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Foreword

In the short span of a few years, peer-to-peer technologies have irreversibly changed
the fields of networking and distributed systems. Today, the traffic delivered by peer-
to-peer systems, such as Bittorrent, PPLive, and eDonkey, dominates the traffic of
many Internet Service Providers. The structured peer-to-peer systems, in the form of
distributed hash tables (DHTs), have been at the core of the modern large-scale key-
value storage systems, including Amazon’s DynamoDB, Facebook’s Cassandra, and
LinkedIn’s Voldemort.

This book gives a comprehensive treatment of the structured peer-to-peer systems
by covering their architecture, protocol design, and security properties. The book
provides an excellent overview of the latest developments in the field and includes
several recent contributions of the authors themselves. By using extensive and
detailed examples, the authors succeed in making some of the most complex
protocols accessible to a large audience.

This book is a great resource for both academics who are, or wish to start, doing
research in the peer-to-peer field and practitioners who want to design and build
large-scale distributed systems and protocols.

Ion Stoica
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Preface

The main goal of this book is to cover important issues in optimization of present
large-scale P2P systems as well as help in designing future systems. The book
contains a comprehensive survey and summary of research results complemented by
authors’ own contributions to the field in the recent years. The book is extensively
illustrated by examples to help the understanding as well as includes an extensive
list of references on P2P articles and resources.

Evolution of P2P Systems

The field of structured P2P systems has seen a fast growth and evolution upon
introduction of first distributed hash tables (DHTs) in the early 2000s. The first
proposals including Chord, CAN, Pastry, and Tapestry were gradually improved
to cope with scalability, locality, and security issues. Deployable as an overlay on
the application layer without the need to change the network infrastructure, the
P2P approach had opened great opportunities for innovation for developers. By
utilizing the processing and bandwidth resources of end users, P2P approach enables
high performance of data distribution which is hard to achieve with traditional
client–server architectures. That enables commercial use of P2P systems such as
distributing updates to the World-of-Warcraft virtual world, where patches over
100 MBytes are applied simultaneously to all users using P2P technology. Many
popular social networks, such as Facebook, utilize the DHT internally to store
tremendous numbers of key-value pairs.

Now P2P computing is a vast research field with multiple conferences and
research groups in the area. The P2P computing is being actively utilized in
the Internet for software updates, P2PSIP VoIP, video-on-demand, and distributed
backups. Recent introduction of identifier–locator split proposal for Future Internet
architectures poses another important application for DHTs, namely mapping
between host permanent identity and changing IP address. The growing complexity
and scale of modern P2P systems requires introduction of hierarchy and intelligence

ix



x Preface

is routing of requests. Additionally, researchers proposed several anti-cheating
mechanisms to ensure fair resource distribution and avoiding the “tragedy of
commons.” Popular P2P systems have been a subject of various attacks thus bringing
security and resilience issues to the front.

Perspective on P2P evolution by Prof. Jon Crowcroft

Peer-to-peer systems have been around for a long time. Back in the 1970s, IBM
developed the logical unit 6 of the systems network architecture, which incorporated
peer-to-peer application communication support. Then things went quiet for a while,
until the 1990s. Two different communities emerged. The nascent file sharing world
developed largely unstructured peer-to-peer systems which allowed decentralised
symmetric communication between uploaders and downloaders. Meanwhile in the
academic world, two seminar projects, the Tapestry work in Berkeley and the Con-
sistent hashing and Chord work at MIT, were based on a more structured approach
with a view to more scalable operation in the longer term. At first, it seemed
that unstructured systems were the way to go, but gradually the manageability of
structured systems started to win out, particularly within the emerging large-scale
cloud services.

In this book we see that at the very end where examples of commercial appli-
cations from Amazon’s Dynamo and S3, Facebook’s Cassandra system, Linkedin’s
Voldermort and even now, the trackerless versions of Bittorrent, all make use of
DHTs for scalable key-value stores for a wide variety of uses and reasons. The book
addresses the underlying tools and techniques of structured peer-to-peer systems
ranging from the wide variety of routing approaches that can be taken through
neighbour maintenance, localisation and optimisation of the system. The material
is descriptive and analytical, affording the reader an understanding of the design
principles and performance characteristics of the different approaches. The maturity
of structured peer-to-peer is evident, and this book provides a clear guide to the
trade-offs in selecting a system for a purpose.

Structure of the Book

The book starts with introductory part providing terminology, main problems in
design of P2P systems, and mathematical notation. The description of classic DHTs
is rather compact as it can be readily found in the existing books. Nevertheless,
it should refresh the reader’s knowledge of basic DHT topologies necessary for
understanding material in other book parts.

The second part of the book considers P2P systems built on the principle of
local knowledge, i.e., interactions with direct neighbors of a node in the system.
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It introduces hierarchical structure to classic DHTs, clustering approaches, and
ranking of node’s neighbors according to their contribution to the system.

The third part of the book looks at the algorithms going beyond the local neigh-
borhood of a node, such as “pure” hierarchical DHTs and their analytic modeling.
We also consider the look-ahead routing where the node can utilize information on
its neighbor’s neighbors and a more general cyclic routing approach. This part also
covers advanced techniques for ensuring fairness in resource distribution among the
peers. Security aspects of P2P architectures, detection, and exclusion of malicious
nodes are discussed as well.

The forth part of the book focuses on P2P applications. We describe CR-Chord,
and extension of Chord utilizing Cyclic Routing for routing around malicious or
overloaded nodes. Indirection infrastructures are another application which extends
i3 for use as control plane for host identity protocol (HIP). We conclude this part
by a chapter that describes commercial distributed systems used by companies such
as Google and Amazon to run their services. Although such systems are not P2P
in the traditional sense, many of them have evolved from P2P designs and still use
DHT-style algorithms internally.

Throughout this book we use the following conceptual terms: principle, property,
and theorem. A principle defines rules or guidelines to be applied in the network
design; a solution that follows the principle achieves good properties. A property is
a fact, typically empirical and intuitive about the subject; it either clarifies model
requirements and assumptions or is very simply derived from them. A theorem is a
profound fact derived for the given model; it formally characterizes the efficiency
of the model. For majority of theorems we provide either a complete proof or, if the
technical details are not very important for the discussion, a sketch with references
to appropriate sources.

Intended Audience

The book is meant for advanced students and researchers interested in evolution
of P2P systems. The undergraduate students can find an introduction to the basic
P2P system and popular DHTs useful, while master and PhD students can find
latest information on hierarchy in DHTs, resource ranking, and request routing. The
book will be of great value to researchers working on DHTs as it contains novel
results and analysis of existing DHT mechanisms, as well as for engineers and
programmers implementing DHTs to their software, such as BitTorrent. A course
or seminar on advanced P2P systems can be taught to postgraduate students based
on this book.

While there are multiple books covering P2P networking and application, there
is no good reference book for hierarchical P2P systems that would also cover fair
resource allocation and efficient routing of requests. As the scale and complexity of
P2P systems is growing, hierarchy becomes a critical factor to efficient operation.
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The book is to a large extent based on authors’ own scientific contributions as well
as diligent survey of existing work in this area. The book fills the missing gap in the
current P2P literature for students, researchers, and engineers.
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HIT Host Identity Tag
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HTML Hypertext Markup Language
i3 Internet Indirection Infrastructure
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IETF Internet Engineering Task Force
IP Internet Protocol
JXTA JuXTApose, an acronym for a programming language and

platform independent Open Source protocol started by Sun
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Overview of Part I

Structured P2P systems have been an active research field since the 1990s. The
achieved maturity of theoretical P2P development is such that it is possible to affirm
the existence of effective technology. It is used today in practice for constructing
complex real-life applications and services. For instance, the key technique of struc-
tured P2P systems—Distributed Hash Tables (DHT)—are presently used in several
large-scale distributed systems in the Internet, such as Amazon Simple Storage
Service (Amazon S3), Peer-to-Peer SIP (P2PSIP), and BitTorrent. Furthermore,
DHTs are envisaged as a key mechanism to provide identifier-locator separation
for mobile hosts in Future Internet.

This part provides a basic introduction to P2P systems and to problems of their
design. Tremendously many papers exist on concrete P2P designs and techniques,
on their core models and algorithms, and on theoretical properties and experimental
study conclusions. Most essential theoretical and practical achievements have been
already summarized in various surveys and books. We present our terminology and
mathematical notation to be used in this book and provide appropriate references to
the existing literature. In parallel, fundamental problems that almost any P2P system
design meets are defined, and the discussion relates them with the dedicated topics
of the book: hierarchical organization, routing, scaling, and security.

Chapter 1 introduces basic concepts and terminology of structured P2P systems
as well as presents our formal notation for this book. We provide common
understanding about intuition and reasons behind the term “structured P2P system”
and focus the discussion on theoretical properties and practical issues of such
systems.

Chapter 2 complements the introduction providing concrete examples of designs
for existing classical DHTs. It focuses on network topology structures that DHT
designs use. We consider how such structures are related with the corresponding
classes of graphs and what algorithms are supported for routing.



Chapter 1
Terminology, Problems, and Design Issues

Abstract The aim of this chapter is to introduce first the basic concepts,
terminology, and notation we use throughout this book. Although the term
“structure” is central in our discussion on structured P2P networks, its definition
is quite fuzzy in recent P2P literature. Secondly, the chapter aims at common
understanding about intuition and reasons behind this term. The description is
assisted with introduction to a set of challenging problems that the P2P networking
faces today.

1.1 Introduction

A P2P network is a distributed system in nature, without any centralized control.
Nodes with symmetrical client-server roles form a self-organizing overlay network
on top of the Internet Protocol (IP) network. A number of topologies have been
proposed for structured P2P networks in the literature, e.g., see [4,23,40,41,46,52,
54,56,62,77] and our brief overview in Chap. 2. All they share common “structural”
properties. The most widespread properties are low degree, low diameter, and fair
load balance. They make the P2P network scalable: when its size increases (e.g., the
number of alive nodes or shared resources) the efficiency (e.g., lookup performance
or security) is preserved.

Distributed Hash Table (DHT) is known a primary concept for making structure
in P2P overlay networks. Since there is no centralized control in a P2P system,
its participants have to self-organize by maintaining control data locally and by
performing control operations for the collaboration. It leads to the routing problem
in the global P2P network. Section 1.3 introduces basics of DHT network, forming
the “classical” understanding of the P2P network structure.

The characteristic property of any P2P network is the symmetry of participants
and of their roles. Nevertheless, the homogeneity assumption is unrealistic for
P2P systems and many P2P designs apply the hierarchical approach to deal with

D. Korzun and A. Gurtov, Structured Peer-to-Peer Systems: Fundamentals of Hierarchical
Organization, Routing, Scaling, and Security, DOI 10.1007/978-1-4614-5483-0 1,
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the heterogeneity. Section 1.4 shows that advanced P2P network structures appear
because of hierarchy-based solutions to the heterogeneity problem.

In contrast to many other decentralized systems, P2P participants have only
partial information about the entire network. The lack of knowledge can be
compensated if the network has certain structure appropriate to extrapolation of
available local knowledge to the scale of the whole system. Section 1.5 explains
that the variety of P2P network structures are due to the local knowledge property.

1.2 Mathematical Preliminaries

The sets of real numbers and integer numbers are denoted R and Z, respectively.
Their non-negative parts are R+ and Z+. In n-dimensional spaces R

n and Z
n, the

zero vector is 0. A standard unit vector is ei where all components are zeros abut the
i’s one that holds a value of 1. The vector with all components equal to 1 is 1. The
vector comparison is component-wise: we write x≤ y iff xi ≤ yi for i = 1,2, . . . ,n.

The algorithm complexity analysis uses asymptotic methods. Let f (x) and g(x)
be two functions defined on some upper-unbounded subset of R and take values
in R+. (The case of Z is similar.) Our asymptotic notation is summarized in the
following table.

Notation Definition Intuition

f = O(g) There are C ∈ R+, C �= 0, and x0 ∈R such that
f (x)≤Cg(x) for all x > x0.

f is bounded above by g
(up to constant factor).

f =Θ(g) There are C1,C2 ∈R+, C1 �= 0 and C2 �= 0, and x0 ∈ R

such that C1g(x) ≤ f (x)≤C2g(x) for all x > x0.
f grows similarly to g

(within constant
bounds).

f = Ω(g) There are C ∈ R+, C �= 0, and x0 ∈R such that
f (x)≥Cg(x) for all x > x0.

f is bounded below by g
(up to constant factor).

f = o(g) For any ε > 0 there is x0 ∈ R such that f (x)≤ εg(x)
for all x > x0.

f is dominated by g.

f = ω(g) For any C > 0 there is x0 ∈R such that f (x)≥Cg(x)
for all x > x0.

f dominates g.

We write f (x) = polylogx if f is a polynomial on logx. The fact f (x) = O(logx)
means that f (x) = α logx in the worst case. Since the constant α > 0 can always be
reflected in the logarithm base, we use f (x) = logx when the base is not essential.

The following notation is opportune in model assumptions. Given x,y ∈ R, we
write x� y (resp. x� y) if the values of x and y differ significantly by the meaning
of the problem domain. A possible formalization is exponent-based: assuming x≥ 0
and y > 1, then x� y if x < yα for some 0 < α < 1. Similarly, we use x≈ y when
the problem domain provides meaning for the closeness.

Given a random variable X , we denote the expectation E[X ]. In the continuous
case, it can be computed as E[X ] =

∫
x∈R x f (x)dx, where f (·) is the probability
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density function of X . In the discrete case, E[X ] = ∑i xi pi, where pi = Pr{X = xi}
is the probability distribution of X , ∑i pi = 1. Let A be an event in a N-element
system where N is large. We say that A happens with high probability if Pr{A} =
1−Θ(N−c)+ o(N−c) for a given constant c ≥ 1. A widespread particular case is
Pr{A}= 1−O(1/N).

Alphabet Σ is a finite non-empty set of symbols. A string over Σ is α =
a1a2 · · ·an, where ai ∈ Σ , 1≤ i≤ n, n≥ 0. The string length n= |α| is the number of
symbols in the string. The empty string ε has zero length. Denote Σn and Σ+ the set
of all n-length strings and the set of all positive-length strings over Σ , respectively.
If α = β γ then β is a prefix of α and γ is a suffix of α .

1.3 Distributed Hash Tables

A P2P system can be broadly defined as a distributed system with no centralized
infrastructure. Participants are called nodes (also known as peers) and they are
symmetric in their role in the system. Background on P2P systems in general,
their application aspects and characteristics, and the benefits they provide can be
found in existing books [8,9,65]. Key features of P2P systems are decentralization,
self-organization, dynamism, load-balancing, and fault-tolerance. It makes P2P
systems very attractive to use in many areas, including such prominent paradigms
as ubiquitous computing, cloud computing, and Internet of Things.

Nodes of a P2P system form a network. Its topology is the layout pattern of inter-
connections between the nodes. In networking, topology is typically understood as
the structure of a network. The early class of P2P overlays consists of unstructured
systems where the topology follows no special structure. Given a search query, a
node does not have any information about which its neighbors may best be able to
resolve further the query, Thus, blind and random strategies for search probes are
applied. Consequently, search queries are flooded widely, and their cost becomes
enormous when the number of nodes is large.

The opposite class—structured P2P overlays—aims at more efficient searching
that guarantees location of a target within a moderate number of hops. The
fundamental point is that the location of data (resources) is related to the network
topology, the set of nodes receiving a particular query becomes related to the content
of the query. Instead of “blind” search probes, a node can arrange its neighbors and
select the best ones to resolve the query effectively. Consequently, the efficiency is
preserved even with massive numbers of participants.

Deployment of a P2P system requires an underlying network, which the nodes
use as a communication base, so forming an overlay. A popular class for underlying
networks is IP-based networks, e.g., P2P nodes are located at hosts distributed over
the Internet. One node can contact another node using communication primitives
and infrastructure of the IP.
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Table 1.1 Symbol notation for a structured P2P network

Notation Description

D Resource key space (application-specific). Resource distribution can be non-uniform
and with semantic structure.

S Node ID space. Typically, IDs are numeric (scalar or vector). Let u, v, and w stand
for P2P nodes and their IDs.

R The number of resources (data items or data keys) stored (and available) in the
overlay. In some contexts, R also denotes the full set of currently available
resources.

N The number of alive nodes in overlay. In some contexts, N also denotes the full set of
alive nodes.

u, v, w P2P nodes by their IDs.
ρ(u,v) Distance metric in S that satisfies (i) ρ(u,v)> 0 ∀u,v ∈ S, u �= v, (ii) ρ(u,u) = 0

∀u ∈ S. The symmetry property and the triangle inequality are optional.
Nuv The set of all nodes in between u and v (according to the metric ρ).
S(u) The set of keys that a node u is responsible for.
Tu Routing table (neighbors) of a node u ∈ N. Although it consists of pairs (v, IPv)

writing v ∈ Tu does not lead to confusion.
u→+ v Multi-hop overlay path u→ w1→ w2→ ·· ·→ wl−1→ v.
τ(u,v) Distance metric in network, e.g., the number of overlay hops or the sum latency of

u→+ v.

Table 1.1 summarizes our basic notation for structured P2P overlay networks.
Consider a P2P overlay of N nodes. We also denote N the set of nodes when it
does not lead to confusion. In the following, the term “node” refers both the node
and its ID. Let node IDs be assigned from a space S with a distance metric ρ . If
ρ(u,d) > ρ(v,d) then v is closer to d. In other words, v is in between u and d.
Examples of space distance metric are the Euclidean distance adopted in CAN [54],
the length of the common prefix adopted in Pastry [56] and Tapestry [77], and the
clockwise distance on the integer ring [0,2m) mod 2m adopted in Chord [62].

Let Nuv be the number of nodes in between u and v. A widespread assumption
for flat P2P designs is that the mapping from N to S distributes nodes uniformly in S
and Nuv is proportional to ρ(u,v). For instance, cryptographic secure hash functions
can be used to map consistently arbitrary string names into m-digit values [28].

Each overlay node u maintains a local routing table Tu of entries (v, IPv), where v
is a neighbor and IPv is its IP address. In a dynamic environment, nodes collaborate
and adopt their routing tables to an up-to-date state. The number of neighbors |Tu|
is the node degree. Typically |Tu| � N, i.e., only local knowledge about the overlay
network is available at u.

At the system level, overlay network topology can be modeled as a graph,
embedded into S. The graph can be directional, when v ∈ Tu does not necessarily
lead to u ∈ Tv. It means that u processes incoming requests from some w ∈ N for
w /∈ Tu, and the node in-degree |{w | u∈ Tw,w ∈ N}|must be used for characterizing
the load of u, in addition to the node out-degree |Tu|.
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CAN [54] Pastry [56] and Tapestry [77] Chord [62]

Fig. 1.1 Examples of network topology classes for some popular DHTs

In a structured P2P system, its topology is tightly controlled via specific selection
of neighbors. Typically, it is conditioned on the tradeoff between the node degree
and the diameter of the global topology graph. There are two variants of neighbor
selection: deterministic and randomized. In deterministic overlays, the only variant
of Tu is possible at u for a given N. In randomized overlays, u may consider
several candidates when selecting a neighbor. A P2P design implements one of these
variants in its maintenance algorithm, which repairs the topology graph in the face
of network dynamics.

A P2P system takes care of distributed assigning and locating resources, i.e., the
standard operations “put” and “get” implement a mapping from D to N, associating
resources with participating nodes. For efficiency, structured P2P systems use the
Distributed Hash Table (DHT) as a substrate for the lookup service [5]. A DHT can
be thought as a distributed “indexing” mechanism to resolve search queries. It takes
(k,data) value as input (k ∈ D), hashes k to establish a mapping from keys to nodes
(the lookup service), then assigns the data with the node identified. Such indexing
essentially uses the structural network topology properties, and any DHT has to
inevitably preserve the predefined structure, see Fig. 1.1 for illustration. Examples of
DHT designs include CAN [54] and Symphony [41], Chord [62] and Kademlia [46],
Pastry [56] and Tapestry [77], Koorde [27] and Broose [15], Viceroy [40] and
Pappilon [1].

