
A Big Data Modeling Methodology
for Apache Cassandra

Artem Chebotko
DataStax Inc.

Email: achebotko@datastax.com

Andrey Kashlev
Wayne State University

Email: andrey.kashlev@wayne.edu

Shiyong Lu
Wayne State University

Email: shiyong@wayne.edu

Abstract—Apache Cassandra is a leading distributed database
of choice when it comes to big data management with zero
downtime, linear scalability, and seamless multiple data center
deployment. With increasingly wider adoption of Cassandra
for online transaction processing by hundreds of Web-scale
companies, there is a growing need for a rigorous and practical
data modeling approach that ensures sound and efficient schema
design. This work i) proposes the first query-driven big data mod-
eling methodology for Apache Cassandra, ii) defines important
data modeling principles, mapping rules, and mapping patterns
to guide logical data modeling, iii) presents visual diagrams for
Cassandra logical and physical data models, and iv) demonstrates
a data modeling tool that automates the entire data modeling
process.

Keywords—Apache Cassandra, data modeling, automation,
KDM, database design, big data, Chebotko Diagrams, CQL

I. INTRODUCTION

Apache Cassandra [1], [2] is a leading transactional, scal-
able, and highly-available distributed database. It is known
to manage some of the world’s largest datasets on clusters
with many thousands of nodes deployed across multiple data
centers. Cassandra data management use cases include product
catalogs and playlists, sensor data and Internet of Things,
messaging and social networking, recommendation, personal-
ization, fraud detection, and numerous other applications that
deal with time series data. The wide adoption of Cassandra [3]
in big data applications is attributed to, among other things,
its scalable and fault-tolerant peer-to-peer architecture [4], ver-
satile and flexible data model that evolved from the BigTable
data model [5], declarative and user-friendly Cassandra Query
Language (CQL), and very efficient write and read access
paths that enable critical big data applications to stay always
on, scale to millions of transactions per second, and handle
node and even entire data center failures with ease. One of
the biggest challenges that new projects face when adopting
Cassandra is data modeling that has significant differences
from traditional data modeling approaches used in the past.

Traditional data modeling methodology, which is used
in relational databases, defines well-established steps shaped
by decades of database research [6], [7], [8]. A database
designer typically follows the database schema design work-
flow depicted in Fig. 1(a) to define a conceptual data model,
map it to a relational data model, normalize relations, and
apply various optimizations to produce an efficient database
schema with tables and indexes. In this process, the pri-
mary focus is placed on understanding and organizing data
into relations, minimizing data redundancy and avoiding data
duplication. Queries play a secondary role in schema design.
Query analysis is frequently omitted at the early design stage

because of the expressivity of the Structured Query Language
(SQL) that readily supports relational joins, nested queries,
data aggregation, and numerous other features that help to
retrieve a desired subset of stored data. As a result, traditional
data modeling is a purely data-driven process, where data
access patterns are only taken into account to create additional
indexes and occasional materialized views to optimize the most
frequently executed queries.

In contrast, known principles used in traditional database
design cannot be directly applied to data modeling in Cassan-
dra. First, the Cassandra data model is designed to achieve su-
perior write and read performance for a specified set of queries
that an application needs to run. Data modeling for Cassandra
starts with application queries. Thus, designing Cassandra
tables based on a conceptual data model alone, without taking
queries into consideration, leads to either inefficient queries
or queries that cannot be supported by a data model. Second,
CQL does not support many of the constructs that are common
in SQL, including expensive table joins and data aggregation.
Instead, efficient Cassandra database schema design relies on
data nesting or schema denormalization to enable complex
queries to be answered by only accessing a single table. It
is common that the same data is stored in multiple Cassan-
dra tables to support different queries, which results in data
duplication. Thus, the traditional philosophy of normalization
and minimizing data redundancy is rather opposite to data
modeling techniques for Cassandra. To summarize, traditional
database design is not suitable for developing correct, let alone
efficient Cassandra data models.

In this paper, we propose a novel query-driven data model-
ing methodology for Apache Cassandra. A high-level overview
of our methodology is shown in Fig. 1(b). A Cassandra solu-
tion architect, a role that encompasses both database design
and application design tasks, starts data modeling by building
a conceptual data model and defining an application workflow
to capture all application interactions with a database. The
application workflow describes access patterns or queries that
a data-driven application needs to run against the database.
Based on the identified access patterns, the solution architect
maps the conceptual data model to a logical data model. The
logical data model specifies Cassandra tables that can effi-
ciently support application queries according to the application
workflow. Finally, additional physical optimizations concern-
ing data types, keys, partition sizes, and ordering are applied
to produce a physical data model that can be instantiated in
Cassandra using CQL.

