian distribution.

2.2 Handling Node Failure in
the System

When any node starts for the first time in the
ring architecture, it chooses its position by
selecting a random token. This information

Page 4 © 2021 JDFSL

BACKUP AND RECOVERY MECHANISMS JDFSL 2021

of mapping regarding which node is mapped
to which token is stored on the local disk
and is gossiped in the cluster so that all the
nodes come to know about the mapping. So
each node knows about the positions of all
the other nodes in the ring topology. Each
data item stored has a key associated with
it. N hosts or nodes have a replica of a given
data item. N is called the replication factor.
Each key has a coordinator node assigned to
it. The coordinator node stores a copy of the
key with itself and further replicates it to N-1
nodes. So, in all, N nodes have the data item
with them. In Cassandra, there are three
main replication policies for replicating data
items across nodes. These are:

1. Rack Aware

2. Rack Unaware

3. Datacenter Aware

In the Rack Unaware strategy, the N-1 suc-
cessors of the coordinator node are chosen
as non-coordinator replicas for the data item.
On the other hand, in both Rack Aware
and Datacenter Aware strategies, a leader
called Zookeeper is elected. This leader or
Zookeeper tells the nodes the ranges up to
which they will be acting as a replica for. So
each node has ranges for which it is respon-
sible. The Zookeeper tells each node about
the ranges for which it is responsible. The
Zookeeper takes care that a node is responsi-
ble for a maximum of N-1 ranges. This means
that no node in the system can have more
than N-1 ranges associated with it. The in-
formation regarding all the ranges for which
all the nodes in the system are responsible for,
is stored inside the Zookeeper. So, when a
node fails or crashes and loses the information
about the ranges for which it was responsible,
then the Zookeeper node comes to its rescue
and provides it the required ranges for which
it is responsible when the node comes back

Figure 5. Data Replication to Handle Data
Center Failure

up or recovers from the crash. In this way,
the Zookeeper node can help a crashed node
get back lost information about the ranges for
which it is responsible for holding replicas.

2.3 Handling Data Center
Failure in System

The main reasons for the occurrence of data
center failure are natural disasters, network
failure, and power outages. In Cassandra
(Qiao et al., 2018) each row is replicated
across many data centers. Each row has a
partition key associated with it, and each key
has a preference list that mentions the nodes
across which that particular row should be
replicated. These nodes are spread across
different data centers. This ensures that if
an entire data center fails, there will still be
a replica of the row with some other node/s
in different data center/s. Figure 5 shows the
replication of data across nodes belonging to
different data centers. Different data centers
are connected via high-speed network links.

2.4 Trade-Off between Data
Recovery Time and Query

Latency
While designing the database schema to be
followed, it is crucial to know the different
potential query patterns to ensure that query
latency is low and that throughput and data

© 2021 JDFSL Page 5

JDFSL 2021 BACKUP AND RECOVERY MECHANISMS

recovery are high. For this, a scheme of het-
erogeneous replica instead of a homogenous
replica is suggested in (Qiao et al., 2018).
Various replicas will have the same datasets
in this scheme but can have different serial-
ization bytes on disk. As a result, different
types of queries will get accelerated while
the data recovery ability of original data is
maintained. It attempts to improve Cassan-
dra’s query performance by introducing a
heterogeneous replica mechanism for repli-
cating data while maintaining the original
data recovery properties for which the idea
of replication was initially introduced. For
this, an algorithm called HRCA is proposed,
which is able to improve the average query
latency by 1 to 2 orders of magnitude. In
this proposed method, different queries use
different replicas, and so besides being useful
for data recovery, the replicas can also be
used to reduce query latency and improve
query performance. If ‘n’ is the replication
factor and there are ’m; clustering keys then
there are Cn m!+n1 possible layouts for the
replica. This number is very large, and so
only optimal heterogeneous replicas are con-
sidered based on simulated annealing. Here,
since replicas are different, the LSM-Tree
write process is used for data recovery as the
original method applies only in the case of ho-
mogenous replicas while here heterogeneous
replicas have been introduced. As query la-
tency’s issue was resolved, however, it was
observed that data recovery took longer. The
data that traditionally took 4 minutes to re-
cover now took 6 minutes under this newly
proposed method using heterogeneous repli-
cas. This method, thus, demonstrates a clear
trade-off that exists between query latency
and data recovery time.