Consider a typical flat DHT. The resource key space D and node ID space S
coincide. Each resource has a unique key k ∈ S; DHT implements hashing the key
to the node ID. Resources are assigned to nodes deterministically; the node d with
the closest ID is responsible for a key k (greedy strategy),

d = argmin
u∈N

ρ(u,k). (1.1)

That is, at any instant, d is responsible for a bucket of keys, S(d)⊂ S,

S(d) = {k ∈ S | ρ(d,k)< ρ(u,k) ∀u ∈ N, u �= d} .

Note that grouping the resources into buckets is not hierarchical since all nodes are
equal, and their buckets do not form an ordered set.
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1

2

3

4

− overlay node − IP router

u
d

Fig. 1.2 Multi-hop routing in a P2P overlay network

Some DHTs additionally replicate the same resource among several nodes (e.g.,
in {u | ρ(u,k) < αρ(d,k)} for some α > 1), hence there can be responsible nodes
further to the primary responsible node d.

The DHT lookup service searches the node closest to a given ID. Let a node u
initiate a lookup for a given key k. The result is an IP address of some responsible
node d. Since Tu does not contain all nodes, the lookup needs multi-hop overlay
routing from u to d, where d is unknown beforehand. Each intermediate node w
finds the next-hop node v∈ Tu to forward the lookup, thus forming the one-hop path
w→ v in the overlay network. Eventually, an l-hop path u→+ d is constructed for
l = |u→+ d| ≥ 1:

u→ w1→ w2→ ··· → wl−1→ d. (1.2)

For the convenience, denote w0 = u and wl = d. This routing process is depicted in
Fig. 1.2. One hop in the overlay leads to several hops in the underlying network.

Depending on who makes forwarding—the source node itself or every interme-
diate node—routing algorithms are classified onto iterative and recursive. Iterative
routing provides more control to the source (e.g., for security). Recursive routing
has lower lookup latency (no extra communication between u and wi) and is
more resilient to IP connectivity restrictions (e.g., a firewall can prohibit direct IP
communication between u and wi).

A DHT routing algorithm is essentially based on the properties of the metric
space (S,ρ). In progressive routing, lookup path (1.2) consists of nodes whose
IDs are progressively closer to d, i.e., ρ(wi,d) < ρ(wi−1,d). Since d is unknown
beforehand, progressive routing applies the key-based criterion

ρ(wi,k)< ρ(wi−1,k), i = 1,2, . . . , l− 1. (1.3)



1.3 Distributed Hash Tables 11

Greedy routing is the extreme instance of progressive routing when each
next-hop node wi is the neighbor closest to k,

wi = arg min
u∈Twi−1

ρ(u,k), i = 1,2, . . . , l− 1. (1.4)

Greedy criterion (1.4) makes the locally best choice among all possible ones by
progressive criterion (1.3). Note that (1.4) is a local variant of (1.1) since the
minimization is restricted within local routing tables Twi−1 ⊂ N.

Multi-hop routing imposes certain load to intermediate nodes, in addition to the
source and destination. An overlay serves many lookups in parallel, and the total
load is distributed among nodes and their links to neighbors. A common test case is
uniform all-to-all load [68]: for each pair of nodes u �= v, u initiates a lookup to v
and there are N(N− 1) lookups in total. A network is node(link)-congestion-free if
every node (link) has the equal load.

The lookup availability depends on the number of alternative paths between a
source and destination [38, 57, 61]. The more paths, the more chances to go around
failed or malicious nodes. However, a mechanism for finding paths consisting of
good nodes is needed. The straightforward approach exploits multi-path routing
when nodes multicast messages to several neighbors [10, 24, 34, 76], either in
parallel or sequentially. It has two disadvantages. First, a lot of duplicate messages
are generated; many of them are redundant due to the local route selection (non-
optimal). Second, paths converge in some DHTs [20, 57, 76], and bypassing
malicious nodes becomes impossible.

The DHT lookup service is a base for self-organizing to adapt to the node
dynamics. When a node u joins, it contacts any existing overlay node to lookup for
u (the node ID acts as a key). According to (1.1), the lookup returns the closest
neighbor v, identifying the location of u in the overlay. Then u communicates
with v to initiate Tu and u’s resource storage as well as to disseminate the update
information. When a node u leaves, it notifies its neighbors and passes its resources
to new responsible nodes. In open and dynamic environments, nodes generally
leave the system far less gracefully due to network failures and selfish or malicious
reasons. Temporal leaves are possible, e.g., because of short-term breaks in the IP
connectivity.

To cope with dynamics, nodes perform the maintenance control keeping the
overlay correctly connected. The strategies are divided into proactive and reactive.
In the proactive case, a node regularly checks its neighbors, e.g., by pinging them
periodically. In the reactive case, existing overlay communications are used to detect
update events, e.g., a neighbor has not responded for lookup by predefined time.
When a node u detects that its neighbor v has leaved, u performs the actions similar
as if v notifies about its voluntary leave.

The properties of structured DHT-based overlays lead to fundamental design
tradeoffs. The well-known tradeoff problem is routing table size vs. network
diameter [68], or |Tu| vs. |u→+ d|. Clearly, the larger |Tu| the shorter |u→+ d|.
Many popular DHTs, such as Chord [62] and Pastry [56], provide |Tu| = O(logN)
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and |u→+ d|= O(logN), or in other words, O(logN) state and O(logN) routing.1

Better tradeoffs are possible, e.g., O(1) state and O(logN) routing in Viceroy [40]
and Ulysses [68], or O(

√
N) state and O(1) routing in Kelips [22] and 2h-Calot [63].

However, they have more complicated network topologies or large routing tables,
hence the maintenance cost becomes an issue [36].

Selecting the best tradeoff becomes a challenging problem in the case of high
dynamics and heterogeneity. The former is the P2P characteristic property that
distinguishes P2P systems from many other decentralized systems; the property
is also known as churn—the system experiences rapid membership changes. The
heterogeneity is a property of modern networking environments, inevitable in
practice, see Sect. 1.4.

The routing distance τ(u,d) is one of the key performance indexes in the above
tradeoffs. It characterizes the efficiency of (1.2). For example, τ(u,d) = |u→+ d|.
More accurate metrics take into account the latency due to the underlying network,
e.g., τ(u,d) = |u→+ d|τ = ∑l

i=0 τ(wi,wi+1) is the total lookup latency for (1.2).

1.4 Heterogeneity and Hierarchy

Flat DHT designs tend to treat nodes equally and offer a flat structure of resource
key space with the uniform partition among participants. That has certain advantages
such as even distribution of workload among nodes.

1.4.1 Consistent Hashing and Uniform Partitioning

A flat DHT uses the concept of consistent hashing to partition the resource items
(keys) R among a distributed set of nodes. The concept is a special kind of hashing
originally devised by Karger et al. [28]. A DHT client uses a consistent hash function
to map a resource item k ∈ R to one of the nodes in its local view.

The key property of consistent hashing is the “Smoothness” property. It implies
that smooth changes in the set of nodes are matched by a smooth change in the
location of the resources. When a node is added to or removed from the system, the
expected fraction of resource items that must be moved is the minimum needed to
maintain a balanced load across the nodes. Actually, if N changes then only R/N
items need to be remapped on average.

In many traditional hash tables changes of N are very expensive. That is, a
common way of load balancing N nodes is to map item k ∈ R to node h(k) mod N

1We do not specify such details like “in the worst case”, “with high probability”, or “expected”
since they are minor in this high-level discussion.
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using some standard hash function h. When nodes are joining or leaving, the hash
range N changes, and almost every resource would be hashed to a new location.

In contrast, consistent hashing maps resources to the same node, as far as
possible. When a node u joins the system, it takes its share of resources from all the
other nodes. When u leaves, its resources are shared among the remaining nodes.

Other properties of consistency hashing are the following.

1. The “Spread” property implies that the total number of different nodes to which
a resource item is assigned is small. Distributing the item to this small set
will insure access for all clients, without using a lot of storage in the system.
Typically, the node set size is assumed small if it is logarithmic on N.

2. The “Load” property implies that any particular node is not assigned an
unreasonable number of resources. Typically, the load is assumed reasonable if
its close to the average R/N.

3. The “Balance” property implies that items are distributed to nodes randomly. In
other words, the probability of k ∈ R to be assigned to u ∈ N is 1/N.

4. The ‘Monotonic’ property implies that when a node joins the system, only the
items assigned to the new node are reassigned.

The main idea behind a rich family of the consistent hashing schemes is to hash
both resources and nodes using the same unit interval D= S= [0,1). A hash function
hr maps resource items randomly, and a hash function hn does the same for nodes.
A node u is assigned an interval S(u)⊂ S (u∈ S(u)) that contains “closest” resource
keys to u. If u leaves then the interval S(u) is taken over by a node with an adjacent
interval. All the remaining nodes are unchanged.

1.4.2 Inaccuracy of the Homogeneity Assumption

The homogeneity assumption, however, is mostly violated in the P2P world. De jure
equal nodes must be de facto of different responsibilities. There are two major issues
concerning the heterogeneity in P2P networks. First, the participating nodes are of
different capacities. Consequently, a non-flat design can achieve better efficiency
by assigning responsibility proportional to the capacity. Second, the environment
and domain requirements are heterogeneous, e.g., D is not uniform due to data
semantics or the underlying network exhibits non-flat structure with hierarchical
domain organization. Consequently, a non-flat design can optimize the performance
by introducing appropriate data distribution among the nodes or by adopting the
routing algorithm to the underlying network properties.

Empirical studies such as [33] have shown that diversity exists among nodes in
their capacity and behavior. Many nodes are not stable and have short session times;
they do not contribute much resources to the system. This behavior is typical for
regular nodes. A few nodes are more stable and powerful than regular ones. They
are supernodes and able to perform more burden such as keeping more resources,
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serving more requests, performing more maintenance. Flat DHTs do not exploit the
heterogeneity and assign equal duties to heterogeneous nodes, which is inefficient.

Internet has several levels of its organization. That is, routing between Au-
tonomous Systems (ASes) uses BGP; OSPF, RIP and some other protocols support
intra-AS routing. This global hierarchy allows scalable architectures and adminis-
trative autonomy. It is unused in flat DHTs, which intentionally assume that there is
no “higher” or “lower” nodes. It is a basic reason of high latency and other types of
degradation observable experimentally in flat DHT deployments.

Hierarchy is a well-known concept to deal with the heterogeneity problem in all
its various manifestations. We assume the following broad definition.2 A hierarchy
is an arrangement of items (objects, names, values, categories, etc.) in which
the items are represented as being “above”, “below”, or “at the same level as”
one another and with only one “neighbor” above and below each level. These
classifications are made with regard to rank, importance, seniority, power status
or authority. Abstractly, a hierarchy is simply an ordered set or an acyclic graph.

In the traditional sense, a P2P hierarchy organizes nodes into a tree-like structure
according to their heterogeneous characteristics, i.e., the network topology follows
a global hierarchy. It is an instance of decomposition or “divide and conquer”
principle—a widespread principle for solving complex problems. Initially, this
kind of hierarchy appeared in pure unstructured P2P systems to deal with node
heterogeneity in capacity, bandwidth, CPU power, and lifetime [33, 70]. Popular
hierarchy-based implementations include Gnutella,3 KaZaA,4 EMule,5 and Bit-
Torrent.6 Typically, the hierarchy is two-level where each node is either super or
regular. Supernodes take more responsibility acting as centralized index servers or
network access points. Regular nodes may be of lower availability, capacity and
performance; they form networks at the bottom layer. Supernodes connect them
forming the top layer.

A similar trend is progressing in structured P2P systems. In the last decade,
many hierarchical DHT (HDHT) designs have been announced: Brocade [75],
Super-peer based lookup [78], Coral [14], HIERAS [69], Hierarchical systems [17]
and TOPLUS [18], Kelips [22], Structured superpeers [49], OneHop [13, 21],
Canon [16], Diminished Chord [29], GTap [73], Rings of unstructured clouds [60],
Multi-ring hierarchy [48], Cyclone [3], Chordella [80–82] and Content-based hier-
archy [79], HONet [64], P3ON [51], Chordk [25], Hierarchy-adaptive topology [72],
Hierarchical DHT-based overlays [43–45], Hierarchical small-world networks [19],
GTPP [50], and some others.

Basically, an HDHT follows the idea of traditional two-level hierarchy with
supernodes and regular nodes. It either approximates the global heterogeneity in

2http://en.wikipedia.org/wiki/Hierarchy.
3http://www.gnutella2.com.
4http://www.kazaa.com.
5http://www.emule-project.net/.
6http://www.bittorrent.com/, http://www.bittorrent.org/.
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node capacities or hierarchical Internet organization by appropriate overlay network
structuring. As a result, the HDHT design attempts to benefit from available global
hierarchies.

There are many other instances of global hierarchies, applicable in P2P designs.
In social networks, trust relations between nodes form a global hierarchy. For
instance, arrangement of nodes according to their observable reputation or bootstrap
process. Hence, nodes are categorized into several levels.

P2P resource semantics leads to an application-aware global hierarchy. Typically,
it is due to either partitioning into domains or semantic indexing. For example,
resources in multimedia services (e.g., SIP) or name services (e.g., DNS) are
classified by the location domain: a resource R of a user U from a group G. Such
media content as songs are globally categorized by singer, genre, album, etc. For
each document in a data set, a vector of semantic indexes (or keys) are computed
and the documents form a hierarchical structure by clustering in the semantic vector
space.

Hierarchy, however, has deeper roots in structured P2P designs than global
construction of tree-like network topology. Various kinds of arranging items occur
very frequently, leading to multiple tree-like structures embedded into the network
topology. Due to the decentralized P2P nature, nodes can construct local hierarchies
arranging other nodes and P2P resources by own criteria. It is typical for open P2P
environments, where selfish nodes with own interests exist. Clearly, generous nodes
and free-riders have different strategies in resource contribution and consumption.
Each node makes local ranking; the ranks may differ from those that computed at
other nodes. For example, even if u and v are friends, w trusts v less, e.g., because
of w has detected some incorrectness.

Furthermore, local hierarchies appear because of lack of knowledge about the
global hierarchy. In this case, each node estimates the global hierarchy locally,
leading to similar (but not exact) local hierarchies at different nodes. For example,
nodes u and v may estimate the hierarchy of available paths to the same destination
d differently.

1.4.3 Arrangement Models

There are three basic arrangement models that are applicable in P2P systems for
taking the heterogeneity of nodes into account [31]. Let X be a set that represent
some knowledge about the system. For example, X = N is the set of all nodes in
the system or X = Nu consists of all neighbors of some u ∈ N. In general case, u’s
knowledge of X may differ from the knowledge of other nodes v �= u.

Ordering: A node u uses a binary relation≺ such that for any x,y∈X either x≺ y,
y≺ x or x= y. In other words, u can arrange elements of X in accordance with some
“preference”. The following two models are extensions (continuous and discrete) of
the ordering model.
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Ranking: There is a rank function r : X → R, and u computes a real numerical
value r(x) for each x ∈X . Thus, elements of X are ordered on the real line R. The
important additional information is the value |r(x)− r(y)|, which is the preference
level for u to compare x and y.

Classifying: The elements of X are categorized into groups or levels i= 1,2, . . . ,M
according to the preference. Although this model has less precision than the
ranking model the former allows tradeoffs between the complexity and accuracy.
For convenience, we assume that i = 1 is “most preferable” and i = M is “least
preferable”.

In the supernode approach, the ordering model arranges nodes from most
powerful (or stable, generous, etc.) to weakest, and a node can select a representative
for any of these two extremes. The ranking model provides more knowledge for this
selection, useful when a set of representatives is needed. However, it requires for a
node to compute and maintain r(v) for some nodes v. The classification model de-
fines two classes: supernodes and regular nodes—an easy rule for implementation.

1.5 Local Knowledge and Network Structure

The main reason behind structured P2P networks is the lookup efficiency when the
knowledge of a node is limited to its neighbors, |Tu| � N. Each node u dynamically
maintains Tu optimizing τ(u,d) for potential destinations d ∈ N. The maintenance
follows strict rules common for all nodes.

1.5.1 Local Knowledge Size vs. Routing Performance

The performance problem for large networks is closely related with the scalability
issue. It requires the routing distance to grow slower than the network size, e.g.,
|u→+ d|= o(N) for all u and d. Similarly, the local knowledge cannot expand fast,
e.g., |Tu|= o(N) for any u.

The characteristic property of network topology graph is low node degrees and
every pair (u,v) is connected by many short paths [30, 38]. Although u does not
know the whole network, u can select the next hop estimating the cost of the rest
of the path. The network structure does not provide u with concrete paths; instead,
u knows that for a given key good paths are likely available beyond some of the
neighbors.

The fundamental limit the local knowledge problem induces is illustrated by the
following theoretical fact.

Theorem 1.1. The diameter of a network with N nodes and equally fixed node
degree m = |Tu| ∀u ∈ N has the logarithmic lower bound

D = max
u,v∈N

min
u→+v

|u→+ v| ≥ �logm (N(m− 1)+ 1)�− 1. (1.5)
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Proof. It is a direct consequence of the Moore bound

N ≤ 1+m+m2+ · · ·+mD =
mD+1− 1

m− 1
,

see more discussion in [38]. ��
The bound is provably not achievable for any non-trivial graph. Directed de

Bruijn graphs have D = logm N, coming close to the bound and approaching it
asymptotically when N→ ∞. Butterfly graphs have D = 2logm N(1− o(1)), which
is asymptotically twice the diameter of de Bruijn graphs when N→ ∞.

Most P2P designs today assume some structure [55]. The characteristic property
is an estimator of how well structured a design is. Flat DHT designs with D = S give
a wide class of very structured systems. Their neighbor selection rules are semantic-
free since S does not capture the resource semantics in D.

In semantic-aware P2P networks, u maintains Tu using additionally some
available knowledge of D. For example, nodes with thematically close resources
become neighbors. A more complicated mechanism than scalar ID space and routing
distance metrics ρ(u,v) and τ(u,v) is needed to take into account the semantic
relation (application domain-aware distance) between resources D(u) and D(v)
stored at u and v. In this case, overlay topology should take into account the graph
of semantic relations.

1.5.2 System Operation Quality

Maintenance of Tu can involve additional aspects of system operation quality, which
do not target directly the minimization of τ(u,d). Open environments assume
diversity and heterogeneity of participants, including unreliable, selfish, and even
malicious nodes. In randomized neighbor selection, u may decide a neighbor among
several candidates. In particular, u improves routing dependability and security
when the neighbor selection takes into account reputation of each candidate, other
its trust and reliability metrics, and similar estimates about the paths beyond the
candidate [10, 20, 32].

Neighbor maintenance can employ local knowledge on cooperation activity,
important in P2P resource sharing systems. A rational node acts as an independent
decision maker. Having local knowledge of other nodes, each node makes decisions
based on its subjective view. Cooperation activity expands or modifies node’s
subjective view, providing feedback to the decision making process. Due to the
decentralization nature of P2P the decision making process remains local for
each node.

Naive approaches to P2P resource sharing lead to imbalances and reduced
performance [12, 42, 58], e.g., to free-riding when nodes only consume resources.
Cooperation among P2P nodes requires incentives, as used in BitTorrent [11] and its
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variants [6,26,35,37,59]. A system incentive mechanism encourages every node to
balance rationally when contributing its local resources, consuming external ones,
and participating in transit. One of the key point is that low contributing nodes are
eventually eliminated from the system.

A rational node ranks its neighbors and resources for deciding its current
provision and consumption levels. Intuitively, stingy neighbors should be of low
rank, and u reduces its provision to them. Generous neighbors should be of high
rank, and u encourages them in the provision process. Decisions are operational
since generally behavior of other participants is unpredictable, especially in long-
term.