The most important innovation of our methodology, when
compared to relational database design, is that the application
workflow and the access patterns become first-class citizens

Fig. 1: Traditional data modeling compared with our proposed methodology for Cassandra.

in the data modeling process. Cassandra database design
revolves around both the application workflow and the data,
and both are of paramount importance. Another key difference
of our approach compared to the traditional strategy is that
normalization is eliminated and data nesting is used to design
tables for the logical data model. This also implies that joins
are replaced with data duplication and materialized views for
complex application queries. These drastic differences demand
much more than a mere adjustment of the data modeling
practices. They call for a new way of thinking, a paradigm
shift from purely data-driven approach to query-driven data
modeling process.

To our best knowledge, this work presents the first query-
driven data modeling methodology for Apache Cassandra. Our
main contributions are: (i) a first-of-its-kind data modeling
methodology for Apache Cassandra, (ii) a set of modeling
principles, mapping rules, and mapping patterns that guide
a logical data modeling process, (iii) a visualization tech-
nique, called Chebotko Diagrams, for logical and physical
data models, and (iv) a data modeling tool, called KDM,
that automates Cassandra database schema design according
to the proposed methodology. Our methodology has been
successfully applied to real world use cases at a number
of companies and is incorporated as part of the DataStax
Cassandra training curriculum [9].

The rest of the paper is organized as follows. Section II
provides a background on the Cassandra data model. Section
III introduces conceptual data modeling and application work-
flows. Section IV elaborates on a query-driven mapping from
a conceptual data model to a logical data model. Section V
briefly introduces physical data modeling. Section VI illus-
trates the use of Chebotko Diagrams for visualizing logical
and physical data models. Section VII presents our KDM tool
to automate the data modeling process. Finally, Sections VIII
and IX present related work and conclusions.

II. THE CASSANDRA DATA MODEL

A database schema in Cassandra is represented by a
keyspace that serves as a top-level namespace where all other
data objects, such as tables, reside1. Within a keyspace, a set of
CQL tables is defined to store and query data for a particular

1Another important function of a keyspace is the specification of a data
replication strategy, the topic that lies beyond the scope of this paper.

application. In this section, we discuss the table and query
models used in Cassandra.

A. Table Model

The notion of a table in Cassandra is different from the
notion of a table in a relational database. A CQL table
(hereafter referred to as a table) can be viewed as a set of
partitions that contain rows with a similar structure. Each
partition in a table has a unique partition key and each row
in a partition may optionally have a unique clustering key.
Both keys can be simple (one column) or composite (multiple
columns). The combination of a partition key and a clustering
key uniquely identifies a row in a table and is called a primary
key. While the partition key component of a primary key is
always mandatory, the clustering key component is optional. A
table with no clustering key can only have single-row partitions
because its primary key is equivalent to its partition key and
there is a one-to-one mapping between partitions and rows.
A table with a clustering key can have multi-row partitions
because different rows in the same partition have different
clustering keys. Rows in a multi-row partition are always
ordered by clustering key values in ascending (default) or
descending order.

A table schema defines a set of columns and a primary
key. Each column is assigned a data type that can be primitive,
such as int or text, or complex (collection data types), such as
set, list, or map. A column may also be assigned a special
counter data type, which is used to maintain a distributed
counter that can be added to or subtracted from by concurrent
transactions. In the presence of a counter column, all non-
counter columns in a table must be part of the primary key. A
column can be defined as static, which only makes sense in
a table with multi-row partitions, to denote a column whose
value is shared by all rows in a partition. Finally, a primary key
is a sequence of columns consisting of partition key columns
followed by optional clustering key columns. In CQL, partition
key columns are delimited by additional parenthesis, which can
be omitted if a partition key is simple. A primary key may not
include counter, static, or collection columns.

To illustrate some of these notions, Fig. 2 shows two sam-
ple tables with CQL definitions and sample rows. In Fig. 2(a),
the Artifacts table contains single-row partitions. Its primary
key consists of one column artifact id that is also a simple

partition key

values

partitions rows

artifact_id corresponding_author email
1 John Doe john@x.edu

54 Tom Black tom@y.edu
61 Jim White jim@z.edu

columns

(a) Table Artifacts with single-row partitions

venue_
name

year artifact_
id

title homepage

SCC 2013 1 Composition www.scc2013.org
SCC 2013 www.scc2013.org
SCC 2013 54 Mashup www.scc2013.org
SCC 2014 1 Orchestration www.scc2014.org
SCC 2014 www.scc2014.org
SCC 2014 61 Workflow www.scc2014.org
ICWS 2014 1 VM Migration www.icws2014.org
ICWS 2014 www.icws2014.org
ICWS 2014 58 Scheduling www.icws2014.org

rows

columnscomposite partition key clustering key column
static column

partitions

(b) Table Artifacts_by_venue with multi-row partitions

CREATE TABLE artifacts(
artifact_id INT,
corresponding_author TEXT,
email TEXT,
PRIMARY KEY (artifact_id));