2.5 BARNS Solution for
Cluster Consistent,

Storage Efficient Topology
Oblivious Backup

The BARNS solution proposed in (Kathpal &
Sehgal, 2017) saves 66% backup space under
a replication factor of 3 and has a constant
restore time of 2 to 3 minutes. The time it
needs for restoring is independent of cluster
size and the dataset for which it is creat-
ing a backup. The BARNS solution uses
lightweight snapshots instead of copy-based
backup. This solution ensures resilience to
topology changes during backup and recov-
ery. This solution is proposed for Cassandra
when it is hosted on shared storage. The most
important and differentiating factor in the
BARNS solution is that it performs recovery-
related work at the backup time instead of
during restoration. This method uses Cas-
sandra’s compaction feature to cluster-wide
consistency and space efficiency. For achiev-
ing topology oblivious backup, this method
saves cluster configuration for each cluster.
This cluster configuration includes the health
and token of each node in the specific clus-
ter. In BARNS, the backup takes place in 2
phases:

1. Lightweight backup (LWB): Here, clus-
ter configuration is saved, and a snapshot
of healthy nodes is taken.

2. Post-processing phase (PP): In this
phase, consistency conflicts are resolved,
and redundant copies of data are re-
moved by post-processing snapshots
taken in 1st phase.

Figure 6 shows the pictorial representation
of the two phases of backup as proposed by
BARNS solution. It was observed that re-
covery took 60-80 seconds, and this time was
independent of data as well as cluster size.

Page 6 © 2021 JDFSL

BACKUP AND RECOVERY MECHANISMS JDFSL 2021

Figure 6. BARNS: 2 Phases of Backup

The ‘nodetool repair’ command takes 456 sec-
onds for the repair operation. So, BARNS
demonstrates considerable improvement.

2.6 Decentralized Disaster
Recover Centre (DR)

Instead of Centralized DR

In a decentralized disaster recovery struc-
ture (Cankaya & Kupka, 2016), many servers
host the database and each server caters to
a different schema. In the proposed idea,
each schema will have a different replication
scheme. Furthermore, instead of a radial
backup, a cyclic backup scheme is proposed
for better decentralization. A DC is a data
center, while a DR is a data recovery center.
The biggest problem with having a single
disaster recovery center is that it poses the
threat of a single point of failure. In case of
disaster, the DR will act as DC, and so it has
to be adequately resourced. However, this
increases the number of unused resources as
the DR will remain idle for a lot of time. Two
main proposals of this method are:

• Decentralized Disaster Recovery Centers:
A database has different schema. In this
method, groups of schemas are made,
and each group is hosted on a different
server.

• Conditional Forwarding of Queries to
Idle DR Server: Here, the idea is to uti-
lize idle CPU time and unused resources
of DR servers. When DC is overloaded
with a huge number of queries, some
queries are forwarded to DR, and it han-
dles them. Because DR dealing with
updates as well as insertion queries may
cause data inconsistency, a Controller
module is introduced, which takes care
of this issue.

2.7 Disaster Recovery by
Replication to a Stable

Storage

The incremental backup approach is sup-
ported by a few NoSQL databases but it
lacks disaster recovery. To achieve this, a
comparison of the local replicates with re-
mote replicates is done, which is an expen-
sive operation and costs overhead as it re-
quires the transfer of the entire dataset. The
general disaster recovery approaches are i)
data replication and ii) periodic snapshot-
based backup which periodically replicates
the entire database to external data storage.
These solutions are beneficial to minimize
data loss, but it does not recover the latest
copy data. In the proposed solution (Abadi
et al., 2016), of trigger-based backup, when-
ever a new change is made in a document, it
is immediately replicated to a stable storage.
The document is saved with the document
version number indicating which version of
the original document it is with the latest
modifications. This approach includes four
modules:

© 2021 JDFSL Page 7

JDFSL 2021 BACKUP AND RECOVERY MECHANISMS

Figure 7. Disaster Recovery by Replication
to a Stable Storage

(a) the load-balancer module that handles
all the requests and forwards them to
the next module;

(b) the backup and restore management
module, which executes the operation
described in the request received from
the load-balancer tier;

(c) the monitoring module, implemented us-
ing ZooKeeper which selects the primary
load- balancer in case of failure and

(d) the stable storage module, implemented
using Hadoop File System (HDFS), in
to which the data is replicated.