When the global topology is known and nodes behavior can be completely
specified as some types of stochastic processes then the methods of queuing
networks can be applied, e.g., see [53, 71]. Each node is modeled as a processor
with certain arrival and service patterns. For large-scale dynamic P2P systems this
approach becomes impractical since a node can track no global and precise view to
the dynamic network topology and characteristics of all participants.

As in many dynamic systems, nodes make own decisions based on observations
(feedback)—the problem studied in control theory. Nodes consider the entire P2P
system as a plant to be controlled [66]. Each node tracks contributions from
other nodes and adopts its own contribution accordingly. These observations of
others’ contributions represent a global state of the system, hence leading to similar
difficulties of global knowledge as in queuing models.

Nodes can reduce the observation space to direct observations from neighbors
and aggregate indirect observations from the rest of the system. This approach
is used in reputation schemes, and distributed learning-propagation algorithms
are required [7, 47, 74]. Indirect observations suffer from malicious nodes. The
propagation efficiency can be low in large-scale high-dynamic systems.

Game theory focuses on P2P exchange economies [2, 39, 66, 67] with system-
wide indexes like the overall node reputation metric or global resource prices.
It allows clear economic models with the intuition and properties from classic
monetary-based economies. If a node knows the index then the node can rationally
select its participation strategy. The system converges to an equilibrium point, e.g.,
when there is no node that can improve its utility by deviating from the optimal
strategy (Nash equilibrium). A distributed algorithm is required for computing such
indexes, similarly to reputation learning-propagation schemes.
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Chapter 2
Flat DHT Routing Topologies

Abstract In this chapter, we survey existing classical DHTs grouped according to
their topologies. We describe basic architectures for efficient overlay routing and
corresponding classes of graphs. We start with introducing Content Addressable
Network (CAN) as an example of Torus topology. It is followed by Chord, Kademlia
and Accordion as DHTs using the Ring topology. Pastry, Tapestry and Bamboo
DHTs are grouped under the PRR tree topology. Trie and balanced trees are
represented by P-Grid, skip graphs. Finally, we present several DHTs that are using
De Bruijn and Kautz graphs, Butterfly and O(1)-hop topologies. These topologies
differ in how they collect local information in a DHT node about the global
network. The next chapter will show how these architectures can be generalized
using hierarchical approach.

2.1 Torus

2.1.1 Content Addressable Network

Content Addressable Network (CAN) [27] was one of four DHTs introduced in
2001. In CAN, each node is responsible for an area of key identifier space, called
a zone. In addition, it maintains information on nodes responsible for adjacent
zones. Request including insert, lookup or delete operations are routed hop-by-hop
between zones until the target is reached. The main design goals of CAN where
scalability (nodes maintain a limited state), fault tolerance (requests can be routed
around failures) and P2P nature (distributed architecture with no single point of
failure).

The CAN is organized as a d-dimensional torus with Cartesian coordinates. This
is a purely logical construct where the coordinate space is partitioned between
participating nodes. Figure 2.1 illustrates a two-dimensional coordinate space which
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Fig. 2.1 The structure of 2D
CAN space

is shared among several nodes. For simplicity, the space is drawn as a plane while
in fact it wraps up at the edges, forming a torus. Many paths exist between source
and destination and greedy routing is used to reach the destination.

Considering a d-dimensional CAN composed on n nodes, on the average each
node would have 2d neighbors and the average path length will be (d/4)(n1/d).
Adding a new node does not affect the node state but increases the average path
length as O(n1/d).

To reduce the routing delay, CAN maintains several independent coordinate
spaces called realities. If a node belongs to r realities, it has r independent neighbor
sets and r coordinate points in separate zones. Multiple realities improve routing
reliability, as a different reality can be used in case routing fails due to node
departure within one reality. Furthermore, using different realities routing tables
reduces the average routing path length, as distant locations can be often reached
with one hop. Both increasing dimensions and number of realities reduces the
average path length, but increasing the number of dimensions also increases per-
node neighbor state.

Other techniques to improve the performance of CAN include using multiple
hash functions to map a single key to several points of the coordinate space and
hence increase the availability. Other enhancement is allocating zones taking the
node physical location into account. In classic CAN, one logical hop can stretch
over many IP hops so that two CAN neighbors can be located in different continents.

The CAN design was evaluated through simulations up to 260,000 nodes. With
described enhancements, “knobs on full” CAN can route with less than twice the
native IP latency between nodes.



2.2 Ring 27

2.2 Ring

The ring is a popular topology for organizing nodes in a DHT. In this section
we describe three classic DHTs that use ring topology: Chord, Kademlia and
Accordion. Chord represents a ring DHT which is linked in the clockwise direction.
Although Kademlia is using a tree for routing, with binary identifiers its XOR metric
is similar to the prefix metric and the ring topology. Therefore, Kademlia represents
a bi-directional version of Chord.

2.2.1 Chord

Chord [32] is one of the first and most influential DHTs. It was developed by Ian
Stoica with colleagues at MIT in 2001. In Chord, node a organized in a circle of up
to 2m nodes, with each node having an ID from that space. IDs of keys and nodes
are of m bit length. The IDs are obtained using consistent hashing with SHA-1
algorithm and are uniformly distributed across the identifier space. This ensures
even distribution of keys over nodes, and node place within the ring. The ID of a
node is a hash of its IP address, and the ID of the key is a hash of its attribute, such
as a file name.

Design of Chord aims at achieving following properties. Load balancing assumes
even distribution of keys over nodes. Scalability requires that the lookup costs
grow slower than the number of nodes, thus allowing large system construction.
Decentralization is the main characteristics of P2P systems in general, and in
Chord all nodes are equal without introducing single failure points. Availability is
guaranteed by automatic maintenance of the node organization in response to node
joins and leaves.

The ring of nodes is linked together in clockwise direction. The predecessor
is the first node in counter-clockwise direction and the successor is a next node
in clockwise direction. To ensure operation in the presence of node joins and
departures, a node keeps information on r nodes succeeding it in the ring. A key
k is assigned to successor of node with ID equal or greater than k.

join():
// create a new Chord ring.
n.create()

predecessor = nil;
successor = n;

// join a Chord ring containing node n
n.join(n’)

predecessor = nil;
successor = n’.find_successor(n);
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In naive lookup routing, the ring can be traversed sequentially until a node
responsible for a key is located. This is quite slow as about half of the ring would
need to be traversed on the average. To accelerate the lookup progress, each node
keeps a table of fingers, each pointing to a successor node of (n+ 2i−1) mod 2m,
where m is the number of fingers per node, n is the node ID, and i is the finger
table index. Using fingers, the lookup time can be significantly reduced, as only
O(logN) nodes need to be contacted to locate a key in a ring of N nodes. Using each
finger halves the remaining distance to the destination node. Figure 2.2 illustrates
the position of the fingers. Each entry in the finger table includes the node ID, its IP
address and port number.

find_successor():
// ask node n to find the successor of id
n.find_successor(id)

if (id in (n, successor])
return successor;

else
n’ = closest_preceding_node(id);
return n’.find_successor(id);

// search the local table for the highest predecessor
of id

n.closest_preceding_node(id)
for i = m downto 1

if (finger[i] in (n, id))
return finger[i];

return n;
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The lookups can be implemented for recursive or iterative routing. With recursive
approach, each new node in the lookup path queries the next hop. With iterative ap-
proach, the node that initiated the lookup receives answers from intermediate nodes
in the path and itself performs the next hop lookup. The recursive approach reduces
the number of required messages to perform a key lookup, while iterative approach
is more robust in the presence of nodes joins and leaves. The simulator in the original
Chord paper implemented the iterative approach.

find_successor():
// ask node n to find the successor of id
n.find_successor(id)

if (id in (n, successor])
return successor;

else
n’ = closest_preceding_node(id);
return n’.find_successor(id);

// search the local table for the highest predecessor
of id

n.closest_preceding_node(id)
for i = m downto 1

if (finger[i] in (n, id))
return finger[i];

return n;

Nodes can join the ring and leave dynamically. When a new node joins, it takes
over a part of keys that belong to its successor. When a node leaves the ring, all
its keys are migrated to its successor. To ensure consistency, each node periodically
runs a maintenance protocol to update its successor and finger table.

2.2.2 Kademlia

Kademlia [21] is a DHT introduced in 2002. It reduces the number of administrative
messages needed to maintain routing tables, as nodes learn about the peers during
lookup operations. The lookups are made in parallel and non-blocking way to
minimize the delays. Its performance characteristics are formally proven. Kademlia
is widely used for example by BitTorrent clients for distributed tracking of torrents.

Kademlia uses 160-bit IDs for nodes and keys. The keys/value pairs are stored
on nodes with sufficiently close ID. XOR metric is used to determine a distance
between nodes. Thanks to the metric, parallel queries to any node within a range
nearby the target node can be sent and also learn new routes.
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Fig. 2.3 The Kademlia tree for node 110

Kademlia does not separate the routing process into phases but uses the same
mechanism until the target node is reached. On each step, the XOR distance to target
node is roughly halved. XOR metric x⊕y is unidirectional that ensures convergence
of requests towards the target.

Nodes in Kademlia store information about other nodes in a form of (Node ID,
IP address, UDP port) of a distance in the range of 2i and 2i+1, where i is 0, . . . ,160.
These lists form k-buckets sorted by the time of latest communication. Buckets for
smaller i tend to be empty, while for larger i will be of size k (e.g., 20) which is
a system parameter. The buckets are filled in whether a new message arrives from
another node. Live nodes are never removed from the buckets, only nodes that fail
to respond to pings are replaced by new nodes. That ensures that oldest live nodes
remain as long as possible in the buckets, as those nodes are least probable to fail
also in future.

Figure 2.3 illustrated a Kademlia routing tree for node with ID 110.

2.2.3 Accordion

Accordion [17] fills a gap between DHTs that provide O(1) and O(logN) lookup
times. Achieving O(1) lookups is possible in small and relatively stable DHTs by
maintaining a nearly complete state in each DHT node about other nodes ID and
addresses. For larger and more dynamic networks, their maintenance traffic can
grow prohibitively fast. Traditional DHTs such as Chord providing O(logN) lookup
latency scale better, but require multiple hops to reach the destination that increases
the response time. Accordion attempts to tune the DHT parameters to achieve best
performance under a constraint of bandwidth budget defined by user. That frees
users from the need to manually configure multiple DHT parameters and enables it
to operate efficiently under varying network size, churn and lookup rates.
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Accordion uses a Chord ring structure with consistent hashing, successor list,
and the join protocol. The lookup find the node which ID follows the key. Accordion
uses greedy routing approach, each node forwards the lookup request to the node
with closest ID preceding the key. The process continues until the predecessor of
the key hosting node is reached. The predecessor replies directly to the node that
initiated the request.

Accordion explores multiple paths in parallel, sending as many lookups as the
bandwidth budget allows. Parallel lookups are preferable compared to explicit
probing, as those help to avoid timeouts due to dead nodes and also discover new
nodes in a DHT. Each time a node forwards a lookup request to the next hop node,
that node returns a list of its neighbors until the key ID. This way, the nodes can
expand their routing tables to satisfy the main goal of Accordion, providing the
minimum latency given the churn rate and the bandwidth budget.

2.3 PRR Trees

Plaxton, Rajaraman, and Richa proposed a PRR tree in 1997 [26]. PRR trees allow
routing in a distributed publication system. They considered static network topology
and did not provide a real-world implementation of the system. Later on, PRR
trees were adopted by Tapestry and Pastry DHTs that also include management
of dynamic membership of nodes in a tree.

Figure 2.4 shows neighbors of a node in PRR tree. Each node has O(b∗ logb(N))
neighbors in its routing table on several levels. A neighbor on ith level shares i digits
with node ID. Hence, L0 node shares no common digits and L3 node shares three
prefix digits. A node with ID closest to the key is the owner of that key.

9CD0

3AF2

443E

L0

L1

L0
L3

L3L2

3AF C

3AF 1 3 C57

3A 01

Fig. 2.4 Routing table of a PRR tree
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Fig. 2.5 Routing process in a PRR tree

Figure 2.5 shows routing process initiated from node with ID 3AF2 to a key
with ID 47E2. The routing goal is to find a node with the longest matching prefix
of digits. The query proceeds to node 4633 first since it shares the first digit with
destination. The second hop is node with ID 47DA with two digits and finally node
47EC which is numerically closest to the key ID and hence responsible for it.

2.3.1 Pastry

Pastry [29] is one of early DHTs introduced in 2001. Like other DHTs, it distributes
keys among participating nodes with IDs, routing a request to the responsible node
in O(logN) hops in a network of N nodes. The destination node is a live node with
ID numerically closest to the key ID.

A special feature of Pastry is proximity-aware routing. Each Pastry node keeps
information on k nodes closest to it in the identifier space. Such nodes are likely to
be spread geographically which could produce very long hops in terms of network
latency. Pastry attempts to choose the next hop node which is closest by the routing
metric, such as RTT delay.

The basic topology of Pastry is similar to Chord. Node IDs of 128 bits are
arranged into a ring. The node ID can be generated as a hash of node’s public key
or its IP address, which ensures random positioning of the node within the ring.

The Pastry node maintains a routing table, a leaf set and a neighborhood set.
Instead of Chord’s fingers, a PRR tree is used to route requests to nodes within
the ring.

The Pastry authors have evaluated it in an emulated network of 100,000 nodes,
confirming its scalability and self-organization capabilities, and ability to take
advantage of geographically close nodes.
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Fig. 2.6 Tapestry PRR topology combined with location mappings

2.3.2 Tapestry

Tapestry [36] is one of first DHTs introduced in 2001. It represents a structured
peer-to-peer overlay network that guarantees key location in the system when node
do not fail badly. Like Pastry, it is based on PRR trees. Tapestry authors use an
alternative term to DHT, Decentralized Object Location and Routing (DOLR).
A special feature of Tapestry is ability to exploit locality in accessing object replicas.

Figure 2.6 shows Tapestry topology based on PRR trees. Lookup requests are
forwarded to the closest copy of an object using location mappings created when
an object was published. In the figure, node with ID 4377 is responsible for the key
4378. The key was published by a request to node ID AA93 which routed it towards
the owner node. At each hop until the destination along the PRR tree, a link to the
local copy of the key at node AA93 is created. Therefore, a lookup request from a
nearby node 57EC gets immediately redirected to local copy from a node 4A6D,
and likewise by node 4361 when request comes from node E791.

2.3.3 Bamboo

Bamboo [28] is a ring-based DHT that specifically focuses on efficient operation
in the presence of high churn. Its authors evaluated the impact of churn on several
DHTs and different strategies to cope with churn, including reactive vs periodic
failure recovers, timeout calculation during lookups and choice of neighbors.
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In particular, the churn handling capabilities of Pastry and Chord were
investigated. It was found that Pastry recovers poorly even under medium churn,
the main reason being that Pastry uses reactive recovery (i.e., repairing failures as
soon as they are detected) and thereby is subject to the problem of positive feedback
cycles, where network link congestion causes repair packets to be sent, which in
turn causes more congestion, mistaken conclusion of whether other neighbors are
down, and eventually congestion collapse. On the other hand, the main problem with
Chord (which uses periodic recovery) is that under churn, lookup latency increases
substantially, which results from inaccurate timeout threshold calculations.

Based on these observations, Bamboo applies three techniques to address churn
handling: periodic recovery, timeout calculation algorithms, and proximity neighbor
selection (PNS) algorithms. PNS helps to reduce lookup latency by picking up
neighbors close in terms of network latency at the expense of additional bandwidth
use. Consequently, lower lookup latency leads to better timeout calculation.

The routing algorithm of Bamboo is borrowed from Pastry. It is illustrated in
Fig. 2.7. Bamboo maintains the same geometry despite the churn. Two sets of
pointers are present in a node, a leaf set to k neighbors before and after the node, as
well as pointers to nodes with matching prefixes in PRR tree. Lookups are routed in
O(log(N)) hops even in the presence of a large number of broken links.

To cope with node failures, Bamboo uses periodic recovery like Chord.
Periodically, a complete routing table is shared with one of a randomly chosen
node from the leaf set. A node is considered dead and removed from the routing
table after 15 timeouts, although routing to it stops after 5 timeouts. The general
conclusion of Bamboo authors is that periodic recovery is well suited for high churn
scenarios, while reactive recovery is appropriate when churn is low.



2.4 Tree 35

2.4 Tree

2.4.1 Trie

A trie, or prefix tree, is a data structure which name comes from the retrieval. In trie,
the node position within the tree defines its key value, unlike in the binary search
tree. All descendants of a node share a common prefix with a node. Figure 2.8
illustrates the structure of a trie containing a few English words. The character keys
are most common for tries, although any ordered lists are suitable.

A trie has a nice property that all basic operations take nearly same time, because
lookup, insertion or deletion is largely the same code. That enables tries to be more
efficient than binary search trees and hash tables in most important properties. Most
importantly, longest-prefix matching or finding a node with a longest prefix with a
key is very efficient with a trie.

An example of use of distributed tries in a DHT [9] is described in Sect. 3.5.
P-Grid [1, 5] is also using a distributed tree and is described in Sect. 4.6. Another
example is ZIGZAG that provides P2P media streaming.
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Fig. 2.8 Trie data structure
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Fig. 2.9 Skip list data structure

2.4.2 Balanced Tree

Skip list is a data structure that consists of several linked lists that connect sorted
items, as shown in Fig. 2.9.

Skip list was introduced by W. Pugh in 1990. Each higher list in the hierarchy
jumps over multiple list items. The jump span can be selected randomly using a
negative binomial distribution. The list item at i− 1 level appears at i level with
certain probability p, typically 0.5 or 0.25. Then the number of layers in a skip list
is log(1/p)N. By varying p it is possible to balance between the storage overhead
versus the search time.

The search for a key starts from the top layer list to the right until the key is found
or a greater key is located. In latter case, the search returns to the previous node and
drops down one layer. The procedure is repeated until the key is found or a greater
key is found on the bottom layer, which means the key is not present. Therefore the
expected search time is (log(1/p)N)/p.

Skip graphs [3, 4] and SkipNet [13, 14] are examples of DHTs using the skip list
data structure. They are described in Sect. 4.5.

2.5 De Bruijn and Kautz Graphs

2.5.1 De Bruijn Graphs

De Bruijn graph of n-dimensions and m symbols is a directed graph of mn vertices
(nodes). Each vertex is a random sequence of any of m symbols of length n,
repeating symbols allowed. A directed edge is formed to a neighbor vertex if its
ID is formed by shifting one position to the left and adding a new arbitrary symbol.
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for three dimensions and two
symbols

Figure 2.10 illustrates a de Bruijn graph of three dimensions constructed with
two symbols (0,1). It can be seen that each vertex has exactly m incoming and m
outgoing edges. Each de Bruijn graph has an Eulerian path (which visits every edge
exactly once) and Hamiltonian path (that visits each vertex exactly once).

Several DHTs utilize de Bruijn graphs in their topology, including Koorde, D2B,
Distance-halving [24, 25], ODRI [18], and Broose [10].

Koorde [15] is a DHT that modifies Chord to follow the topology of de Bruijn
graphs. Koorde means a chord in Dutch language. Even with two neighbors per
node, Koorde is able to route requests in O(logN) hops. When users can tune up
the number of neighbor per node up to O(logN), the number of hop decreases
to O(logN/ log logN). Naturally, this comes at the cost of increasing maintenance
overhead. Koorde inherits some algorithms, such as handling concurrent joins, from
Chord.