CREATE TABLE artifacts_by_venue(
venue_name TEXT,
year INT,
artifact_id INT,
title TEXT,
homepage TEXT STATIC,
PRIMARY KEY ((venue_name,year),artifact_id));

SELECT artifact_id, title,
homepage
FROM artifacts_by_venue
WHERE venue_name=’SCC’ AND
year=2013;

SELECT artifact_id, title,
homepage
FROM artifacts_by_venue
WHERE venue_name=’SCC’ AND
year=2013 AND artifact_id>=1
AND artifact_id<=20;

(c) An equality search query (d) A range search query

Fig. 2: Sample tables in Cassandra.

partition key. This table is shown to have three single-row
partitions. In Fig. 2(b), the Artifacts by venue table contains
multi-row partitions. Its primary key consists of composite
partition key (venue name, year) and simple clustering key
artifact id. This table is shown to have three partitions, each
one containing multiple rows. For any given partition, its rows
are ordered by artifact id in ascending order. In addition,
homepage is defined as a static column, and therefore each
partition can only have one homepage value that is shared by
all the rows in that partition.

B. Query Model

Queries over tables are expressed in CQL, which has
an SQL-like syntax. Unlike SQL, CQL supports no binary
operations, such as joins, and has a number of rules for query
predicates that ensure efficiency and scalability:

• Only primary key columns may be used in a query
predicate.

• All partition key columns must be restricted by values
(i.e. equality search).

• All, some, or none of the clustering key columns can
be used in a query predicate.

• If a clustering key column is used in a query predicate,
then all clustering key columns that precede this
clustering column in the primary key definition must
also be used in the predicate.

• If a clustering key column is restricted by range
(i.e. inequality search) in a query predicate, then all
clustering key columns that precede this clustering
column in the primary key definition must be restricted
by values and no other clustering column can be used
in the predicate.

Intuitively, a query that restricts all partition key columns
by values returns all rows in a partition identified by the
specified partition key. For example, the following query over
the Artifacts by venue table in Fig. 2(b) returns all artifacts
published in the venue SCC 2013:
SELECT artifact_id, title
FROM artifacts_by_venue
WHERE venue_name=‘SCC’ AND year=2013

A query that restricts all partition key columns and some
clustering key columns by values returns a subset of rows
from a partition that satisfy such a predicate. Similarly, a
query that restricts all partition key columns by values and
one clustering key column by range (preceding clustering key
columns are restricted by values) returns a subset of rows
from a partition that satisfy such a predicate. For example, the
following query over the Artifacts by venue table in Fig. 2(b)
returns artifacts with id’s from 1 to 20 published in SCC
2013:
SELECT artifact_id, title
FROM artifacts_by_venue
WHERE venue_name=‘SCC’ AND year=2013 AND
artifact_id>=1 AND artifact_id<=20;

Query results are always ordered based on the default order
specified for clustering key columns when a table is defined
(the CLUSTERING ORDER construct), unless a query explic-
itly reverses the default order (the ORDER BY construct).

Finally, CQL supports a number of other features, such
as queries that use secondary indexes, IN, and ALLOW
FILTERING constructs. Our data modeling methodology does
not directly rely on such queries as their performance is
frequently unpredictable on large datasets. More details on the
syntax and semantics of CQL can be found in [10].

III. CONCEPTUAL DATA MODELING AND APPLICATION
WORKFLOW MODELING

The first step in the proposed methodology adds a whole
new dimension to database design, not seen in the traditional
relational approach. Designing a Cassandra database schema
requires not only understanding of the to-be-managed data,
but also understanding of how a data-driven application needs
to access such data. The former is captured via a conceptual
data model, such as an entity-relationship model. In particular,
we choose to use Entity-Relationship Diagrams in Chen’s
notation [8] for conceptual data modeling because this no-
tation is truly technology-independent and not tainted with
any relational model features. The latter is captured via an
application workflow diagram that defines data access patterns
for individual application tasks. Each access pattern specifies
what attributes to search for, search on, order by, or do
aggregation on with a distributed counter. For readability, in
this paper, we use verbal descriptions of access patterns. More
formally, access patterns can be represented as graph queries
written in a language similar to ERQL [11].