These four modules used to recover data by
replicating it to a stable storage are shown
in Figure 7.

2.8 Understanding of NoSQL
Database

In today’s scenario (Prasad & Gohil, 2014),
web applications are facing new challenges
while serving millions of users. It can be eas-
ily understood and appreciated that while
accessing these web applications worldwide,
users expect the services to be always avail-
able with high performance and reliability.
The rate of growth of successful web services
is much faster as compared to the increase in
the performance of computer hardware. The
NoSQL databases have a dynamic schema
and are best suited for hierarchical data stor-
age. NoSQL Database uses schema of a
weaker BASE (Basic Availability, Soft state,
eventual consistency) features as compared
to a relational database which uses ACID
(Atomic, Consistent, Isolated, Durable) prop-
erties. Table 1 shows the comparison of five
NoSQL databases based on the properties
of Replication, Consistency, and Partial tol-
erance. A distributed computer system can
provide more computing power, and hence
parallel computation (Bhattacharya et al.,
2017). As suggested in (Mangle & Samb-
hare, 2013), Big Data is characterized by
the amount of data generated (volume), the
rate at which data is generated (speed), and
the heterogeneity of data sources (variety).
Hence, Big Data poses challenges to data
management. Traditional RDBMSs are used
for the management of structured data. By
shifting towards NoSQL databases from SQL
databases, an advantage of being able to
work with semi-structured or unstructured
data is achieved. Also, (Mangle & Sambhare,
2013) suggest different advantages of NoSQL
databases over SQL databases. MongoDB
and Riak are taken as two representative
NoSQL databases, and their performance is
evaluated with respect to the read and up-
date operations.

Page 8 © 2021 JDFSL

BACKUP AND RECOVERY MECHANISMS JDFSL 2021

Table 1. Comparison of NoSQL Databases

Replication Consistency
Partial

Tolerance
SimpleDB Yes No No
Cassandra Yes No Yes
MongoDB Yes Yes Yes

Redis
Yes

(Unidirectional)
Yes Yes

BigTable Yes Yes Yes

2.9 Database Extraction Tools

There are quite a few tools that help in foren-
sic analysis of databases ranging from backup
and replication to data extraction. A sur-
vey of ten forensic data tools in (Cankaya
& Kupka, 2016) provides insights on how
each one of them is useful, listing out their
main functionalities. The tools are Oxygen
Forensics Detective, Xplico, Digital Detec-
tive Blade v1.13, Kernel Database Recovery,
Systools SQL Log Analyzer, WinHex, Net-
Cat, Windows Forensic Toolchest, SQL CMD,
and Forensics Toolkit (FTK). These tools
(Chopade & Pachghare, 2019) are either fo-
cused on data extraction or database recovery.
A standard database is used to compare the
performance by testing the runtime of similar
tools. According to the tests in (Cankaya &
Kupka, 2016), Forensics Toolkit (FTK) has
the fastest runtime for static data compared
to the other two tested against for forensic
analysis.

2.10 Accurate and Efficient
Missing Blocks Recovery
for Large Time Series

The research in (Arous et al., 2019), deals
primarily with missing value recovery. The
major reasons for missing values are cited
to be failures as well as irregular time inter-

vals. The paper is focused on RecovDB, a
relational database system. RecovDB has
several advantages, including parameter-free
recovery, correlation-aware recovery, and full-
fledged DBMS support. There are three im-
portant properties of RecovDB, which are:

(a) recovering multiple time series at once,

(b) accurate recovery with increasing miss-
ing values

(c) efficient recovery with increasing data
size. To measure the efficiency and ac-
curacy of RecovDB,

2 criteria were used:

(a) runtime to perform full recovery

(b) accuracy of recovery using RMSE=root
mean square error.