D2B [8] is another DHT using de Bruijn graphs, but in probabilistic manner.
It ensures with high probability that the nodes have O(1) neighbors. D2B requires
special form of node identifiers to construct a de Bruijn graph.
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Fig. 2.11 The Kautz graph (2,2)

2.5.2 Kautz Graph

Kautz graph is a directed graph where vertices are labeled as all possible
combinations of M + 1 distinct symbols under condition that adjacent symbols are
not the same. M is called the degree of the graph. The dimension of the graph, N
defines the length of each vertex label (N + 1). An edge is created to a vertex if its
label starts with a different symbol with regard to the source vertex. Figure 2.11
illustrates the Kautz graph for M = 2 and N = 2.

The Kautz graphs are closely related to De Bruijn graphs. Likewise, they posses
Eulerian and Hamiltonian cycles. The Kautz graph has the smallest diameter of any
directed graph with degree M and V vertices. The number of vertices in a graph
with degree M equals to (M + 1)MN+1. The edges of a KN+1

M graph correspond to
vertices of KN+2

M graph.
Following DHTs use the Kautz graph as basic topology: FISSIONE [16],

Moore [11], BAKE [12], and SKY [35]. They are described in Sect. 4.7.

2.6 Butterfly

Viceroy [19] utilizes the butterfly topology with constant expected number of
neighbors. The node degree is less than O(logN). Figure 2.12 illustrates the
multi-layer butterfly topology. The example network contains eight nodes with IDs
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 000  001  010  100  101  111 110 011

Fig. 2.12 The butterfly network

000..111. The nodes are linked at four layers, increasingly closer to neighbors. Thick
line shows a path from node 100 to node 011. The lookup reaches the destination
after three hops, which represents the worst case scenario in a stable network.

Viceroy estimates the size of network to select placement of nodes at several
layers. Having a constant node degree helps in managing the cost of joins and leaves,
since only a small number of neighbors need to be informed of leave, pinged for
keep-alive, or exchanged state information. A small number of neighbors also helps
to reduce the number of incoming and outgoing connections for smaller overhead.
A possible draw back of this is difficulty in maintaining the topology during high
churn.

Other DHTs using butterfly topology include CRN [6, 30], Ulysses [34],
Cycloid [31], Pappilon [2], and Mariposa [20]. They are described in Sect. 4.2.

2.7 O(1)-Hop

Researchers proposed several DHTs that are able to perform lookups with constant
time irrespective of the network size. Such DHTs, known as O(1) hop DHTs
include OneHop [7], 1h-Calot [33], and D1HT [22]. Their comparison can be
found in [23] and [33]. OneHop is described in detail in Sect. 7.3.1.4 among other
hierarchical DHTs.



40 2 Flat DHT Routing Topologies

Most of DHTs presented in this chapter use multi-hop routing which requires less
maintenance bandwidth and storage costs compared to one-hop DHTs. However,
the use of multi-hop DHTs for performance-sensitive applications is problematic
due to variable lookup delay. In some cases, one-hop DHTs can consume even less
bandwidth compared to multi-hop DHTs when lookup frequency is high because
multi-hop DHTs spend more on hop-by-hop forwarding. In general, bandwidth
in future networks tends to grow much faster than the latency reduces, therefore
technology solutions with small latency have clear potential.

To keep maintenance traffic within acceptable boundaries, D1HT proposes to
combine several events, such as peer joins or leaves, within one message. That
requires buffering event announcements until a sufficient number is collected to
fill a packet. This naturally increases the delay in which other nodes learn about
the system changes. To balance between maintenance traffic and event propagation
latency, the maximum event holding time is determined from the application
requirements. Typically it is assumed that at least 99 % of application requests
should be resolved within one hop.

Both D1HT and 1h-Calot use logarithmic tree to distribute updates in a DHT.
1h-Calot uses peer IDs to build the logarithmic tree, while D1HT uses TTL of
messages. D1HT is reactive in detecting events through maintenance message but
1h-Calot sends periodic heartbeats with proactive approach. D1HT buffers the
events to reduce the traffic, but 1h-Calot requires at least one message and its
acknowledgment per event and all DHT nodes.

2.8 Summary

We introduced basic classes of DHT topologies and described popular DHTs
representing these classes. The first classic DHTs of CAN, Chord, Pastry and
Tapestry are based on d-dimensional torus, a ring, and PRR tree topologies. We
also introduced De Bruijn and Kautz graphs and their use in DHTs, skip lists, trie,
and butterfly topologies. The chapter is concluded by description of O(1)-hop DHTs
that aim at resolving most lookups with minimal latency.
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Overview of Part II

Structured P2P systems achieve their efficiency due to dynamic maintenance of
rigorous network topology structure—its topology graph belongs to a class with
well-defined invariant properties of connectivity. Resources, functionality, and other
types of responsibility are uniformly spread over all the nodes. It ensures low node
degree and small network diameter, leading to modest node state and high routing
performance. In this case, however, a P2P node knows only a part of the entire
network. To approximate the state of the rest network, the node extrapolates its
local state based on invariant structural properties of the network topology.

Previously, Part I showed that the first generation of structured P2P networks—
flat DHTs—offered a completely flat structure of the key space that is randomly
partitioned among participating nodes. Flat DHTs have certain advantages, for
example, even distribution of workload among nodes. On the other hand, grouping
keys under a single authority or achieving latency guarantees for queries is difficult.
The heterogeneity requires differentiation of nodes in a P2P system. Some of them
are able to maintain bigger state becoming high degree nodes, which reduce the
network diameter. There also can be low-capacity nodes that are not so active
and resilient; their state and degree are minimal, which decreases the network
connectivity efficiency. A system design adapts the heterogeneity by arranging the
nodes such that they are subject to different responsibilities.

To address the node differentiation and adaptation to heterogeneity, various kinds
of hierarchy have been proposed over recent years. In this part, we thoroughly go
over the evolution of flat DHTs to pre-hierarchical DHTs, where differentiation is
done locally, individually by each node. Our focus is on hierarchies that appear due
to the the local construction and maintenance of routing tables. We sequentially
built a set of design principles; each provides a base for hierarchical topology
organization and appropriate routing schemes, improving the system performance.
In the extreme case, application of these principles leads to traditional hierarchical
DHT (HDHT) designs. These principles are unification points of many existing
proposals.
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Chapter 3 summarizes the design principles that lead to hierarchical routing
schemes in flat DHTs. Although the assumption on node role uniformity is still
preserved, careful arrangements in local routing tables allow logarithmic or better
routing complexity in the whole system. Therefore, the known routing efficiency of
flat DHTs is due to hierarchies that initiated locally by cooperative nodes.

Chapter 4 derives the design principles that lead to a kind of global hierarchies
in flat DHTs. In contrast to the previous case of Chap. 3, a hierarchy is not from
the point of view of an individual node but differentiates nodes at the global
level. A system-wide specialization appears: nodes are specialized in their routing
responsibility and resources are specialized by their distribution. As a result, the
intrinsic heterogeneity in a P2P system is reflected in the topology to achieve higher
performance.

Chapter 5 considers the clustering principle as an evolution step of hierarchical
routing schemes in flat DHTs. Differentiation of nodes evolves to clustering when
similar nodes or resources form specific groups, which in turn tend to organize a own
network. Clustering makes explicit discretization of the intrinsic heterogeneity and
reflects the latter in the network topology. We discuss various P2P design problems
where the clustering principle appears, including routing, load distribution, and
content semantics.

Chapter 6 targets the cooperation in anonymous, dynamic, and autonomous P2P
networks and states the local ranking problem a solution to which provides effective
means to reward fair cooperating nodes and to punish defect behavior. We consider
direct-reciprocity incentive schemes, which are pure local—each node operates
with directly observable knowledge about others’ activity and performs operational
decision-making with no assumption on long-term prediction. BitTorrent-like shar-
ing systems are used as a reference case for single-resource exchange. Then the case
is generalized for multi-resource exchange and transit resources.



Chapter 3
Hierarchical Neighbor Maintenance

Abstract In flat DHTs, various kinds of arranging items occur very frequently,
leading to tree-like structures and hierarchical routing schemes. Different existing
proposals can be unified in the terms of hierarchy, and routing schemes are built into
a logical structure. There are certain design principles that define general directions
for various hierarchical techniques to improve DHT routing. This chapter shows that
the known routing efficiency of flat DHTs is due to hierarchical schemes in the local
construction and maintenance of routing tables.

3.1 Introduction

Nodes exploit the small-world phenomena, the lookup paths form hierarchical
structures—lookup path hierarchies. They support the existence of short paths and
provide effective hierarchical routing schemes with local information. A common
case is routing within O(logN) hops. These schemes are applied in Symphony [31],
eCAN [51], Chord [48], Pastry [45], Tapestry [55], Kademlia [33], Koorde [21],
Distance-halving [36, 38], D2B [13], ODRI [30], and Broose [15]. Sections 3.2
and 3.3 coin the corresponding design principles of small-world neighborhood and
geometrically progressive routing.

Many extensions of flat DHT designs apply appropriate arrangement of
neighbors for adapting to a global hierarchy that exists in the network. Nodes
locally optimize lookup hops—a key design principle in neighbor and route
selection [3,9,17,52,54], multipath routing [18,25,54], sybil-resistance routing [10],
load balancing [47], and some others. Section 3.4 elaborates this principle of locally
adaptive selection.

The lookup path hierarchy provides every node with an effective way for
collecting and using knowledge about the network beyond the neighbors. It is a
design principle in neighbor-of-neighbor routing [32,37], distributed trie of popular
lookups [14], and cyclic routing [25]. Section 3.5 considers the DHT designs that
follows the look-ahead principle.

D. Korzun and A. Gurtov, Structured Peer-to-Peer Systems: Fundamentals of Hierarchical
Organization, Routing, Scaling, and Security, DOI 10.1007/978-1-4614-5483-0 3,
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This principle evolves to DHTs with large routing tables or with high replication,
when more expensive global routing is replaced with faster local routing by the cost
of node state and maintenance. The DHT family with large routing tables includes
EpiChord [27], Accordion [29], SmartBoa [20], OneHop [12], 1h-Calot [49], and
D1HT [34]. The DHT family with high replication is represented by DHash [8],
Beehive [41], and Yarqs [53]. Sections 3.6 and 3.7 discuss these DHT families and
the problems they are faced with.

Recall from Chap. 1 that DHT routing construct multi-hop paths

u→ w1→ w2→ ··· → wl−1→ d (3.1)

from a source node u = w0 to a responsible node d = wl . A widespread strategy is
progressive routing when (3.1) satisfies

ρ(wi,k)< ρ(wi−1,k), i = 1,2, . . . , l− 1. (3.2)

It leads to greedy routing in the extreme case:

wi = arg min
u∈Twi−1

ρ(u,k), i = 1,2, . . . , l− 1. (3.3)

3.2 Small-World Networks and Progressive Routing

Models for the small-world phenomenon naturally exhibit a certain hierarchy in
routing tables. First, a node divides its neighbors onto local and long-range [23], in
accordance with the classifying model. Figure 3.1 shows the basic scheme. Local
neighbors of a node u are equal. Long-range neighbors are arranged in u’s vicinity,
in accordance with the ranking model.

3.2.1 Long-Range Neighbors

Kleinberg’s small-world construction [22] highlights the idea of selection distant
nodes for neighbors. The node ID space is the n× n grid

u

local neighbors long−range neighbors ρ

Fig. 3.1 The small-world hierarchy of neighbors: (1) discrete classification onto local and long-
range; (2) arrangement of long-range neighbors with vicinity clustering at all distance scales
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S = {1,2, . . . ,n}×{1,2, . . . ,n}
with ρ ((x1,y1),(x2,y2)) = |x2− x1|+ |y2− y1|,

where N ≤ n2. Local neighbors of u are all v such that ρ(u,v) ≤ ε for a universal
constant ε ≥ 1. Additionally, u selects m≥ 1 long-range neighbors with probability
proportional to [ρ(u,v)]−α for α ≥ 0 (a kind of Zipf-like or power-law distribution).
The parameter α controls the density of long-range neighbors at all distance scales.
When α = 0 the long-range neighbors are distributed uniformly. As α increases,
they become more clustered. Effective greedy routing is possible for α = 2; paths
are polylogarithmic with the expected length O(log2 N).

The small-world hierarchy of node’s neighborhood invents the following DHT
design principle.

Principle 1 (Small-world neighborhood). Neighbors are at all distance scales.
More distant neighbors are sparser in a local routing table.

An example DHT that does not follow Principle 1 is CAN [42]. Recall that
the CAN ID space is the unit n-dimensional Cartesian coordinate space [0,1)n

mod 1 (torus) with Euclidean distance, a continuous analog of Kleinberg’s small-
world grid. The coordinate space is partitioned into hyper-rectangles (zones). Each
node is responsible for a zone (for keys from this zone). Two nodes are neighbors
(symmetrically) if their zones share an n− 1 dimensional hyperplane, hence there
are only local neighbors. (Their number is m′ = 2n.) Greedy routing takes O(nN1/n)
hops, and paths are longer than polylogarithmic. Only if the dimension satisfies
n = Θ(logb N) for some b > 1 or a more aggressive asymptotic dependence n =
Ω(logb N) then the state and routing complexity can achieve O(logN) bound.

Consider the following definition. It provides a family of routing strategies,
including greedy routing. A hop u→ v for k is called b-progressive (geometrically
progressive with the ratio 1/b) if

ρ(v,k)≤ ρ(u,k)
b

for b > 1. (3.4)

As a result, the current distance is reduced at least by b, so considered as efficient.1

As we shall see, many DHT designs with logarithmic-complexity routing
achieves geometrically progressive routing by appropriate selection of long-range
neighbors.

3.2.2 Case Study: Symphony

Symphony [31] is a particular inspiration of Kleinberg’s small-world construction.
The ID space is a ring (the unit interval [0,1) mod 1). The distance ρ(u,k) is the

1In [52], such a routing strategy is called frugal; the corresponding paths are called geometric.
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1/2

0

1/43/4

u likely zone for
local neighbors

Fig. 3.2 Ring division for u
in Symphony: long-range
neighbors are from the whole
ring except the short arc
(length = 1/N) immediately
clockwise u

clockwise arc length from u to k. It is asymmetric, and routing is unidirectional
(clockwise). A node u is responsible for the arc [u,v) where v is closest to u.

Assume the uniform distribution of nodes in S. Every node maintains m′ = 2
local and m ≥ 1 long-range neighbors. Local neighbors are the closest nodes on
the ring. A node u selects a long-range neighbor v closest to the point u + δ
mod 1 for a random δ . For simplicity, assume v = u+ δ mod 1. The generation
of δ is independent with the probability density function2 h(x) = 1/(x lnN) for
x ∈ [1/N,1), where N ≥ 2 is estimated locally. Intuitively, δ = 1/N is the mean
distance to u’s closest node and δ = 1 is supreme for the most distant one. Hence
all candidates for long-range neighbors are in [u+ 1/N,u+ 1) mod 1, see Fig. 3.2.

The following theorem shows a perfect example of probabilistic application of
geometrically progressive routing (3.4), leading to efficient P2P routing.

Theorem 3.1. The Symphony routing algorithm has polylogarithmic routing effi-
ciency on average.

Proof. Let u serve a lookup to key k and v ∈ Tu. The hop u→ v reduces the current
distance at least by half if v = (u + δ ) mod 1 for δ ∈ [ρ(u,k)/2,ρ(u,k)). The
probability is

p =

ρ(u,k)∫

ρ(u,k)/2

h(x)dx =
1

log2 N
, (3.5)

which is independent on u and k. Note that p(N)→ 0 when N→ ∞.
The probability that there is a 2-progressive v ∈ Tu for a given k is

pm = 1− (1− p)m = 1−
(

1− 1
log2 N

)m

. (3.6)

If m = Ω(log2 N), i.e., m≥ α log2 N for a constant α > 0, then for large N,

pm ≥ 1−
(

1− 1
log2 N

)α log2 N

−−−→
N→∞

1− e−α . (3.7)

2This PDF is often called harmonic. It is an instance of the power-low family of distribution
functions.
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For instance, pm ≈ 0.63 for m ≈ log2 N. That is, O(logN) routing state (typical to
many DHTs) leads to the high probability of geometrically progressive hops.

Consider a path wi →+ wi+1 with li hops where only the last one is at least
2-progressive. Any forwarding node except the penultima has no 2-progressive
hops in its routing table. A sufficient condition for the 2-progress is ρ(wi,k) ≥
2ρ(wi+1,k). Note that in greedy routing a node always selects a geometrically
progressive hop if it is available. The path hop length li is a random variable having
the geometrical distribution

Pr
[|wi→+ wi+1|= li

]
= (1− pm)

li−1 pm

with the mean 1/pm. In addition, there are cases when the distance ρ(wi,k) is halved
by a sequence of short hops; it can only increase the probability of shorter paths
wi→+ wi+1. In total, the expected length is E[li] = O(1/pm), which by (3.7) can be
bounded above by a constant if N is large and m = Ω(log2 N).

For the fullness consider a less efficient strategy (in fact, the original proof
in [31] used it) is the nodes on wi →+ wi+1 select the next hops randomly. It
constructs longer paths before the current distance diminishes at least by half since
an intermediate node can have a 2-progressive hop but it was not selected. The path
construction also leads to geometrical distribution with the mean 1/p = log2 N:

Pr
[|wi→+ wi+1|= li

]
= (1− p)li−1 p.

The expected length E[li] = O(log2 N) by (3.5).
Return to greedy routing case (3.6) in Symphony. Since p(N) tends to zero for

large N the expansion to Maclaurin series gives

pm = 1− (1− p)m = 1−
∞

∑
i=0

Ci
m(−1)i pi = mp+ o(p),

where Ci
m are generalized binomial coefficients. Consequently, the general bound is

E[li] = O
(

log2 N
m

)
.

Now consider routing from the source node w0 to the responsible node d = wl

w0→+ w1→+ · · · →+ wl−1→+ wl = d. (3.8)

Compared with (3.1), it consists of multi-hop subpaths wi→+ wi+1. Every subpath
at least halves the distance. Hence Nwik < N/2i, and after l = O(log2 N) steps
Nwl k = 0. Therefore, the Symphony greedy routing algorithm constructs paths of
the expected length lE[li], and two important cases for node state complexity are

E
[|u→+ d|]=

⎧
⎨

⎩

O

(
1
m

log2 N

)

if m = O(1),

O(logN) if m = Ω(logN).

(3.9)

��



52 3 Hierarchical Neighbor Maintenance
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Fig. 3.3 A path construction hierarchy H[u→+]. For each key, u selects a b-progressive hop
(options 1, 2 and 3 are available). Dashed rectangles show the closeness to destinations

Based on Principle 1, a given network can be augmented with long-range
neighbors so that O(polylogN) greedy routing is possible [2, 11]. For instance,
eCAN (CAN augmented with “expressways”) provides O(logN) routing [51].

3.2.3 Path-Based Hierarchies

The key property of the b-progress is geometrical distance reduction (3.4). Although
nodes select the next hop independently on the previous part of path, the following
design principle preserves the relation between hops.

Principle 2 (Geometrically progressive routing). Given a constant b > 1. Any
node u has a b-progressive hop v ∈ Tu for an arbitrary key k ∈ S. In resolving
lookups, u always selects b-progressive hops.

The principle defines the path construction hierarchy H[u→+] that describes
the path construction starting from a node u, see Fig. 3.3. For any key, u selects
a b-progressive hop, and the lookup arrives to a geometrically closer area of the
destination d. Every next-hop node does the same. A level in H[u→+] characterizes
the distance scale; the lower is the level, the larger part of the overlay is crossed.

In this hierarchy, u does not consider “backward” paths in the overlay since
every node keeps neighbors to cover all destinations, including u and its vicinity.
Therefore, H[u→+] is a subgraph of the overlay topology graph. The hierarchy is
local since it is defined from the point of view of each individual node u.

The following properties clarify the definition of H[u→+].