As a running example, we design a database for a digital
library use case. The digital library features a collection of
digital artifacts, such as papers and posters, which appeared in
various venues. Registered users can leave feedback for venues
and artifacts in the form of reviews, likes, and ratings. Fig. 3
shows a conceptual data model and an application workflow
for our use case. The conceptual data model in Fig. 3(a)
unambiguously defines all known entity types, relationship
types, attribute types, key, cardinality, and other constraints.
For example, a part of the diagram can be interpreted as “user
is uniquely identified by id and may post many reviews, while
each review is posted by exactly one user”. The application
workflow in Fig. 3(b) models a web-based application that
allows users to interact with various web pages (tasks) to
retrieve data using well-defined queries. For example, the
uppermost task in the figure is the entry point to the application
and allows searching for artifacts in a database based on one of
the queries with different properties. As we show in the next
section, both the conceptual data model and the application
workflow have a profound effect on the design of a logical
data model.

IV. LOGICAL DATA MODELING

The crux of the Cassandra data modeling methodology is
logical data modeling. It takes a conceptual data model and
maps it to a logical data model based on queries defined in
an application workflow. A logical data model corresponds
to a Cassandra database schema with table schemas defining
columns, primary, partition, and clustering keys. We define
the query-driven conceptual-to-logical data model mapping via
data modeling principles, mapping rules, and mapping patterns.

A. Data Modeling Principles

The following four data modeling principles provide a
foundation for the mapping of conceptual to logical data
models.

DMP1 (Know Your Data). The first key to successful
database design is understanding the data, which is captured
with a conceptual data model. The importance and effort
required for conceptual data modeling should not be under-
estimated. Entity, relationship, and attribute types on an ER
diagram (e.g., see Fig. 3(a)) not only define which data pieces
need to be stored in a database but also which data properties,
such as entity type and relationship type keys, need to be
preserved and relied on to organize data correctly.

For example, in Fig. 3(a), name and year constitute a venue
key. This is based on our use case assumption that there cannot
be two venues (e.g., conferences) with the same name that are
held in the same year. If our assumption is false, the conceptual
data model and overall design will have to change. Another
example is the cardinality of the relationship type features.
In this case, our use case assumption is that a venue can
feature many artifacts and an artifact can only appear in one
venue. Thus, given the one-to-many relationship type, the key
of features is id of an artifact. Again, if our assumption is false,
both the cardinalities and key will have to change, resulting in
substantially different table schema design.

DMP2 (Know Your Queries). The second key to successful
database design is queries, which are captured via an applica-
tion workflow model. Like data, queries directly affect table

schema design, and if our use case assumptions about the
queries (e.g., see Fig. 3(b)) change, a database schema will
have to change, too. In addition to considering queries and
ensuring their correct support, we should also take into account
an access path of each query to organize data efficiently.

We define the three broad access paths: 1) partition per
query, 2) partition+ per query, and 3) table or table+ per query.
The most efficient option is the “partition per query”, when a
query only retrieves one row, a subset of rows or all rows
from a single partition. For example, both queries presented in
Section II-B are examples of the “partition per query” access
path. This access path should be the most common in an online
transaction processing scenario but, in some cases, may not
be possible or desirable (e.g., a partition may have to become
very large to satisfy this path for a query). The “partition+
per query” and “table and table+ per query” paths refer to
retrieving data from a few partitions in a table or from many
partitions in one or more tables, respectively. While these
access paths can be valid in some cases, they should be avoided
to achieve optimal query performance.

DMP3 (Data Nesting). The third key to successful
database design is data nesting. Data nesting refers to a
technique that organizes multiple entities (usually of the same
type) together based on a known criterion. Such criterion can
be that all nested entities must have the same value for some
attribute (e.g., venues with the same name) or that all nested
entities must be related to a known entity of a different type
(e.g., digital artifacts that appeared in a particular venue). Data
nesting is used to achieve the “partition per query” access path,
such that multiple nested entities can be retrieved from a single
partition. There are two mechanisms in Cassandra to nest data:
multi-row partitions and collection types. Our methodology
primarily relies on multi-row partitions to achieve the best
performance. For example, in Fig. 2(b), the Artifacts by venue
table nests artifacts (rows) under venues (partitions) that fea-
tured those artifacts. In other words, each partition corresponds
to a venue and each row in a given partition corresponds to
an artifact that appeared in the partition venue. Tables with
multi-row partitions are common in Cassandra databases.