3. CONCLUSION
Recovery using multiple servers would fetch
better results compared to traditionally used
backup based on only a single server. To
make the solution more realistic, we must
consider network traffic and load balancing
issues as well. If we use a trigger-based
backup mechanism that gets triggered upon
each database change, we will get lower RPO

© 2021 JDFSL Page 9

JDFSL 2021 BACKUP AND RECOVERY MECHANISMS

(Recovery Point Objective) and RTO (Recov-
ery Time Objective) values compared to the
values we would have got by using periodic
backup approaches. There is a trade-off be-
tween the query latency and data recovery
time and an attempt to decrease query la-
tency. It will most likely cause data recovery
to take longer than usual, as demonstrated in
the method of heterogeneous replicas for de-
creasing query latency. However, there does
not necessarily have to be a trade-off between
accuracy and efficiency while recovering time
series data. There is an evident research gap
for recovery in Database Cassandra as most
of the tools help recover from SQL scripts
that come under relational database, unlike
Cassandra. The proposed solution of the
4-step trigger-based backup is promising as
whenever a new change is made; it is imme-
diately replicated to stable storage. The only
downside to this technique is the excessive
amount of storage space required due to mul-
tiple versions of the same document being
replicated to a module. There is scope for
future work on the BARNS solution by in-
troducing incremental backup as it currently
provides only full backup. The BARNS solu-
tion can also further be improved by reduc-
ing the post-processing times for Cassandra.
Also, a trigger-based backup approach can be
adopted for Disaster Recovery for Cassandra.

REFERENCES
Abadi, A., Haib, A., Melamed, R., Nassar,

A., Shribman, A., & Yasin, H. (2016).
Holistic disaster recovery approach for
big data nosql workloads. In 2016 ieee
international conference on big data
(big data) (pp. 2075–2080).

Apache cassandra 3.0 for dse 5.0. backing up
and restoring data| datastax. (2020).
https://docs.datastax.com/en/
archived/cassandra/3.0/

cassandra/operations/
opsBackupRestore.html.

Apache cassandra 3.0 for dse 5.0. how is
data deleted. (2020).
https://docs.datastax.com/en/
dse/5.1/dse-arch/
datastax_enterprise/dbInternals/
dbIntAboutDeletes.html.

Arous, I., Khayati, M., Cudré-Mauroux, P.,
Zhang, Y., Kersten, M., & Stalinlov, S.
(2019). Recovdb: Accurate and
efficient missing blocks recovery for
large time series. In 2019 ieee 35th
international conference on data
engineering (icde) (pp. 1976–1979).

Bhattacharya, S., Roy, A., Sen, S., &
Debnath, N. C. (2017). Distributed
data recovery architecture based on
schema segregation. In 2017 ieee
international conference on industrial
technology (icit) (pp. 1238–1243).

Cankaya, E. C., & Kupka, B. (2016). A
survey of digital forensics tools for
database extraction. In 2016 future
technologies conference (ftc) (pp.
1014–1019).

Chopade, R., & Pachghare, V. K. (2019).
Ten years of critical review on
database forensics research. Digital
Investigation, 29 , 180–197.

Kathpal, A., & Sehgal, P. (2017).
{BARNS}: Towards building backup
and recovery for nosql databases. In
9th {USENIX} workshop on hot topics
in storage and file systems (hotstorage
17).

Lakshman, A., & Malik, P. (2010).
Cassandra: a decentralized structured
storage system. ACM SIGOPS
Operating Systems Review , 44 (2),
35–40.

Mangle, N., & Sambhare, P. B. (2013). A
review on big data management and
nosql databases in digital forensics.
International Journal of Science and

Page 10 © 2021 JDFSL

BACKUP AND RECOVERY MECHANISMS JDFSL 2021

Research (IJSR) Volume, 4 .
Prasad, A., & Gohil, B. N. (2014). A

comparative study of nosql databases.
International Journal Of Advanced
Research In Computer Science, 5 (5).

Problems we see in support is data going
"missing". | datastax. (2020).
https://academy.datastax.com/
support-blog/
dude-where\%E2\%80\%99s-my-data.

Qiao, J., Huang, X., Rui, L., & Wang, J.
(2018). Heterogeneous replica for
query on cassandra. arXiv preprint
arXiv:1810.01037 .

Wang, G., & Tang, J. (2012). The nosql
principles and basic application of
cassandra model. In 2012
international conference on computer
science and service system (pp.
1332–1335).

© 2021 JDFSL Page 11

	Backup and Recovery Mechanisms of Cassandra Database: A Review
	Recommended Citation

	Backup and Recovery Mechanisms of Cassandra Database: A Review