1. H[u→+] consists of all N nodes. Substantiation: any node d is reachable from u.
2. For any path w′ → w→ w′′ in H[u→+], always w is in between w′ and w′′ in

terms of the space metric ρ , i.e., ρ(w,w′′) < ρ(w′,w′′). Substantiation: there are
no backward links; the remaining route w→ w′′ is always shorter.

3. For b-progressive routing, the condition from the previous property is reduced to
bρ(w,w′′)≤ ρ(w′,w′′). Substantiation: distance scale decreases geometrically.

Note that H[u→+] is not a tree since the uniqueness in selecting the next hop is
not guaranteed. Cycles can exist, see Fig. 3.4 for an illustration.
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Fig. 3.4 An example of cycle appearance in H[u→+]. Although the path u→+ d through w is
longer (in hops) than through v, it provides an alternative, e.g., if v is failed

In general, the more cycles are in H[u→+] the lower is the hierarchy factor. In
this sense, greedy routing (3.3) is more hierarchical than progressive routing (3.2).
The cycle existence is, however, useful for routing, e.g., security and resilience
benefit from existence of many alternative paths. Geometrically progressive routing
allows tradeoffs preserving the logarithmic bound for path lengths.

Theorem 3.2. Geometrically progressive routing has logarithmic routing efficiency
in the worst case.

Proof. Given multihop path (3.1). Initially Nuk < N. Then ρ(w1,k)≤ ρ(u,k)/b, and
the proportional reduction is Nw1k < N/b. At the next hop,

ρ(w2,k)≤ ρ(w1,k)/b≤ ρ(u,k)/b2 and Nw2k < N/b2.

In the worst case the upper bound reduces to N/bl ≤ 1 ensuring Ndk = Nwl k = 0 and
yielding l ≤ logb(N) = O(logb N).

Note that only the strict bound b > 1, not the concrete value of b, is essential
for the logarithmic bound. For any b > 1 the majorant sequence {N/b j}l

j=1

monotonically decreases, approaching 0≤Nwl k < N/bl ≤ 1 in the worst case. Since
logb N = log2 N/ log2 b, the logarithm base is not important for the O-notation, and
l = O(logb N) = O(log2 N). ��

Note that the progress b j > 1 at each hop j may be different. Then there exists a
majorant sequence:

{
N/(b1b2 · · ·b j)

}l
j=1 ≤

{
N/b j}l

j=1 with b = min{b j | j = 1,2, . . . , l}> 1.

The distance metric is unidirectional if there is at most one y ∈ S such that
ρ(x,y) = δ for any given x ∈ S and δ > 0. In terms of the ranking model, u can
arrange uniquely all points k ∈ S according to ρ(u,k). Consequently, greedy routing
converge all lookups for the same key along the same path, regardless of the source
node [18]. It leads to path destination hierarchy H[→+ d], a backward structure to
the path construction hierarchy H[u→+].
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layer 1

layer 2

MlayerFig. 3.5 A path destination
hierarchy H[→+ d]. If
|u→+ d|= l then u is on
layer l. Similarly to
Principle 1, the larger l the
more nodes on layer l

Intuitively, each d is a root of a tree containing all N nodes, a kind of spanning
tree of the network topology graph. As shown schematically in Fig. 3.5, H[→+ d] is
constructed by all routing paths from other nodes to d. Different destinations define
different trees. At each step of progressive routing (3.2), the lookup travels to a node
that is closer to the root in (S,ρ). Immediate d’s children are those nodes that keep
d in their routing tables; they form layer l = 1. Source nodes of two-hop paths to d
form layer l = 2. The nodes for which d is most distant in hops form the top layer
l = M.

The intersection H[u→+]∩H[→+ d] defines a set of possible paths u→+ d. In
greedy routing (3.3), next hops are chosen deterministically, and there are no cycles
in H[→+ d]. Consequently, the path u→+ d is unique. Progressive routing (3.2)
allows alternatives in selecting next-hop nodes, and the hierarchy factor of H[→+ d]
becomes lower because of cycles.

3.3 Routing in Greedy DHTs and de Bruijn Graphs

Principle 2 heightens Principle 1 by ensuring that for any key a node knows a
b-progressive hop. In Symphony, the long-range neighbor selection follows the
ranking model for the distance scales. Symphony approximates geometrically
progressive routing since some hops in (3.8) are not 2-progressive. As a result,
constructing O(logN) paths is not possible when the number of neighbors per node
is constant, see m = O(1) in (3.9) and Theorem 3.1. Now, consider two important
classes of DHT topologies: greedy DHTs, which have become very popular in
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Table 3.1 Popular greedy DHTs that employ geometrically progressive routing

DHT design ID space S Distance metric ρ(u,k)

Chord [48] n-bit numbers uniformly
projected to the ring (b = 2)

ρ(u,k) =
{

k−u, if u≤ k,
2n− (u− k), otherwise.

Clockwise arc length between u and k

Tapestry [55] n-digit numbers in base b≥ 2 ρ(u,k) =
n−1
∑
j=0
|u j− k j|b j where

u =
n−1
∑
j=0

u jb j and k =
n−1
∑
j=0

k jb j . Longer

the prefix (in digits) shared among u
and k, closer these IDs

Pastry [45] Similarly to Tapestry with
b = 2c for c≥ 1

The same as in Tapestry

Kademlia [33] Similarly to Tapestry with b = 2 The same as in Tapestry. Equivalent to
the bitwise exclusive OR (XOR),

ρ(u,k) =
n−1
∑
j=0

(u j⊕ k j)b j

practical implementations, and de Bruijn P2P networks, which approximates de
Bruijn graphs in the topology. For these classes, the design can follow Principle 2
accurately.

3.3.1 Conventional Greedy DHTs

Many DHTs with greedy routing use the classifying model (discrete) for neighbors,
instead of the ranking model (continuous, ranks reflect the distance). As a result,
routing becomes geometrically progressive. Examples include Chord [48], Pastry
[45], Tapestry [55], and Kademlia [33].

Recall that the above DHTs use ID space S consisting of all nonnegative integers
with n ≥ 1 digits in base b ≥ 2, u = ∑n−1

j=0 u jb j for 0 ≤ u j < b, and N ≤ bn (see
Table 3.1). A node u discretely partitions S onto disjoint zones

Si(u) =
{

k ∈ S | bi ≤ ρ(u,k)< bi+1} , i = 0, . . . ,n− 1. (3.10)

According to Principle 1, more distant zones are larger. In terms of the distance ρ ,
each Si(u) is an annulus Bbi+1(u)\Bbi(u), the area between the two concentric balls,
where an r-radius ball with center u is defined

Br(u) = {k ∈ S | ρ(u,k)< r} .

In Pastry and Tapestry, u keeps b− 1 long-range neighbors from each zone. For
each Si(u), there is a neighbor v satisfying ρ(v,k) ≤ bi−1 for any k ∈ Si(u). Let
us make explanation in terms of ID prefixes [40]. If v ∈ Si(u) then v, u and any
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k ∈ Si(u) share the (n− i−1)-digit prefix. For each of b−1 values for the next digit
j = 0,1, . . . ,b− 1, j �= un−i−1 that can follow this prefix in k ∈ Si(u), a long-range
neighbor v ∈ Si(u) is stored in Tu. A lookup for k finds v ∈ Tu such that v is one digit
closer to k, i.e., ρ(v,k)≤ bi−1, and the hop is b-progressive:

ρ(u,k)
ρ(v,k)

≥ bi

bi−1 = b.

In Chord and Kademlia, u keeps at least one long-range neighbor from each
zone. In Kademlia, the distance ρ is symmetrical, thus ρ(v,k) < 2i+1− 2i = 2i for
any k ∈ Si(u) and ith neighbor v. In Chord, the distance metric is asymmetrical. In
deterministic Chord the ith neighbor v is closest to u in Si(u), thus also ρ(v,k)< 2i

for any k ∈ Si(u). In routing a lookup, u uses the ith neighbor v. The hop u→ v is
geometrically progressive since ρ(u,k)/ρ(v,k)> 1.

The Chord distance metric is transitive; ρ(u,k) = ρ(u,v) + ρ(v,k) if v is in
between u and k. Without loss of generality, the latter can always be assumed for
deterministic Chord. Hence, having one ith neighbor ensures the 2-progress for
deterministic Chord:

ρ(u,k)
ρ(v,k)

=
ρ(u,v)+ρ(v,k)

ρ(v,k)
≥ 2i

2i+1− 2i + 1 = 2.

In randomized Chord as well as in Kademlia, v can be any node from Si(u), thus v
is not always in between u and k.

For 2-progress in Kademlia, a node u would follow the same prefix-aware
strategy for selecting v ∈ Si(u) as in Pastry and Tapestry. Another way is halving
Si(u) and keeping two neighbors v1,v2 ∈ Si(u) for each half such that v1 and v2 are
closest to u in the annuli

B3·2i−1(u)\B2i(u) and B2i+1(u)\B3·2i−1(u), respectively.

Kademlia requires every u to keep several neighbors for each Si(u); the rec-
ommended value is 20. Hence for a randomly selected k ∈ Si(u), the probability
of having v ∈ Tu such that ρ(v,k) < 2i−1 is high. This strategy is also suitable
for randomized Chord, when some constant increment of the routing table size
improves the ratio of geometrically progressive routing.

As in the small-world construction, these greedy DHTs also support local neigh-
bors: a list of successors in Chord,3 a leaf set4 in Tapestry, leaf and neighborhood5

sets in Pastry, nodes from S0∪Sn−1 in Kademlia.6

3A Chord node also keeps predecessors; they are local neighbors with respect to the absolute
symmetrical distance min{ρ(u,v),ρ(v,u)}.
4A Tapestry or a Pastry leaf set consists of 2m0 numerically closest nodes (for the distance |v−u|):
m0 clockwise plus m0 anticlockwise.
5Pastry neighborhood set consists of proximity closest nodes.
6In Kademlia (as in Chord) the closest successors of u are the first subsequent nodes in S0(u) and
the closest predecessors are the last subsequent nodes in Sn−1(u).
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Summarizing, the considered greedy DHTs have the following properties.

1. Pastry and Tapestry ensures b-progressive routing by keeping b− 1 neighbors
from each of n zones (m = O((b− 1) logb N) in total), where b is the base of
numerical n-digit IDs.

2. Deterministic Chord ensures 2-progressive routing by keeping the closest
neighbor from each power-two zone (m = n = O(log2 N) in total).

3. Randomized Chord and Kademlia ensure b-progressive routing for some b > 1
by keeping at least one neighbor from each power-two zone. The probability that
a hop is 2-progressive becomes higher when keeping more neighbors per zone.

3.3.2 Chord-Like DHTs

A Chord-like DHT is a generalization of the conventional Chord DHT by using
arbitrary base b ∈ Z, b ≥ 2, instead of the default base b = 2. The ID space can be
seen as a discrete ring of bn points from 0 to bn− 1. A node takes its ID u ∈ [0,bn)
and arithmetic on node IDs is always on modulo bn. The topology is constructed by
links (fingers) that go from u to a node v∈ Si(u)= [u+bi,u+bi+1) for i= 0,1, . . . ,n.
In deterministic topology, v is always the first node Si(u). In randomized topology,
v can be taken arbitrary from Si(u). As a result, local state is O(logb N) and lookup
complexity is O(logb N) hops. Note that a bidirectional variant is also possible when
additional links (anti-clockwise fingers) from u to a node v ∈ Si(u) = [u− bi+1,
u− bi) are maintained for i = 0,1, . . . ,n.

Intuitively, routing hops are “jumps” of size bi. The jump sizes σi = |Si(u)|= bi

are the same for at all nodes. In the terminology of Xu et al. [50] this property leads
to uniform routing algorithms. We will refer to the set {σi}n−1

i=0 as the jump set.
Consider continuous generalization [50] when x ∈ R, 0 < x < 1. The jump set is
{xi+1|S|}n−1

i=0 , where the number of neighbors n is selected such that xn|S| ≈ 1. The
discrete case is reduced to the continuous one by taking x = 1/b.

The problem is to find a jump set that reduces the overlay network diameter. Let
the ID space be normalized into a unit interval [0,1), i.e., we move to the arithmetic
on modulo 1. Then the jump sizes are σi = xi. The goal here is to approximate
every real number y ∈ [0,1) using these jump sizes in a “greedy” fashion, when
allowing a small “remainder”. This requirement is achieved by taking x =

√
2−1≈

0.414, which is the root of the equation 1− 2x = x2. Given number y ∈ [0,1) to
approximate, there are three cases at the very beginning:

(a) If y ∈ [0,x) then the approximation is made.
(b) If y ∈ [x,2x) then subtract x from it (a jump of size x in the normalized space)

and the remainder y− x is in [0,x).
(c) If y ∈ [2x,1) then subtract x from it two times, and the remainder y− 2x is in

[0,x2).

The above procedure will be repeatedly executed in a recursive and greedy
fashion. The intuition of the steps (a)–(c) is the following. If y belongs to case (a),
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it is already “better-off” in terms of path length. If y belongs to case (b) or (c), then
one or two additional jumps of size x are needed to reduce the remainder to case (a).
Since case (c) requires one more jump than case (b), we compensate this difference
by allowing its remainder to jump to the region [0,x2) (note that 1−2x= x2) instead
of [0,x) as in case (b). In this way, we “equalize” the cost to approximate numbers
in regions [x,2x) and [2x,1). Note that such equalization is done in a recursive way,
spreading its “equalization” benefit recursively.

The routing protocol is the same as in the original Chord. The number of
neighbors is reduced to n≈ log1/x N ≈ 0.786log2 N, which is 21.4 % less than in the
original Chord with the exactly log2 N routing table size. The average path length is
approximately 0.614log2 N, that is 22.7 % greater than in Chord.

Cordasco et al. [7] provided a further advanced scheme, called F-Chord(α).
Its jump sizes are calculated based on Fibonacci numbers and 1/2 ≤ α ≤ 1 is a
tuning parameter. The model aims at better tradeoffs between overlay path length
and routing table size.

Let fi be Fibonacci numbers for i = 0,1, . . ., which are defined as f0 = 0, f1 =
1 and fi = fi−2 + fi−1 for i > 1. Fix n such that fn−1 < N ≤ fn. Note that m ≈
logφ N ≈ 1.44log2 N, where φ = (1+

√
5)/2 is the golden ratio. The basic idea

is that the difference between two consecutive jumps is the preceding jump, i.e.,
σi+2−σi+1 = σi. The maximum number of hops in greedy routing does not exceed
half the size of the finger table. This basic case corresponds to α = 1. In general,
F-Chord(α) uses the set of [α(n− 2)] jumps

σi =

{
f2i, i = 1,2, . . . , [(1−α)(n− 2)],
fi, i = 2[(1−α)(n− 2)]+ 2, . . .,n− 1,

where a certain quantity of the jumps with odd indices are eliminated.
For any value of α , the diameter of an F-Chord(α) overlay network is half the

size of the routing table: [n/2]≈ 0.72log2 N, i.e., the worst-case path length is lower
than in Chord. The average path length is upper bounded with

0.398log2 N +(1−α)0.248log2 N + 1.

The F-Chord(α) scheme can be further extended [6] to base b ≥ 2, where b is
increased in order to reduce the number of hops at the expense of increased routing
table size. It remains logarithmic in size, but the constant factor is higher.

3.3.3 De Bruijn Graphs

De Bruijn graph B(b,n) is a base for a rich family of DHT designs, including
Koorde [21], Distance-halving [36, 38], D2B [13], ODRI [30], and Broose [15].
They also follows Principle 2 of geometrically progressive routing.
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Fig. 3.6 The de Bruijn graph
B(2,3); the picture is
from [13]

As in greedy DHTs, the ID space S consists of n-digit nonnegative integers in
base b. The distance discretely depends on the length l(u,v) of the longest suffix of
u that equals the prefix of v,

l(u,v) = max
{

j | u j−1=vn−1,u j−2=vn−2, . . . ,u0=vn− j
}
,

where u = un−1 · · ·u1u0 and v = vn−1 · · ·v1v0. If the maximum does not exists then
l(u,v) = 0. For example, l(110,101) = 2, l(101,110) = 1, and l(011,001) = 0. The
larger l(u,v), the closer the nodes. Therefore, l(u,v) follows the classifying model
and defines n distance scales.

Clearly, l(u,v) is not symmetric. Furthermore, if l(u,v) = l(u,w) then an
additional metric makes further differentiation. For instance, Koorde uses the Chord
distance, Distance-halving uses the absolute numerical difference, Broose uses the
XOR distance as in Kademlia.

Similarly to the greedy DHTs, a node u partitions S onto several zones and selects
a neighbor for each of them. In contrast, the number of zones is equal to b without
dependence on the ID length n, hence leading to O(1) state. Each zone Si(u) is
determined by un−2un−3 · · ·u0i for i = 0,1, . . . ,b− 1, i.e., the node ID is shifted to
the left and appended with digit i on the right. The corresponding de Bruijn graph
for b = 2 and n = 3 is shown in Fig. 2.10 from Chap. 2.

In the greedy DHTs, each zone represents one distance scale. In the de Bruijn
graph approach, Si(u) simultaneously covers all distance scales j = 0, . . . ,n− 1
and is responsible for all keys k such that j = l(u,k) and the ( j+ 1)-digit prefix is
u j−1 · · ·u0i. In routing a lookup for k = kn−1 · · ·k1k0, a node u computes j = l(u,k)
and forwards to its neighbor v ∈ Skn− j(u), close to the point

un−2un−3 · · ·u ju j−1 · · ·u0kn− j−1

= un−2un−3 · · ·u jkn−1 · · ·kn− jkn− j−1

For the example in Fig. 2.10, the lookup for k = 101 at node s = 100 follows the
path 100→ 001→ 010→ 101.

The same neighbor is applicable at different distance scales; a lookup key
determines what scale is needed. Nevertheless, Principle 1 is preserved since the
number of nodes at distant scale j is proportional bn− j. Each routing step resolves
at least one digit in IDs, reducing the number of nodes in between at least by the
factor b in accordance with Principle 2.
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The idea of geometrically progressive routing in de Bruijn graphs is further
developed in Kautz graphs, which we shall discuss in Sect. 4.7.

3.4 Adaptation to Global Hierarchy

Principle 1 is a base of small-world strategies for selecting neighbors. Its combi-
nation with Principle 2 leads to discrete partitions on to distance-scale zones Si(u)
in (3.10) and local hierarchies H[s→+] and H[→+ d] in the network topology. In
turn, this structure allows adapting to other hierarchies of the network. For instance,
if the topology embeds a global hierarchy then the distance between two nodes
depends on the height of their lowest common ancestor in the hierarchy tree.

3.4.1 Kleinberg Tree-Based Model

First, consider an explaining theoretical example from [23]. Let the global hierarchy
be represented as a complete b-ary tree T , where b is a constant (b ∈ Z+, b �= 0)
and the height of T is logb N. The leaves are nodes N. For two leaves u and v, the
height of their least common ancestor in T is h(u,v). Clearly, h(u,u) = 0.

The network topology is stochastically adapted to the hierarchy as follows. The
probability that u selects v a neighbor is equal to

puv =
f (h(u,v))

∑
w∈N,w �=u

f (h(u,w))
, where f (h) = b−h.

It can be proved that the normalizing constant is bounded

∑
w∈N,w �=u

f (h(u,w)) = ∑
w∈N,w �=u

b−h(u,w) ≤ logb N.

According with this probability distribution, each u creates m links, choosing the
neighbor v independently and with repetition allowed. Assume logarithmic node
state m =Θ(log2

b N). Let us call this topology Kleinberg tree-based.7

The following theorem shows that structuring the topology using the tree-based
hierarchy allows efficient routing although every node has local knowledge only.

Theorem 3.3. A P2P network with Kleinberg tree-based topology allows a routing
algorithm that achieves O(logb N) efficiency with high probability.