DMP4 (Data Duplication). The fourth key to successful
database design is data duplication. Duplicating data in Cas-
sandra across multiple tables, partitions, and rows is a common
practice that is required to efficiently support different queries
over the same data. It is far better to duplicate data to enable
the “partition per query” access path than to join data from
multiple tables and partitions. For example, to support queries
Q1 and Q2 in Fig. 3(b) via the efficient “partition per query”
access path, we should create two separate tables that organize
the same set of artifacts using different table primary keys. In
the Cassandra world, the trade-off between space efficiency
and time efficiency is almost always in favor of the latter.

B. Mapping Rules

Based on the above data modeling principles, we define
five mapping rules that guide a query-driven transition from a
conceptual data model to a logical data model.

MR1 (Entities and Relationships). Entity and relationship
types map to tables, while entities and relationships map to ta-
ble rows. Attribute types that describe entities and relationships

Fig. 3: A conceptual data model and an application workflow for the digital library use case.

at the conceptual level must be preserved as table columns at
the logical level. Violation of this rule may lead to data loss.

MR2 (Equality Search Attributes). Equality search at-
tributes, which are used in a query predicate, map to the prefix
columns of a table primary key. Such columns must include all
partition key columns and, optionally, one or more clustering
key columns. Violation of this rule may result in inability to
support query requirements.

MR3 (Inequality Search Attributes). An inequality search
attribute, which is used in a query predicate, maps to a table
clustering key column. In the primary key definition, a column
that participates in inequality search must follow columns that
participate in equality search. Violation of this rule may result
in inability to support query requirements.

MR4 (Ordering Attributes). Ordering attributes, which are
specified in a query, map to clustering key columns with
ascending or descending clustering order as prescribed by the
query. Violation of this rule may result in inability to support
query requirements.

MR5 (Key Attributes). Key attribute types map to primary
key columns. A table that stores entities or relationships as
rows must include key attributes that uniquely identify these
entities or relationships as part of the table primary key to
uniquely identify table rows. Violation of this rule may lead
to data loss.

To design a table schema, it is important to apply these
mapping rules in the context of a particular query and a
subgraph of the conceptual data model that the query deals
with. The rules should be applied in the same order as they
are listed above.

For example, Fig. 4 illustrates how the mapping rules are
applied to design a table for query Q1 (see Fig. 3(b)) that
deals with the relationship Venue-features-Digital Artifact (see
Fig. 3(a)). Fig. 4 visualizes a table resulting after each rule
application using Chebotko’s notation, where K and C denote
partition and clustering key columns, respectively. The arrows
next to the clustering key columns denote ascending (↑) or
descending (↓) order. MR1 results in table Artifacts by venue
whose columns correspond to the attribute types used in
the query to search for, search on, or order by. MR2 maps

MR2 MR3 MR4 MR5
MR1

Artifacts_by_venue

venue_name

year

artifact_id

artifact_title

[authors]

{keywords}

Artifacts_by_v..

venue_name K

year

artifact_id .

artifact_title

[authors]

{keywords}

Artifacts_by_v..

venue_name K

year C↑

artifact_id .

artifact_title

[authors]

{keywords}

Artifacts_by_v..

venue_name K

year C↓

artifact_id .

artifact_title

[authors]

{keywords}

Artifacts_by_venue

venue_name K

year C↓

artifact_id .C↑

artifact_title

[authors]

{keywords}

Q1 predicate:
name=? AND year>?

ORDER BY year DESC

Fig. 4: Sample table schema design using the mapping rules.

the equality search attribute to the partition key column
venue name. MR3 maps the inequality search attribute to the
clustering key column year, and MR4 changes the clustering
order to descending. Finally, MR5 maps the key attribute to
the clustering key column artifact id.

C. Mapping Patterns

Based on the above mapping rules, we design mapping
patterns that serve as the basis for automating Cassandra
database schema design. Given a query and a conceptual data
model subgraph that is relevant to the query, each mapping
pattern defines final table schema design without the need to
apply individual mapping rules. While we define a number of
different mapping patterns [9], due to space limitations, we
only present one mapping pattern and one example.

A sample mapping pattern is illustrated in Fig. 5(a). It is
applicable for the case when a given query deals with one-
to-many relationships and results in a table schema that nests
many entities (rows) under one entity (partition) according to
the relationships. When applied to query Q1 (see Fig. 3(b)) and
the relationship Venue-features-Digital Artifact (see Fig. 3(a)),
this mapping pattern results in the table schema shown in
Fig. 5(b). With our mapping patterns, logical data modeling
becomes as simple as finding an appropriate mapping pattern
and applying it, which can be automated.

key1.1=? AND key1.2>?
key1.2 (DESC)

ET2_by_ET1

key1.1 K

key1.2 C↓

key2.1 C↑

key2.2 C↑

attr2.1

attr2.2

attr

Artifacts_by_venue

venue_name K

year C↓

artifact_id C↑

artifact_title

[authors]

{keywords}

(a) Sample mapping pattern
(b) Example mapping
pattern application

name=? AND year>?
year (DESC)

Fig. 5: A sample mapping pattern and the result of its appli-
cation.