7For m = O(1) the tree-based topology allows routing in O(log4
b N) hops [23].
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Proof. Without loss of generality we assume that lookups are based on node IDs
instead of resource keys. Let u serve a lookup for the target node d. Suppose that
l = h(u,d) and t ∈ T is the least common ancestor. Let T ′ be subtree of T rooted
at t and T ′′ be the subtree of T ′ of height l−1 that contains d. Obviously, u /∈T ′′.

If there is v ∈ Tu such that v ∈ T ′′ then u can make a b-progressive hop to d,
achieving h(v,d) ≤ h(u,d)− 1. There are bl−1 leaves (network nodes) in T ′′. For
any v ∈T ′′ the probability of being a neighbor of u is

pu = Pr{v ∈ Tu | v ∈ T ′′} ≥ b−l

logb N
≥ 1

b logb N
.

Since Tu = m ≥ C log2
b N for a some constant C, the probability (1− pu)

m that Tu

contains no nodes from T ′′ is bounded for large N

(

1− 1
b logb N

)m

≤
(

1− 1
b logb N

)C log2
b N

≤ εC2 logb N = 1/N + o(1/N),

where 0 < ε < 1 and C2 > 0 are constants. Therefore, Tu contains a node from T ′′
with high probability.

Then the required algorithm states each node u on the routing path to d to select
v ∈ Tu such that v ∈ T ′′, where T ′′ depends on u and d. From the foregoing it
follows that such v is in Tu with high probability.

No explicit construction of T ′′ is needed since u can select v that satisfies
h(v,d)< h(u,d). In the worst case, h(u,d) = logb N. Each hop reduces this discrete
distance at least by 1, so the target is reached in O(logb N) hops. ��

3.4.2 Proximity-Based Selection

Now consider the crucial practical instance of global hierarchy—the underlying
network topology. It reflects the domain-based Internet architecture. The hierarchy
defines the proximity of nodes in terms of latency. The height of their lowest com-
mon ancestor of u and v positively correlates with the latency of communications
between u and v. Let τ(u,v) be a latency metric estimated at u [39]. The latency of
l-hop path (3.1) is

|u→+ d|τ =
l−1

∑
i=0

τ(wi,wi+1).

An obvious property of geometrically progressive routing is the worst case bound

|u→+ d|τ = O(Δ logN) for the latency diameter Δ = max
u,v∈N

τ(u,v). (3.11)
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Neighbor and route selection schemes (PNS and PRS) are known for adapting to
the proximity [3,9,17,29,52,54]. In PNS, a node u selects neighbors to Tu based on
their proximity. In PRS, u selects next-hop nodes from Tu based on their proximity.
The schemes aim at short paths not just in terms of overlay hops but also in terms
of network latency. The aim is achieved with local optimization of latency at each
hop. As a result, the property τ(wi,wi+1)� Δ happens frequently in paths (3.1).

We treat PNS and PRS the concrete instances of the next design principle. It
applies the ranking model where τ characterizes “node ranks” based on the global
hierarchy.

Principle 3 (Locally adaptive selection). Each node u locally arranges other
nodes according to τ . In neighbor selection, u finds v that minimizes τ(u,v) at
a given distance scale (defined by ρ). In routing, the selection of next hops uses
composite criteria with τ(u,v) and ρ(u,v).

DHTs with geometrically progressive routing can be modified to follow
Principle 3. In geometrically progressive routing, a node u keeps a neighbor for
each distance-scale zone (3.10). Randomized strategies allows selection among
several candidates in Si(u), giving the flexibility that PNS requires. Let u probe
mi > 1 nodes {v j}mi

j=1 from each distance-scale zone Si(u) and select the long-range
neighbor with lowest τ(u,v j). Probing all nodes in Si(u) is enormously expensive,
and mi is a tradeoff parameter.

The PNS scheme introduces a new hierarchy level when u additionally arranges
nodes in Si(u) according to the proximity. In routing a lookup for k, the next-hop
node v is proximity closest to u among all geometrically progressive neighbors.

There are networks where the worst case in (3.11) can be approached closely
despite the use of PNS. We say that the network has exponential latency expansion
if for any u ∈ N

Nt(u) = |{v ∈ N | τ(u,v)≤ t}|=Θ(αt) for a constant α > 1.

In other words, the number of nodes that are within latency t of u grows
exponentially.

Theorem 3.4. If a network has exponential latency expansion, then the expected
latency E[|u→+ d|τ ] = Ω(Δ logN) for b-progressive paths u →+ d with nodes
u,d ∈ N chosen at random.

Proof (Sketch, other details can be found in [52]). Take a random node w∈N. With
the assumption on uniform node ID distribution in S, the set Si(w) itself is chosen
uniformly at random from all subsets of N of size bi+1 − bi = (b− 1)bi, where
i = 0,1, . . . ,n− 1. Recall that N ≤ bn and for large N we assume n =Θ(logb N).

From the property of exponential latency expansion one can derive that

τi(w) = E [τ(w,v) | v ∈ Si(w)] ≥CiΔ (1− i/n) for a constant Ci > 0,

where τi(w) is the expected latency between w and Si(w).
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Given path (3.1) with random u,d ∈ N. Without loss of generality, if the path is
b-progressive then assume l = n and wi+1 ∈ Sn−i−1(wi). Consequently,

E
[|u→+ d|τ

]
=

n−1

∑
i=0

τi(wn−1−i)≥C′nΔ −C′′

n

n−1

∑
i=0

i = Ω(Δ logb N). ��

Theorem 3.4 means that no significant latency improvement is possible due
to PNS with probing mi nodes from each zone Si(u), especially when mi or
Si(u) are small. Intuitively, in a network with exponential latency expansion, an
overwhelming majority of the nodes will be very far from u, and finding the closest
node from a small sample is unlikely to significantly improve the latency.

Now, let a network have power-law latency expansion:

Nt(u) = |{v ∈ N | τ(u,v)≤ t}|=Θ(tα) for a constant α ≥ 1.

In contrast to networks of exponential latency expansion, a network of power-
law latency expansion ensures that a node u only needs to sample a small number
of nodes from each Si(u) in order to find a latency-nearby node.

Theorem 3.5. If a network has α-power-law latency expansion, then applying PNS
with m probes per zone Si leads to

E[|u→+ d|τ ] = O

(
Δ

m1/α logN

)

for b-progressive paths u→+ d with nodes u,d ∈ N chosen at random.

Proof (Sketch, other details can be found in [52]). Let us define the minimal latency
from a node w ∈ N to a set of nodes V ⊂ N:

τ(w,V ) = min
v∈V

τ(w,v).

Then one can prove that considering all random V of fixed size p ≥ 1, the expected
latency is E[τ(w,V )] = O(Δ p−1/α). It asserts that the distance to the “closest” node
in V varies as p−1/α , a crucial consequence of α-power-law latency expansion.

Any w sampled a set S′i(w) ⊂ Si(w). For simplicity and ease of exposition, we
assume8 that mi(w) = |S′i(w)| = m for all w and i. Given path (3.1) with random
u,d ∈ N. Without loss of generality, if the path is b-progressive then assume l = n
and wi+1 ∈ S′n−i−1(wi). Consequently,

E
[|u→+ d|τ

]
=

n−1

∑
i=0

τ(wn−1−i,S
′
i(wn−1−i))≤ Δ

n−1

∑
i=0

Cim
−1/α
i = O

(
Δ

m1/α logb N

)

.

��

8Without this assumption the proof becomes technically more complicated and an insignificantly
more precise upper bound E[|u→+ d|τ ] = O(Δ)+O

(
Δm−1/α logN

)
is derived, see [52].
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Compared with (3.11) Theorem 3.5 provides the reduction by m1/α . Numerous
experimental studies confirmed the improvement significance in practical settings
[3, 9, 17, 29, 52, 54]. Note that since

1

(m− 1)1/α −
1

m1/α ≥
1

αm1+1/α ,

the improvement is most significant for the first few samples.
Now consider the PRS scheme. It performs better if u knows many neighbors.

DHTs with geometrically progressive routing can support it by allowing u to
keep several nodes from each zone Si(u) if the node capacity is enough. (Note
that in Kademlia and Broose it is a principal design rule.) Then u arranges its
i-zone neighbors (already in Tu) according to the proximity. In routing a lookup
for k, composite criteria for selecting the next hop are applicable, e.g., the additive
criterion

cρ ρ(v,k)+ cττ(u,v)→min (3.12)

for some tradeoff constants cρ ,cτ > 0. Minimizing ρ(v,k) preserves geometrically
progressive routing within few overlay hops. Minimizing τ(u,v) makes each hop to
be of low latency.

For practical implementations the following simple algorithm can be suggested.
It is approximate and separates the minimization on ρ and τ .

1. Given k, u finds m closest neighbors based on ρ ; denote the set Tu(k).
2. The next hop is v = arg min

w∈Tu(k)
τ(u,w).

On one hand, Tu(k) likely provides the best b-progress hops for k, preserving routing
efficiency in hops. On the other hand, the proximity is taken into account, reducing
the latency. Note that in a network of α-power-low latency expansion, the expected
improvement is latency reduction by m1/α , similarly to Theorem 3.5.

The hierarchical routing scheme with several neighbors from Si(u) also supports
multi-path routing. A lookup is forwarded in parallel to several next hops. Signif-
icantly better routing performance and resilience are possible, see comprehensive
experiments in [15, 18, 25, 27, 29, 33, 51, 54]. For example, Kademlia exploits this
scheme to tolerate node failures. Every ith set of neighbors is kept sorted by time
last seen. In this case, τ(u,v) is the time elapsed from the last successful contact
with v.

3.4.3 Other Criteria for Local Adaptation

In general, Principle 3 supports arbitrary hierarchy-based metrics τ , not only
latency-oriented. For instance, [10] adapts in the topology another practical
global hierarchy—the bootstrap tree B from social networking, used for a trust
metric. When joining to the network, a node u has to contact an existing node v
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(the first contact). The knowledge of v is previous off-line relationship between u
and v. The set of all relationships defines B. Each node u for each neighbor v stores
additionally (in Tu) the path from u to v in B.

The approach aims at secure routing (sybil-resistance) when an adversary
convinces good nodes to allow it to join the network. Then the adversary introduces
a large number of sybils via this attachment point. Assuming the complexity of
obtaining an attachment point is much higher than introducing sybils, B includes
only a small number of large subtrees of sybils. Consequently, there is a high
probability that a path of good nodes exists in B between any two good nodes.

Routing is iterative. A node u at each hop u→ v receives from v the whole Tv,
thus u can construct the path to any w ∈ Tv in B. Then u selects the appropriate
next hop. Similar to the case of proximity, the selection uses a trust metric τ(u,v)
of the path from u to w in B (diversity routing). The various composite criteria are
applicable, convex

cρ(v,k)+ (1− c)τ(u,v)→min for 0≤ c≤ 1 (3.13)

or zig–zag (alternation of progressive and diversity routing)

cρ(v,k)+ (1− c)τ(u,v)→min (3.14)

when each step alternates c = 0,1,0,1, . . .. Note that (3.13) is a particular case of
(3.12); it needs to measure the distance ρ and trust τ in comparable units.

A global hierarchy can be related to the system load balance. For instance in [47],
each node estimates the load of its neighbors and replaces the most loaded neighbors
with other nodes. In this scheme, τ is proportional to the load inversion. The goal
is minimizing the number of lookups forwarded to the nodes that owns popular
resources (hot spots). The idea is evolved further to algorithms that group nodes for
efficient load-balancing (see Chap. 4). Neighbor and route selection with τ reflecting
node reliability and capacity was introduced in [26].

3.5 Global Routing and Lookup Structure

Principle 3 allows each node to locally adapt to certain characteristics of a global
hierarchy defined by a metric τ . The latter is used for extrapolation of the local
knowledge. Nevertheless, a node u would prefer additional more precise knowledge
about the rest of path u→ v→+ d beyond the hop u→ v.

In progressive routing, the first hops in u→+ d are likely large in distance ρ .
For instance, greedy routing tries at each hop to cross as large part of the overlay as
possible. Let us consider routing divided logically into global and local parts. Global
routing delivers a lookup to destination vicinity. In local routing, the destination is
at a nearby node.
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According to Principle 1, a node knows its neighborhood rather well. First,
many nearby nodes are local neighbors. Second, the lower distance scale the more
neighbors in a routing table. In this sense, local routing has more information
than global routing. Therefore, global routing is an important subject for further
optimization based on additional knowledge. Principle 2 is mostly for global routing
since the geometrical reduction aims at large hops.

Principle 4 (Look ahead). A node utilizes additional knowledge about paths
beyond its neighbors to optimize global routing.

Various hierarchical schemes can be defined on top of the path construction
hierarchies H[u →+] to keep (partially) the current lookup state. The examples
include neighbor-of-neighbor (NoN) routing [32, 37], distributed trie of popular
lookups [14], and cyclic routing [25].

3.5.1 NoN-routing

Progressive routing is augmented with a lookahead mechanism. For routing deci-
sions, u (in addition to its neighbor v) analyzes l subsequent nodes on paths

u→ v∗ → w1→ ··· → wl →+ d. (3.15)

NoN-routing is greedy routing with lookahead for l = 1 [32, 37]. In a lookup for k,
a node u knows nodes w∈ Tv for any v∈ Tu. Note that IP addresses IPw are unknown
to u, thus the maintenance overhead is low (no pinging). Among these w, the node
u finds w1 ∈ Tv∗ closest to k and forwards the lookup to the corresponding v∗.

Likely, the lookup then goes to w1, reducing the distance more effectively than
greedy routing without lookahead. Note, however, that it is not guaranteed that v∗
forwards the lookup exactly to w1 since v∗ makes own decision on the next hop.

NoN-routing exploits two levels in H[u→+]: neighbors v ∈ Tu (level i = 1) →
neighbors-of-neighbors w ∈ Tv (level i = 2). It improves the routing performance in
randomized P2P networks [1, 32]. Symphony with NoN-routing achieves expected
path length bound O(log2 N/(m logm)) with m long-range neighbors per node [32],
i.e., the reduction factor is logm, see (3.9). Pappilon provides Θ(logN/ logm)
routing in the worst case [1]. For many DHTs, Θ(logN/ log logN) routing is
expected [4, 32]. A NoN-routing scheme without additional overhead is introduced
in [4]; it “limits” the randomization of the original scheme such that neighborhood
information is encoded within the hash-value of the node ID.

3.5.2 Distributed Trie

The lookup structure can be organized locally as a tree-like hierarchy that reflects
most popular lookups [14]. Recall from Chap. 2 that a distributed trie utilizes the
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same idea of prefix-matching routing [40] as in Pastry and Tapestry. In fact, Tu is a
tree of tables representing H[u→+]. A table consists of 2m entries, each contains
several nodes as triples (v, IPv, t), arranging nodes by timestamps t (last recent seen).

Each level in Tu sequentially resolves m bits in the prefix of the n-bit key, leading
to paths in the tree as the following (n = 6, m = 2, k = 010010):

******→ 01****→ 0100**→ 010010

A non-leaf routing table contains nodes v known to resolve the next m bits at time
t; the child routing tables contains the corresponding neighbors of v. An entry of a
leaf routing table contains a node known at time t to be responsible for a key with
the sum prefix (constructed top-down from the root). Note that if a node v appears
in some routing table of Tu, then u keeps an entire path down to v.

In a lookup for k, u searches the tree Tu moving down to the leaf routing tables
that keeps an entry for the longest prefix p of k. The entry contains a node v with
the latest timestamp, i.e., v is most recently known to u to hold the child routing
table, not currently available at u. Then, u requests v for either this table or, if v is
responsible for k, the resource.

Each node u exploits of the current lookup structure up to any level based
on lookups in which u has participated. Local representation Tu evolves in time.
Frequent overlay paths are cached at u; the more popular and stable the resource
or node, the more efficient routing. It is expensive when churn is high or there are
many nodes with popular resources.

3.5.3 Cyclic Routing

Similarly to the distributed trie approach, Cyclic Routing (CR) provides a systematic
way for collecting efficient paths up to any level of the lookup structure [24, 25].
A cycle is a path that starts from the source node to its neighbor, then runs through
the overlay and returns to the source:

u→ v→+ w1→+ · · · →+ wl →+ u.

Compared with l-lookahead (3.15), there can be intermediate nodes in wi→+ wi+1

that are not fixed explicitly. Hence, the CR selection of nodes to represent a given
cycle is flexible and can be adapted to various routing requirements.

Each node u maintains a collection of cycles additionally to its primary routing
table Tu. As in NoN-routing, only node IDs are stored to identify a cycle. In
progressive routing, u uses either cycles or the underlying DHT. If there is a cycle
with a node close to the key, the lookup is sent along the cycle. Otherwise, the
underlying DHT selects the next hop.

This strategy supports l-lookahead for any l ≥ 1 as well as takes the bidirectional
nature of P2P communications into account. The CR focus on global routing is
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along the cycle

Local routing to
the destination
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Global routing
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Fig. 3.7 A node u utilizes
CR for better global routing.
When a lookup appears in d’s
neighborhood (a node wi),
local routing is performed

emphasized in Fig. 3.7. Compared with the distributed trie, where all destinations
are strictly partitioned among paths in Tu, the same cycle can be used for many
destinations and different cycles can be used for the same destination. As a result,
CR provides a rather compact data structure for the information about available
paths. It can be used in any DHT with progressive routing. When the size of
local collection of cycles grows then this local knowledge becomes an interpolation
rather than extrapolation for the global network topology, and we defer the detailed
analysis of the CR method until Part III.

3.6 Routing with Large Routing Tables

Principle 4 states that u’s primary routing table can be augmented with additional
information from H[u→+] for better global routing. In the extreme case, this idea
leads to O(1) routing with large routing tables. The difference between global
and local routing disappears, since the majority of nodes becomes in every node’s
neighborhood. On the other hand, the maintenance cost can become high, as
experimental study [28] confirmed.

3.6.1 Designs with Large Routing Tables

For achieving O(1) routing (up to one-hop routing), upper limits for the routing
table size are removed, as appeared in EpiChord [27] and Accordion [29]. It leads
to systems with large routing tables, up to complete membership information.
Extreme examples are OneHop [12], 1h-Calot [49], and D1HT [34] where every
node must keep a complete routing table; work [35] makes their comparison. Note
that SmartBoa [20] also utilizes large sizes for high-bandwidth nodes (see Sect. 4.4).

EpiChord [27] removes the O(logN) state upper bound of Chord using a reactive
routing state maintenance strategy that amortizes network maintenance costs into
existing lookups and uses parallel lookups (multipath routing). The routing table
size has no upper limit, and nodes adapt to a wide range of lookup workloads.
EpiChord is able to achieve O(1)-hop routing under lookup-intensive workloads
and at least O(logN) routing under churn-intensive workloads.
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Accordion [29] adapts to current operating environments and node bandwidth
budgets. Nodes proactively search new neighbors. As in Symphony, the density of
its long-range neighbors is inversely proportional to the distance. Accordion is not
based on a particular data structure, and it has freedom in choosing the size and
content of its routing table. The number neighbors m varies from O(logN) to O(N)
states. The bandwidth budget controls the rate of learning about new neighbors.
Each node limits its routing table size by evicting failed neighbors. The equilibrium
between the learning and eviction processes determines the table size.

3.6.2 Maintenance Traffic Overhead

A comparison of DHTs with variable routing table sizes from O(1) to O(logN) is
given in [49]. In particular, it introduced a model for the tradeoff between the routing
table size m = |Tu| and the total traffic generated in a network with logarithmic
routing complexity. In addition to N and m, the model parameters are lookup rate
λ (workload) and node lifetime μ (churn). Note that r = 1/μ is the churn rate; in
other words, r is the node turnover rate—a fraction of nodes that the churn replaces
in the system per time unit.