V. PHYSICAL DATA MODELING

The final step of our methodology is the analysis and
optimization of a logical data model to produce a physical
data model. While the modeling principles, mapping rules,
and mapping patterns ensure a correct and efficient logical
schema, there are additional efficiency concerns related to
database engine constraints or finite cluster resources. A typ-
ical analysis of a logical data model involves the estimation
of table partition sizes and data duplication factors. Some of
the common optimization techniques include partition splitting,
inverted indexes, data aggregation and concurrent data access
optimizations. These and other techniques are described in [9].

VI. CHEBOTKO DIAGRAMS

It is frequently useful to present logical and physical
data model designs visually. To achieve this, we propose
a novel visualization technique, called Chebotko Diagram,
which presents a database schema design as a combina-
tion of individual table schemas and query-driven application
workflow transitions. Some of the advantages of Chebotko
Diagrams, when compared to regular CQL schema definition
scripts, include improved overall readability, superior intel-
ligibility for complex data models, and better expressivity
featuring both table schemas and their supported application
queries. Physical-level diagrams contain sufficient information
to automatically generate a CQL script that instantiates a
database schema, and can serve as reference documents for de-
velopers and architects that design and maintain a data-driven
solution. The notation of Chebotko Diagrams is presented in
Fig. 6.

Sample Chebotko Diagrams for the digital library use
case are shown in Fig. 7. The logical-level diagram in
Fig. 7(a) is derived from the conceptual data model and
application workflow in Fig. 3 using the mapping rules and
mapping patterns. The physical-level diagram in Fig. 7(b) is
derived from the logical data model after specifying CQL data
types for all columns and applying two minor optimizations:
1) a new column avg rating is introduced into tables Arti-
facts by venue, Artifacts by author, and Artifacts to avoid an
additional lookup in the Ratings by artifact table and 2) the
timestamp column is eliminated from the Reviews by user

Table Name
column name 1 CQL-Type K
column name 2 CQL-Type C↑
column name 3 CQL-Type C↓
column name 4 CQL-Type S
column name 5 CQL-Type IDX
column name 6 CQL-Type ++
[column name 7] CQL-Type
{column name 8} CQL-Type
<column name 9> CQL-Type
column name 10 CQL-Type

Partition key column
Clustering key column (ASC)
Clustering key column (DESC)
Static column
Secondary index column
Counter column
Collection column (list)
Collection column (set)
Collection column (map)
Regular column

Table schema

Q1, Q2

Table A
...

Table B
...

Q3

Entry point (as in an application workflow)
One or more queries supported by a table

Transition (as in an application workflow)

Fig. 6: The notation of Chebotko Diagrams.

table because a timestamp can be extracted from column
review id of type TIMEUUID.

VII. AUTOMATION AND THE KDM TOOL

To automate our proposed methodology in Fig. 1(b), we
design and implement a Web-based data modeling tool, called
KDM2. The tool relies on the mapping patterns and our
proprietary algorithms to automate the most complex, error-
prone, and time-consuming data modeling tasks: conceptual-
to-logical mapping, logical-to-physical mapping, and CQL
generation. KDM’s Cassandra data modeling automation work-
flow is shown in Fig. 8(a). Screenshots of KDM’s user
interface corresponding to steps 1, 3, and 4 of this workflow
are shown in Fig. 8(b).

Our tool was successfully validated for several use cases,
including the digital library use case. Based on our experience,
KDM can dramatically reduce time, streamline, and simplify
the Cassandra database design process. KDM consistently
generates sound and efficient data models, which is invaluable
for less experienced users. For expert users, KDM supports a
number of advanced features, such as automatic schema gen-
eration in the presence of type hierarchies, n-ary relationship
types, explicit roles, and alternative keys.

VIII. RELATED WORK

Data modeling has always been a cornerstone of data man-
agement systems. Conceptual data modeling [8] and relational
database design [6], [7] have been extensively studied and
are now part of a typical database course. Unfortunately, the
vast majority of relational data modeling techniques are not
applicable to recently emerged big data (or NoSQL) manage-
ment solutions. The need for new data modeling approaches
for NoSQL databases has been widely recognized in both
industry [12], [13] and academic [14], [15], [16] communities.
Big data modeling is a challenging and open problem.