Theorem 3.6. Given a P2P network with N nodes, equally fixed routing table size
m = |Tu| ∀u ∈ N, and the routing complexity of Θ(logm N) hops. Let λ and μ be
node lookup rate and expected node lifetime, respectively. Then the minimum of
total traffic is attained for m that is a solution to

m ln2 m =Cλ μ lnN, (3.16)

where C is a constant determined by the P2P protocol.

Proof. Since λ and μ are characteristics of the expectations, the subsequent results
are also for an expected case. At any time instance, the network is preserved to be N
nodes in total, i.e., N/μ nodes leave and correspondingly N/μ nodes join per time
unit.

When a node joins or leaves, each of its m neighbors should be notified. It
requires exchanging a constant portion of traffic per neighbor. Thus, the churn-
related maintenance traffic is Bchurn = C1mrN. The constant C1 characterizes the
P2P maintenance protocol.

Each alive node initiates λ lookups per time unit, resulting in λ N lookups in
total. The traffic for lookups is therefore Blookup = C2λ N logm N. The constant C2

characterizes the P2P routing protocol.
The total traffic is the following function of m:

B(m) = Bchurn +Blookup = N(C1mr+C2λ logm N).
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Taking the derivative of B(m) and equating it with zero

B′(m) = N

(
C1

μ
−C2

λ lnN

m ln2 m

)

= 0,

we find that the only minimum is when m satisfies (3.16) for C =C2/C1. ��
Note that λ μ is the expected number of lookups a node processes during its

lifetime. If there are many stable nodes (μ is large) and actively participating nodes
(λ is large) then large routing tables are preferable.

Let the network need logarithmic node state, i.e., m = m(p) = p logN for a
parameter p > 0, as it happens in many DHT designs. From (3.16) we have

p logN ln2(p logN) =Cλ μ
logN
loge

.

Let C′ =
√

C/ loge. Then

m = p logN = exp
(

C′
√

λ μ/p
)
. (3.17)

The functions m(p) = p logN and f (p) = exp
(

C′
√

λ μ/p
)

are contiguous on

(0,∞). Equation (3.17) has the only solution p∗ ∈ (0,∞) since m(p) strictly
monotonically grows to +∞, f (p) monotonically decays to 1, and there exists a
small enough ε > 0 such that m(ε) < f (ε). This p∗ provides the optimal table size
m∗ = p∗ logN, where p∗ = p∗(N), a function of N. The asymptotic m =Θ(logN) is
not guaranteed since so large routing tables can be non-optimal in terms of the total
traffic.

3.6.3 Routing Table Consistency

Large routing tables typically means that the routing state is m = |Tu| = Ω(logN),
aiming in the high lookup efficiency. Although it supports O(1) routing performance
the node join/leave information dissemination becomes an issue for high churn rates.
Experimental evaluation [28] showed that the per-node bandwidth consumption in
OneHop [12] is proportional rN, where r is the churn rate. Clearly, it supports the
intuition that a node routing state of Θ(N) requires maintenance traffic of Θ(N).

Consider an analytic model of neighbor turnover in a routing table of a node u.
A close variant can be found in EpiChord [27]. Let x(t) and y(t) be the number of
alive and stale neighbors in Tu at time t, respectively. For simpler exposition, let
us assume that the network consists of u and N other nodes, N + 1 nodes in total.
Consider the proportion of stale neighbors in the steady state,
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γ = lim
t→∞

y(t)
x(t)+ y(t)

,

where |Tu|= x(t)+ y(t)≤ N.
Form u’s point of view the rest network permanently consists of N nodes such

that Nrdt of the nodes are renewed uniformly at random due to churn in a time
interval dt. At the same time interval, u detects a fraction νdt of stale nodes among
its neighbors and u removes them from Tu. Also, u makes λ dt lookups uniformly
over the ID space, as well as the other N nodes make their own lookups uniformly
with the same rate λ . Then we obtain the following differential equation for x(t):

dx
dt

= λ (1− x
N
)− rx, (3.18)

where λ (1− x/N) is the number of incoming lookups to u from newly appeared
nodes (u makes them neighbors), rx is the number of the neighbors having become
stale in Tu (u still thinks that they are alive). Similarly,

dy
dt

= rx−νy, (3.19)

where νy is the number of stale neighbors that u removes from Tu.
Equations (3.18) and (3.19) forms a system of first-order linear ordinary

differential equations. It similar in essence to continuous-time birth-death processes.
The solution can be obtained analytically as a steady state and a time-dependent
sum of terms with exponents exp(−αt) for α > 0. Hence the solution converges
quickly to the steady state solution, for which dx/dt = dy/dt = 0. It is a solution to
the following linear system:

λ − (r+λ/N)x = 0, rx−νy = 0, x+ y≤ N.

It leads to

x =
λ

r+λ/N
, y =

λ r
ν(r+λ/N)

, γ =
r

r+ν
, where λ ≤ νN. (3.20)

Clearly, γ → 0 when the churn is reduced (r→ 0) and γ → 1 when the churn grows
(r→ ∞ and ν = o(r)).

Outgoing lookups provides a way for u to detect stale neighbors in Tu. For
instance, a neighbor is treated failed if there is no acknowledgment (in EpiChord).
Another way is proactive pinging in background, when periodicity is proportional
to the lookup rate (in Accordion). In both cases, the detection rate is ν = cλ for
a constant c > 0, leading to γ = r/(r + cλ ). The constant c can be increased with
parallel lookups. The condition λ ≤ νN is satisfied for all N large enough.
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Fig. 3.8 Nodes propagate an event using geometrically progressive hops with corresponding
TTLs. If u detects that w is failed then u reports the event to its neighbors vi setting the event
message TTL proportionally to the distance. In turn, each vi decrements TTL and forwards the
message further. The event disseminated over all nodes in the logarithmic time and without
duplicates

Theorem 3.7. Given an N-node network with churn rate r ≥ 0, lookup rate λ ≥ 0
and stale node detection rate ν ≥ 0 such that λ ≤ νN. Then in the steady state:

1. The proportion γ of stale neighbors is independent on the network size N.
2. The asymptotic for N→ ∞ is x→ λ/r and y→ λ/ν .
3. If ν ≥ r then γ ≤ 1/2 (at most half of the neighbors are stale if the stale node

detection is at least as fast as the node failure rate).
4. If ν = cλ then y→ 1/c for N→ ∞ (the stale node detection that is proportional

to the lookup rate leads to the small number of stale neighbors).
5. x= λ μ for N→∞ (the number of alive neighbors is equal to the expected number

of lookups that a node processes during its lifetime).

Proof. All the assertions are obvious consequences of (3.20). Assertion 5 uses the
fact that the expected node lifetime is μ = 1/r. ��

Assertions 2 and 5 show that large routing tables appear when λ , μ , or ν are high
(cf. the similar conclusion after Theorem 3.6).

A design can directly apply Principle 2 for efficient (logarithmic) dissemination
when each node has a large or even full routing table. For instance in the D1HT
design, a node u disseminates an observable failure of a node w to all other nodes
in the system such that the number of messages any node processes is O(logN),
see Fig. 3.8 for intuitive explanation. In this case, u assigns Θ(logN) long-range
neighbors from Tu to be “dissemination gateways”. Discussion on other inexpensive
dissemination algorithms can be found in [43].

3.7 Local Routing and Replication

Large routing tables reduce the number of levels in path construction hierarchy
H[u →+] up to one hop u→ d in the extreme case. An opposite approach for
achieving O(1) routing exploits replication along lookup paths. Replication is a
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technique in which data are stored at multiple nodes of the network. For the basic
questions we address, it does not matter if the actual data is replicated or if only
pointers to the data are replicated.

Replication improves lookup performance and alleviates hot spots since a replica
may be found at a nearer node than the primary responsible node. The improvement
depends on the number of replicas and the placement strategy. The latter essentially
exploits the network structure.

3.7.1 Source-Aware Replication

The extreme case is caching when after a successful lookup the query node stores
a replica. For example, such a variant was suggested in CAN [42] where each node
can maintain a cache of the resource keys it recently accessed (in addition to its
primary store).

The next possible step is replication at neighbors. The generalization follows
Principle 4: each node can look ahead in selecting appropriate nodes for replication.
Plaxton et al. [40] apply the source-aware replication. Let u and k be a random node
and key, respectively. One of the basic consequences of Plaxton’s model is that if
v is the nearest node to u that holds a replica (or original) resource for k then the
lookup cost is proportional to l = |u→+ v|. Consequently, if interesting resources
are replicated in u’s vicinity then the lookup performance of u is determined mostly
by local routing.

This idea can be implemented based on H[u→+]. If u made a lookup for k with
path (3.1) to d, then the resource with this key are replicated near u at r + 1 first
nodes w0, w1, . . . , wr. Then subsequent lookups for k are resolved more efficiently.
Popular resources are targets of many users, spread over the overlay.

Consider an analytic model, assuming that all resources have the same popularity.
Let u make a lookup for k, where u and k are taken at random. Let d be the primary
responsible node for k and |u→+ d| = l. Assume that each node w0 = u, w1, . . . ,
wr on the path u→+ d keeps a replica for k with probability pk. It characterizes the
popularity-based replication fraction of k relatively to u since u has already served
lookups for k and some nodes can still keep the replicas.

The probability that there is no node on u→+ d to resolve the lookup earlier than
reaching d is (1− pk)

r+1. In this case, the replication mechanism is not involved and
the lookup path length is l, e.g., l =Θ(logN). It decreases rapidly, especially when
pk is close to 1 (high popularity of k) or r is close to l− 1 (high replication factor).

With probability 1− (1− pk)
r+1 the lookup path becomes of r hops or shorter.

The expectation is

E[Lk] =
r

∑
i=0

i(1− pk)
i pk = pk

r

∑
i=1

i(1− pk)
i,



74 3 Hierarchical Neighbor Maintenance

where (1− pk)
i pk is the probability that u = w0, w1, . . . , wi−1 have no replica

of k and wi keeps the replica. The sum can be reduced,9 yielding the following
improvement to the expected lookup performance:

E[Lk] =
1− pk

pk

(
r(1− pk)

r+1− (r+ 1)(1− pk)
r + 1

)
. (3.21)

Theorem 3.8. Given an N-node network with source-aware replication factor r ∈
Z+ and replication fraction pk ∈ [0,1] for some k ∈ R. Then the replication provides
the following improvement to the expected lookup performance for k

1. E[Lk]≤ (1− pk)/pk.
2. E[Lk]→ 0 for pk→ 1.
3. E[Lk]→ (1− pk)/pk for large r.

Proof. Consider the function f (q,r) = rqr+1− (r+ 1)qr for q = 1− p ∈ (0,1] and
r ∈ [0,∞). The derivative is ∂ f/∂q = r(r + 1)qr−1(q− 1) < 0, thus f decreases
monotonically for q and takes values in [−1,0). Applying (3.21) proves the first
assertion of the theorem.

The second assertion follows from the first one. Note also that the function y(x) =
(1− x)/x is strictly decreasing on (0,1).

To prove the last assertion consider the derivative

∂ f
∂ r

= qr ((rq− (r+ 1)) lnq− (1− q)).

It is positive for r large enough since the inequation (rq− (r+1)) lnq− (1−q)> 0
has solutions r >−1/ lnq−1/(1−q). Let r0 = max{−1/ lnq−1/(1−q),0}. Then
f (q,r) increases monotonically for r ∈ (r0,∞) and f (q,r) ≈ 0 for large r. ��

Note that the case with non-zero probability for the nodes wr+1, . . . , wl−1 also
to replicate k allows further reduction of the lookup path length. Consequently, the
above model provides the upper bound. For instance, if k is popular, e.g., p > 1/2
then with probability 1−1/2r+1 the resolution of a lookup for k takes 2 or less hops.

As a result of the source-aware replication, popular resources are replicated at
many nodes on all layers of H[→+ d] (see Fig. 3.5 in Sect. 3.2). If u’s neighbors,
neighbor of neighbors, and so on are active in some resources then the search of
these resources becomes more efficient for u. This replication strategy reduces the
need in global routing since the resource can be found by means of local routing
with O(1) lookup performance.

9Denote f (x) = ∑r
i=1 ixi and g(x) = ∑r

i=1 xi+1. Then g′(x) = ∑r
i=1(i + 1)xi = f (x) + 1−xr

1−x x. On

the other hand, g′(x) = x
(1−x)2

(
(r+1)xr+1− (r+2)xr − x+2

)
since g(x) = 1−xr

1−x x2. We obtain

f (x) = g′(x)− 1−xr

1−x x = x
(1−x)2

(
rxr+1− (r+1)xr +1

)
.
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3.7.2 Even Replication

Resource can be replicated along all nodes on the lookup path, similar to the scheme
proposed in PAST [46]. Let pk > 0 be the probability that a node w ∈ N keeps a
replica of k ∈ R. Applying r = l− 1 in (3.21), we obtain that the expected lookup
path length for k is

E[|u k−→ +d|] = (1− (1− pk)
l)pk

l−1

∑
i=1

i(1− pk)
i + l(1− pk)

l =
1− pk

pk
+ o

(
1
N

)

if q(N) = (1− pk)
l = o(1/N) for large N. For instance, the latter happens if

l =Θ(logN). When u does not keep k (the probability is 1− pk), the expected

lookup path length is E[|u k−→ +d|]≈ 1/pk for large l and pk > 0.
Let k have the same popularity at all nodes in the system, i.e., any u ∈ N, u �= d

initiates lookups for k at equal rate λk. This is the case for even replication when the
strategy tries to distribute k uniformly among all the nodes.

The resource popularity pk is the fraction of the nodes that keep a replica of k.
If resource popularity is uniform (pk = p for all k ∈ R) then each resource has the
same average number of replicas in the system.

The uniform replication is ineffective when resource popularity is different.
It can lead to the bottleneck problem caused by popular resources. If the storage
capacity of nodes is limited, there may be a case where popular resources are lack
of replicas while there are redundant replicas of unpopular resources. Nevertheless,
the path-aware replication in structured DHTs outperforms the uniform replication
strategy in unstructured P2P networks. Intuitively, a DHT topology provides more
chances for a lookup to reuse a successful lookup path where the resource has been
earlier replicated. It is an implicit reflection of the non-uniform resource popularity
distribution.

Following [5] consider a model for the optimal number of replicas when resource
popularity is uniform. Let qk denote the probability of a lookup for k in the system,
i.e., the popularity of k. We assume the arrangement 1≥ q1 ≥ q2≥ ·· · ≥ qR ≥ 0. Let
u be taken at random among nodes that have no replica of k. Assuming the expected
lookup path length for k is 1/pk the replication strategy applies for replica allocation
such pk that minimize of the total expectation:

R

∑
k=1

qk

pk
→min

R

∑
k=1

pk = 1, pk ≥ 0. (3.22)

Note that this model assumes limited capacity of the system; more replicas for one
resource leads to less replicas for another resource.



76 3 Hierarchical Neighbor Maintenance

Obviously, the optimal solution reflects the popularity arrangement as 1 ≥ p1 ≥
p2 ≥ ·· · ≥ pR ≥ 0. Uniform replication provides a feasible solution with pk = 1/R
and cost R, making search time equal for any resource k. Interestingly that the
same cost has proportional replication with pk = qk, making search time shorter
for popular resources and longer for unpopular ones.

Theorem 3.9. Given an N-node network where each resource k has popularity
qk > 0 and is replicated uniformly at pkCN random nodes for a capacity parameter
C ≥ 1. Let a lookup for any k find a replica on the lookup path in the 1/pk expected
number of hops. Then the replication provides the optimal improvement if

pk =
1

∑i∈R
√

qi

√
qk.

Proof. Let us apply the Lagrange multipliers method for (3.22). Then

L (p1, . . . , pR,x) = ∑
k∈R

qk

pk
+ x

(

∑
k∈R

pk− 1

)

→min,

where x is a Lagrange multiplier. From ∂L
∂ pk

= x− qk/p2
k = 0 it follows that

pk =
√

qk/
√

x. Since ∂L
∂x = ∑

k∈R
pk− 1 = 0, we obtain

x =

(

∑
k∈R

√
qk

)2

and pk =
1

∑
i∈R

√
qi

√
qk

The expected number of hops before a replica is found is

∑
k∈R

qk

pk
=

(

∑
k∈R

√
qk

)2

. ��

The model assumes random placement strategy for replicas, thus providing the
worst case bound. In structured P2P systems, the number of replicas can be reduced
further by proper selection of replica placement, e.g., using path-aware replication.

Yarqs [53] is an example of a DHT design with even replication. Nodes on a
lookup path are equal in the replication. As in any DHT, resources are located at
primary responsible nodes according to their keys via a standard DHT mechanism.
Yarqs constructs a cache network on the top of the overlay network. In addition
to keys, resources and nodes have attribute values. The cache network supports
range queries for semantic attributes. A node analyzes the data that pass through
and caches new attribute/key pairs into two buckets. The first bucket stores pairs
with attribute values close to the node semantic value. This bucket helps to find the
first result for a lookup, a DHT key of semantically close resource. Then DHT can
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locate a responsible node. In fact, the bucket implements clustering of semantically
close resources at nodes (see also Chap. 5). The second bucket collects semantically
distant key/attribute pairs. This bucket is used after receiving the first result to find
resources in the same range.

3.7.3 Destination-Aware Replication

PAST [46], DHash [8], Beehive [41], and FuzzyNet [16] apply the destination-
aware replication based on path destination hierarchy H[→+ d]. The strategy is
an inversion of look ahead, i.e., a lookup path is considered from the destination.

Let d be responsible for resource with a key k. Assume that global routing
efficiently resolves lookups from a random node u to a vicinity of the responsible
node d. The performance of local routing in u→+ d can be improved by one hop if k
is replicated at nodes close to d (a replica is occasionally found at wl−1). This simple
variant was suggested in CAN [42] and Chord [48], where each node replicates its
resource at several closest neighbors. Iteratively, given lookup path (3.1), each of
the last r nodes wl−1, wl−2, . . . , wl−r also replicates k at nearby nodes.

In this case, each wi characterizes a replication level indicating the distance scale
at which k is replicated. That is, i corresponds to a layer in the hierarchy H[→+ d].
Consequently, r is the replication level, which is a parameter in the tradeoff between
lookup performance load overhead.

Note that replication only at wi is passive (caching). In the above scheme, nodes
wi additionally propagate replicas among other (nearby) nodes in the system, the
case is called proactive replication. Simulation study in [41] indicated that proactive
replication provides better lookup performance than the passive strategy when
resource is merely replicated along all nodes on the lookup path.

Considering all nodes as lookup originators, k is proactively replicated at nodes
logically preceding d on all lookup paths. Then a node wi can switch on more
efficient local routing to a replica node instead of continuation of global routing
along the path u→+ d. In contrast to the source-aware replication, popular resources
of d are replicated at a few nodes on the topmost layers of H[→+ d] for small
r. When r is large then replicas are disseminated widely throughout the system,
similarly to the source-aware replication.

If k is popular then many nodes make lookups for k. As a result, d’s vicinity
becomes full of replicas. In the case of non-uniform resource popularity, resources in
replication can be arranged accordingly. Intuitively, more popular resources should
be distributed wider in the system. Thus, better lookup performance is achieved if
there are more replicas for more popular resources.

As an illustrative case study, consider an analytical model for replication applied
in Beehive protocol [41]. The input parameter is a resource popularity metric—the
number of lookup queries received for resources. The problem is to minimize the
total number of replicas subject to O(1) average lookup performance.
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The first basic model assumption is that the lookup rate is a truncated Zipf-like10

distribution for a finite set of original resources R sorted by decreasing their
popularity as k = 1,2, . . . ,R. The lookup rate for the kth most popular resource is
proportional to k−α , where 0 ≤ α ≤ 1 is a system-level parameter—the popularity
index. It can be estimated for using as input to the model. The distribution has
a heavier tail for smaller values of α . The case α = 0 corresponds to a uniform
distribution.