2KDM demo can be found at www.cs.wayne.edu/andrey/kdm

Q1

Q5

Q6 Q8

Q9

Q2

(a) Logical Chebotko Diagram (b) Physical Chebotko Diagram

Users_by_artifact
artifact_id K
user_id C↑
user_name
email
{areas_of_expertise}

Q4Q3

Q7

Ratings_by_artifact
artifact_id INT K
num_ratings ++
sum_ratings ++

Q6 Q7 Q8

Q5Q3 Q4 Q9

Q1 Q2

Artifacts
artifact_id INT K
avg_rating FLOAT
artifact_title TEXT
[authors] LIST<TEXT>
{keywords} SET<TEXT>
venue_name TEXT
year INT

Artifacts
artifact_id K
artifact_title
[authors]
{keywords}
venue_name
year

Artifacts_by_venue
venue_name K
year C↓
artifact_id C↑
artifact_title
[authors]
{keywords}

Experts_by_artifact
artifact_id K
area_of_expertise K
user_id C↑
user_name
email
{areas_of_expertise}

Artifacts_by_author
author K
year C↓
artifact_id C↑
artifact_title
[authors]
{keywords}
venue_name

Venues_by_user
user_id K
venue_name C↑
year C↑
country
homepage
{topics}

Artifacts_by_user
user_id K
year C↓
artifact_id C↑
artifact_title
[authors]
venue_name

Ratings_by_artifact
artifact_id K
num_ratings ++
sum_ratings ++

Reviews_by_user
user_id K
rating C↓
review_id C↑
timestamp
review_title
body
artifact_id
artifact_title

Artifacts_by_author
author TEXT K
year INT C↓
artifact_id INT C↑
avg_rating FLOAT
artifact_title TEXT
[authors] LIST<TEXT>
{keywords} SET<TEXT>
venue_name TEXT

Artifacts_by_venue
venue_name TEXT K
year INT C↓
artifact_id INT C↑
avg_rating FLOAT
artifact_title TEXT
[authors] LIST<TEXT>
{keywords} SET<TEXT>

Venues_by_user
user_id UUID K
venue_name TEXT C↑
year INT C↑
country TEXT
homepage TEXT
{topics} SET<TEXT>

Artifacts_by_user
user_id UUID K
year INT C↓
artifact_id INT C↑
artifact_title TEXT
[authors] LIST<TEXT>
venue_name TEXT

Experts_by_artifact
artifact_id INT K
area_of_expertise TEXT K
user_id UUID C↑
user_name TEXT
email TEXT
{areas_of_expertise} SET<TEXT>

Reviews_by_user
user_id UUID K
rating INT C↓
review_id TIMEUUID C↑
review_title TEXT
body TEXT
artifact_id INT
artifact_title TEXT

Users_by_artifact
artifact_id INT K
user_id UUID C↑
user_name TEXT
email TEXT
{areas_of_expertise} SET<TEXT>

Fig. 7: Chebotko Diagrams for the digital library use case.

In the big data world, database systems are frequently
classified into four broad categories [17] based on their data
models: 1) key-value databases, such as Riak and Redis,
2) document databases, such as Couchbase and MongoDB,
3) column-family databases, such as Cassandra and HBase,
and 4) graph databases, such as Titan and Neo4J. Key-value
databases model data as key-value pairs. Document databases
store JSON documents retrievable by keys. Column-family
databases model data as table-like structures with multiple
dimensions. Graph databases typically rely on internal ad-hoc
data structures to store any graph data. An effort on a system-
independent NoSQL database design is reported in [18], where
the approach is based on NoSQL Abstract Model to specify
an intermediate, system-independent data representation. Both
our work and [18] recognize conceptual data modeling and
query-driven design as essential activities of the data modeling
process. While databases in different categories may share
similar high-level data modeling ideas, such as data nesting
(also, aggregation or embedding) or data duplication, many
practical data modeling techniques rely on low-level features
that are unique to a category and, more often, to a particular
database.

In the Cassandra world, data modeling insights mostly
appear in blog posts and presentations that focus on best
practices, common use cases, and sample designs. Among
some of the most helpful resources are DataStax developer
blog3, DataStax data modeling page4, and Patrick McFadin’s
presentations5. To the best of our knowledge, this work is
the first to propose a systematic and rigorous data modeling
methodology for Apache Cassandra. Chebotko Diagrams for

3http://www.datastax.com/dev/blog
4http://www.datastax.com/resources/data-modeling
5http://www.slideshare.net/patrickmcfadin

visualization and the KDM tool for automation are also novel
and unique.

IX. CONCLUSIONS AND FUTURE WORK

In this paper, we introduced a rigorous query-driven data
modeling methodology for Apache Cassandra. Our methodol-
ogy was shown to be drastically different from the traditional
relational data modeling approach in a number of ways, such as
query-driven schema design, data nesting and data duplication.
We elaborated on the fundamental data modeling principles for
Cassandra, and defined mapping rules and mapping patterns
to transition from technology-independent conceptual data
models to Cassandra-specific logical data models. We also
explained the role of physical data modeling and proposed
a novel visualization technique, called Chebotko Diagrams,
which can be used to capture complex logical and physical
data models. Finally, we presented a powerful data modeling
tool, called KDM, which automates some of the most com-
plex, error-prone, and time-consuming data modeling tasks,
including conceptual-to-logical mapping, logical-to-physical
mapping, and CQL generation.

In the future, we plan to extend our work to support new
Cassandra features, such as user defined data types and global
indexes. We are also interested in exploring data modeling
techniques in the context of analytic applications. Finally, we
plan to explore schema evolution in Cassandra.

ACKNOWLEDGEMENTS

Artem Chebotko would like to thank Anthony Piazza,
Patrick McFadin, Jonathan Ellis, and Tim Berglund for their
support at various stages of this effort.

(a) KDM's Cassandra data modeling automation workflow

(b) Data modeling for the digial library use case performed in KDM.

Solution architect KDM KDM KDMSolution architect Solution architect Solution architect Solution architect

Fig. 8: Automated Cassandra data modeling using KDM.

REFERENCES

[1] Apache Cassandra Project, http://cassandra.apache.org/.
[2] Planet Cassandra, http://http://planetcassandra.org/.
[3] Companies that use Cassandra, http://planetcassandra.org/companies/.
[4] A. Lakshman and P. Malik, “Cassandra: a decentralized structured

storage system,” Operating Sys. Review, vol. 44, no. 2, pp. 35–40, 2010.
[5] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach,

M. Burrows, T. Chandra, A. Fikes, and R. E. Gruber, “Bigtable: A
distributed storage system for structured data,” ACM Transactions on
Computer Systems, vol. 26, no. 2, 2008.

[6] E. F. Codd, “A relational model of data for large shared data banks,”
Commun. ACM, vol. 13, no. 6, pp. 377–387, 1970.

[7] ——, “Further normalization of the data base relational model,” IBM
Research Report, San Jose, California, vol. RJ909, 1971.

[8] P. P. Chen, “The entity-relationship model - toward a unified view of
data,” ACM Trans. Database Syst., vol. 1, no. 1, pp. 9–36, 1976.

[9] DataStax Cassandra Training Curriculum, http://www.datastax.com/
what-we-offer/products-services/training/apache-cassandra-data-
modeling/.

[10] Cassandra Query Language, https://cassandra.apache.org/doc/cql3/
CQL.html.

[11] M. Lawley and R. W. Topor, “A query language for EER schemas,” in

Proceedings of the 5th Australasian Database Conference, 1994, pp.
292–304.

[12] J. Maguire and P. O’Kelly, “Does data modeling still matter, amid
the market shift to XML, NoSQL, big data, and cloud?” White pa-
per, https://www.embarcadero.com/phocadownload/new-papers/okelly-
whitepaper-071513.pdf, 2013.

[13] D. Hsieh, “NoSQL data modeling,” Ebay tech blog.
http://www.ebaytechblog.com/2014/10/10/nosql-data-modeling, 2014.

[14] A. Badia and D. Lemire, “A call to arms: revisiting database design,”
SIGMOD Record, vol. 40, no. 3, pp. 61–69, 2011.

[15] P. Atzeni, C. S. Jensen, G. Orsi, S. Ram, L. Tanca, and R. Torlone,
“The relational model is dead, SQL is dead, and I don’t feel so good
myself,” SIGMOD Record, vol. 42, no. 2, pp. 64–68, 2013.

[16] D. Agrawal, P. Bernstein, E. Bertino, S. Davidson, U. Dayal,
M. Franklin, J. Gehrke, L. Haas, A. Halevy, J. Han et al., “Challenges
and opportunities with big data - a community white paper developed
by leading researchers across the United States,” 2011.

[17] P. J. Sadalage and M. Fowler, NoSQL Distilled: A Brief Guide to the
Emerging World of Polyglot Persistence. Addison-Wesley, 2012.

[18] F. Bugiotti, L. Cabibbo, P. Atzeni, and R. Torlone, “Database design for
NoSQL systems,” in Proceedings of the 33rd International Conference
on Conceptual Modeling, 2014, pp. 223–231.