In terms of Theorem 3.9, qk = ck−α for c = 1/∑i∈R i−α . The number of lookups
on time interval dt is qkdt. We can assume that the lookup rate for k is equal to k−α

by taking appropriate time unit. The total number of lookups to the most popular i
resources k = 1,2, . . . , i for i≤ R is

λi =
i

∑
k=1

k−α ≈
∫ i

1
x−α dx =

⎧
⎪⎨

⎪⎩

i1−α − 1
1−α

if α �= 1,

ln i if α = 1.

Then the probability of a lookup for the most popular i resources is

Q(i) =
λi

λR
≈

⎧
⎪⎪⎨

⎪⎪⎩

i1−α − 1
R1−α − 1

if α �= 1,

ln i
lnR

if α = 1.

Consider a P2P network with b-progressive routing. Denote l = logb N the
longest lookup path length. The replication levels are i = 0,1, . . . , l. Let xi be the
fraction of resources replicated at level i or lower. Then

0≤ x0 ≤ x1 ≤ ·· · ≤ xl−1 ≤ xl = 1,

where xl = 1 since all resources are replicated at level l (there is a primary
responsible node for each resource). There are x0R topmost popular resources,
which are replicated at all levels in the system.

The second basic model assumption captures the structure of network of topology
with b-progressive routing. If d is primary responsible for k then k is replicated at
all nodes of level i in H[→+ d], i.e., at N/bi nodes or less. To reach an i-level node
for k from an arbitrary node u, routing needs i hops in the worst case.

On average, each node replicates (xi− xi−1)R/bi resources at level i = 1,2, . . . , l
and x0R at level i = 0. In sum, a node is required to keep the following average
number of replicas:

10Sometimes Zipf distribution is referred to as the zeta distribution in the discrete case and the
power-law distribution in the continuous case. Originally, Zipf’s law appear in linguistics. In the
English language, the probability of encountering the kth most common word is given roughly by
pk = 0.1/k for k up to 1,000.
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x0R+
l

∑
i=1

xi− xi−1

bi R =

[(

1− 1
b

) l−1

∑
i=0

xi

bi +
1
bl

]

R. (3.23)

For simplicity, we limit ourselves with the case α �= 1. The number of lookups
that travel i > 0 hops is

Q(xiR)−Q(xi−1R)≈
(

x1−α
i − x1−α

i−1

) R1−α

R1−α − 1

The expected lookup performance of the entire system can be given by

l

∑
i=1

i(Q(Rxi)−Q(Rxi−1))≈ R1−α

R1−α −1

l

∑
i=1

i
(

x1−α
i − x1−α

i−1

)
=

R1−α

R1−α −1

(

l−
l−1

∑
i=0

x1−α
i

)

The lookup performance is constant if the expected number of hops is not exceed
a required constant L. Consequently,

l−1

∑
i=0

x1−α
i ≥ l−

(

1− 1
R1−α

)

L = h(N,R) (3.24)

Based on (3.23) and (3.24) the following optimization problem can be con-
structed to minimize the expected storage for replicas at nodes and preserving the
expected lookup performance within the constant bound.

l−1

∑
i=0

xi

bi →min,
l−1

∑
i=0

x1−α
i ≥ h(N,R), 0≤ xl−1 ≤ 1 (3.25)

Denote

Hj =
1− b

1−α
α ( j−1)

b
1−α

α ( j−1)(1− b
1−α

α )
+ 1, h j = j− (1−Rα−1)L for j = 1,2, . . . , l. (3.26)

Theorem 3.10. Given an N-node network with b-progressive routing (b > 1) and
with the lookup rate following a truncated Zipf-like distribution with α �= 1. Let j
be the highest value in {1,2, . . . , l} such that Hj ≥ h j. Then the replication with

xi =

⎧
⎪⎪⎨

⎪⎪⎩

b−
i
α

(
1− b

1−α
α

1− b
1−α

α ( j−1)

(
j− (1−Rα−1)L

)
) 1

1−α

, i = 0,1, . . . , j− 1,

1, i = j, j+ 1, . . . , l

(3.27)

minimizes the expected number of replicas per node preserving the expected lookup
performance of at most L hops.
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Proof. Initially, set j = l. Let us apply the Lagrange multipliers method for (3.25).

L j(x0, . . . ,x j−1,y,z) =
j−1

∑
i=0

xi

bi +

(
j−1

∑
i=0

x1−α
i − h j

)

y+(x j−1− 1)z→min,

where y ∈R+ and z ∈R are Lagrange multipliers. Eliminating y from the equations

∂L j

∂xi
= b−i+(1−α)yx−α

i = 0 for i �= j− 1 and
∂L j

∂x j−1
= b1− j+(1−α)yx−α

j−1 = 0

yields that

xi = bi/α(z+ b1− j)1/αx j−1 = ai j(z)x j−1 for i = 0,1, . . . , j− 2, (3.28)

where ai j(z) = (bi(z+ 1/b j−1))1/α .
Applying the lookup performance constraint,

j−1

∑
i=0

x1−α
i =

j−2

∑
i=0

(
bi(z+ 1/b j−1)

) 1−α
α x1−α

j−1 + x1−α
j−1

= x1−α
j−1

[(

z+
1

b j−1

)1−α
α j−2

∑
i=0

b
1−α

α i + 1

]

= x1−α
j−1

[(

z+
1

b j−1

)1−α
α 1− b

1−α
α ( j−1)

1− b
1−α

α
+ 1

]

≥ h j.

Denote

Hj(z) =

(

z+
1

b j−1

)1−α
α 1− b

1−α
α ( j−1)

1− b
1−α

α
+ 1,

which coincides with (3.26) for z = 0. Then

(
h j

Hj(z)

) 1
1−α
≤ x j−1 ≤ 1.

In unconstrained minimization of L j(x0, . . . ,x j−1,y,0) with z = 0, if h j >
Hj(0) then x j−1 > 1 in the optimal solution. In this case, we can force x j−1 = 1
and restate the optimization problem to minimization of the Lagrange function
L j−1(x0, . . . ,x j−2,y,z) of lower dimension. The previous derivations remain the
same; the process is repeated j = l− 1, l− 2, . . . until j is found such that h j ≤ Hj.

Then (3.28) gives the optimal solution for z = 0, where ai j(0) = b−
j−i−1

α and
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x j−1 =

(
h j

Hj(0)

) 1
1−α

=

(
j− (1−Rα−1)L

Hj

) 1
1−α

.

Substitution of (3.26) yields (3.27). ��
A Beehive system uses a replication strategy that follows Theorem 3.10. The

parameter α is estimated and replication is performed asynchronously. Each node u
has a responsibility to manage replicas stored at u. If the observations show that it
is necessary to create more replicas at lower level nodes, then u propagates replicas
to nodes preceding u on the lookup path. On the contrary, if the resource popularity
is decreased, then u deletes the replica from the local storage.

Data consistency is achieved by propagating changes in data objects from the
primary responsible node to other nodes through the replication path. In particular,
each resource is associated with a version number. When a resource is modified, a
new (higher) version number is assigned for it, and the modification is propagated to
nodes keeping replicas. By comparing version numbers, u can determine the latest
version of a resource it should keep.

3.7.4 Maintenance Overhead

There is a fundamental tradeoff between replication and resource consumption.
More replicas generally improve lookup performance at the cost of space,
bandwidth, and aggregate network load. Replication leads to additional load at
nodes with replicas; the maintenance of up-to-date copies becomes an issue in
systems with very dynamic resources [44]. A challenge in replication is how to
determine which resource should be replicated, how many replicas are needed,
where replicas are stored, and how to maintain consistency of replicas with their
original data.

The destination-aware replication provides the benefit that nodes near to the
destination quickly locate the resource without searching in areas that are farther
away. Compared with the source-aware replication, the load is lower since a few
nodes keeps replicas. It correlates with the locality principle, see Chap. 4. On the
other hand, the source-aware replication achieves better global routing performance
since the performance improvement is even for nodes that faraway from the primary
responsible node.

A simple solution to guarantee consistency of replicas is keeping them only for a
period of time. Depending on the resource update frequency, an expiration time can
be adjusted. When a replica has expired, it can either be discarded or be refreshed
by querying the primary responsible node. The problem is the determination of a
suitable expiration time.

A lazy strategy can be employed; a replica is kept at a node as long as possible.
When the original resource object is changed, the primary responsible node sends
an update request. The problem is that the request must reach all replica nodes, an
instance of the information dissemination problem [19, 43].
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A solution can be obtained at the cost of storage; a primary responsible node
keeps links to replica nodes. The straightforward way is to keep links to all replica
nodes. Another variant is construction of a disseminating tree of nodes keeping
replicas and the primary responsible node as a root. Then updates requests propagate
along the tree starting from the root and ending at leaf nodes.

The dissemination tree maintenance is proactive. On a regular basis “heartbeat”
messages are sent from the root node downwards to all other nodes in the tree. If
a node has no message within a time interval, then the node removes the replica
(or rejoins the tree). Each replica node also periodically sends “refresh” messages
upward. If the parent node has no message within a time interval, then the child is
assumed died and the link to it is removed.

A more advanced maintenance mechanism was implemented in CUP [44]—a
protocol for maintaining replicas in P2P networks. Rather than imposing a global
propagation policy, nodes receive and propagate updates only when they have
personal economic incentive to do so.

When the node capacity is limited, a node can replace less efficient replicas
by new ones. Examples of popular metrics of the replica efficiency are least/most
recently used, least/most frequently used, minimum/maximum replica size. Various
ranking methods can be applied to construct a good replacement strategy. The basic
idea is that a node only keeps a replica if it brings benefits to the node. This class of
P2P resource and node ranking problem is considered in Chaps. 6 and 10.

3.8 Summary

This chapter started to sequentially build a set of design principles; each provides a
base for applying hierarchical schemes. We introduced fundamental principles that
applied by nodes locally in pure flat DHT designs.

Principle 1 states the small-world property in construction of local routing tables:
closer neighbors are more preferable while all distant scales must be presented.
Therefore, each node clusters its nearest nodes to its routing table for efficient local
routing as well as defines long-range links for better global connectivity.

Principles 2 and 3 provide more systematic construction of routing tables and
routes applying ordering, ranking and classifying models. Geometrically progres-
sive routing aims at efficient global routing. Local adaptation ensures consistency of
the overlay performance with the underlying network performance. The principles
immediately lead to various tree-like structures involved into DHT routing. In par-
ticular, the well-known O(logN) routing efficiency is a result of local neighborhood
arrangements.

Principle 4 extends the power of long-range links with additional knowledge
for efficient global routing. A node can look ahead its neighbors, achieving more
effective extrapolation of locally available knowledge in lookup path construction.
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Chapter 4
Adaptable Overlay Network Topology

Abstract The previous chapter overviewed hierarchical schemes that a node uses
locally to arrange its neighbors, achieving effective routing in a flat network. This
chapter focuses on further advanced routing schemes where nodes are intentionally
specialized in routing. Such schemes lead to a kind of global hierarchy in the
network; nodes become globally differentiated, specializing their roles in routing.
According to the participants heterogeneity, the schemes differentiate (1) nodes
in their routing responsibility (node specialization) and (2) resources in their
distribution in the whole system (resource distribution).

4.1 Introduction

A flat ID space assumes that any node has equal responsibilities in routing. The
hierarchy approach, however, applies various kinds of decomposition to differentiate
some elements. A P2P design can improve routing complexity if the specialization
in routing is distributed non-uniformly across the nodes.

The static node specialization is a design principle in butterfly-graph DHTs
like Viceroy [36], Ulysses [46], Cycloid [42], Pappilon [3], Censorship Resistant
Network (CRN) [12, 41], and Mariposa [37]. Nodes IDs belong to different levels
of routing responsibilities. These levels are defined in advance—the DHT design
partitions the ID space. A node is assigned randomly with its ID, appearing on
some level. Section 4.2 states the principle of node ID specialization and considers
its application in DHT designs.

Node specialization leads to the load balancing problem. The latter is important
in any P2P system: computational, storage or communication load should be
balanced fairly, even if the node population is heterogeneous. Several DHT design
extensions allow nodes to control the ID assignment for better performance and
load balancing [29, 30, 33, 39, 43]. A node controls its specialization by selecting
appropriate ID and even changes its ID dynamically to preserve the specialization.
Section 4.3 discusses local strategies for ID assignment control.

D. Korzun and A. Gurtov, Structured Peer-to-Peer Systems: Fundamentals of Hierarchical
Organization, Routing, Scaling, and Security, DOI 10.1007/978-1-4614-5483-0 4,
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Similarly, the differentiation concerns the resource distribution. The P2P system
distributes the resources among nodes according to the node specialization—a
principle of such DHTs as SmartBoa [23], Diminished Chord [28], 1HS [40], and
GTap [50]. Section 4.4 introduces the principle of resource distribution.

A special case for resource distribution is resource semantics. Resources are
placed close to their users. It allows keeping routing paths within their domain of
a global network hierarchy, as in Skip graphs [5] and SkipNet [20]. Section 4.5
elaborates the corresponding principle of content and path locality.

Non-uniform distribution of resources and their semantics require careful dy-
namic maintenance of load balance and topology [15, 32]. The corresponding
hierarchical schemes appear in P-Grid [1]. Section 4.6 discusses the problem of
balanced resources distribution among P2P nodes.

The dynamic maintenance meets the network size change problem when the
number of participating nodes can vary significantly during the system evolution.
Nodes should adapt their IDs and positions in the network. The adaptation also
follows hierarchical schemes. Such DHT designs can be based on Kautz-graphs:
FISSIONE [34], Moore [18], BAKE [19], and SKY [51]. Section 4.7 provides an
overview of these designs.

4.2 Node ID Specialization

DHT overlay topologies from Chap. 3 are uniform [46] meaning that the construc-
tion of zones Si(u) is identical for every node u ∈ N. Recall that for b-progressive
routing, zones offsets are the same at any node:

Si(u) =
{

k ∈ S | bi ≤ ρ(u,k)< bi+1} , i = 0, . . . ,n− 1.

Nodes can be specialized by constructing different offsets of zones for different
nodes, leading to improvements in the routing performance.

Principle 5 (Node ID specialization). Node IDs are partitioned into levels. Levels
define different roles in routing.

The intuition behind comes directly from greedy routing in uniform DHTs.
Nodes of level i are defined

Li = {v | ∃u s.t. v ∈ Tu∩Si(u)}, i = 0,1, . . . ,n− 1.

Levels Ln−1, . . . , L0 define longest to shortest hops in the overlay. The efficiency is
due to the use of highest levels first for distant contacts (global routing), then the
next levels are for shorter hops, up to L0 for shortest ones (local routing).

In uniform DHTs, this node specialization is not globally fixed, and on average
nodes are equal in their routing function and load. There are DHT designs that do
not follow this property, and the node ID space is divided a priori into fixed levels.
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Viceroy “butterfly”-link

Fig. 4.1 An example of the ideal Viceroy topology; up and ring links are not shown. The picture
is from [36]

Examples include the DHT topologies that apply a butterfly graph: Viceroy [36],
CRN [12, 41], Ulysses [46], Cycloid [42], Pappilon [3], and Mariposa [37]. These
designs are mostly for abstract networks; their implementation requires a rigorous
maintenance protocol. It is not an easy problem because of a complicated static
structure of butterfly topologies. The idea behind the multi-level butterfly topology
was illustrated in Fig. 2.12 (on p. 39, Chap. 2).

4.2.1 Viceroy

The design exploits a simple butterfly with several levels. Given a circular [0,1)
space (S,ρ) and levels i = 1, . . . ,n for n = [logN], a full node identity is u = (IDu, i)
for IDu ∈ S. Local neighbors are u’s immediate successor and predecessor in the
global ring. Long-range neighbors are either for intra-level contacts (medium hops)
or inter-level contacts (long hops). Each level i defines i-ring of nodes at level i,
and intra-level contacts are to immediate successor and predecessor in the i-ring.
Inter-level contacts are “down-left”, “down-right” and “up” links to nodes at levels
i + 1 (if i < n) and i− 1 (if i > 1). The down-left link is to the closest node at
level i+ 1. The down-right link is to a node v at level i+ 1 with the distance about
ρ(u,v) = 1/2i. The up link is to a close-by node at level i− 1. The ideal Viceroy
topology is shown in Fig. 4.1.

In fact, the Viceroy topology is the Chord topology decomposed onto n subrings,
i.e., the logarithmic number of global groups Ci appears in the network. Since any
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node selects its level ID at random the groups are approximately equal in size, |Ci| ≈
N/ logN. The dependence n = [logN] requires local estimations of N, and this can
bias the population of Ci with higher i if N varies rapidly.

This ring hierarchy categorizes roles for nodes at different levels. The higher
level, the longer hops the node makes with down-right links. Routing proceeds in
three phases. First, the lookup follows up links to reach a level-1 node; the phase
is closer to local routing since the hops are short. Second, progressive routing uses
i-ring intra-level contacts and down links to reach the destination neighborhood, an
instance of global routing. Third, local routing uses successors and predecessors of
the global ring, i.e., hops are very short at this phase.

The first two phases are very efficient: O(logN) hops with high probability.
The last phase takes O(log2 N) hops with high probability, while the expectation
is O(logN). In total, routing takes O(logN) hops. There is also a modification of
the third routing phase such that routing takes O(logN) hops with high probability.

The Viceroy design provides the constant number of outgoing links per node.
Taking into account the maintenance of incoming links leads to Θ(1) expected
number of records and the high probability bound is O(logN). For a few nodes this
bound can be exceeded, and they have to maintain Ω(logN) records. As a result,
the design ensures that the majority of nodes has fair load and some nodes can
occasionally become “hubs” with higher load.

4.2.2 Ulysses

This DHT design optimizes the tradeoff between the state maintenance and routing
costs. It improves upon the Viceroy topology by embedding an (n,m)-butterfly
structure, where n ≤ log2 N/ log2 log2 N is the number of levels and m = log2 N is
the node out-degree. The diameter of the butterfly is n, the lower bound for routing
hops. Recall that in Viceroy the node out-degree is 7.

The ID space S is the n-level n-dimensional m-cuboid with mnn points in total.
Each point is

k = (k0,k1, . . . ,kn−1; i), 0≤ k j ≤ m− 1, 0≤ i≤ n− 1.

A node u = (u0, . . . ,un−1; i) is responsible for a zone that is a subcuboid of a level-i
cuboid. A zone splitting and merging mechanism is needed in response to node joins
and leaves.

Neighbors at the closest levels are nodes for points

k =

{
(k0, . . . ,ki,x,ki+2 . . . ,kn−1; i+ 1), if i < n− 1
(x,k1, . . . ,kn−1;0), if i = n− 1

for 0 ≤ x < m (cf. down links in Viceroy, m = 2). Two neighbors at other levels
j �= i− 1, i+ 1 are simply for points k = (u0, . . . ,un−1; j).
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Fig. 4.2 The
three-dimensional CCC graph

Routing a lookup for a key k = (k0, . . . ,kn−1; j) from u = (u0, . . . ,un−1; i) first
sequentially changes ui+1 to ki+1, ui+2 to ki+2, . . . , u j−1 to k j−1, u j to k j, i.e.,
geometrically progressive global routing is performed. Then the lookup goes to a
level- j node, i.e., local routing occurs.

Every Ulysses node maintains O(m+ n) = O(logN) state with high probability.
The scheme provides O(n) = O(logN/ loglogN) routing, in spite of node joins and
leaves. The static (n,m)-butterfly that Ulysses embeds is node-congestion-free and
is not link-congestion-free.

4.2.3 Cycloid

The design is close to the Ulysses scheme and emulates a Cube-Connected-Cycles
(CCC) graph, a subgraph of the (n,2)-butterfly. The position of a node in the graph
defines the routing role of the node.

Each vertex of n-dimensional cube is a cycle of n points (similarly to level 0≤ i≤
n−1 in the (n,2)-butterfly), see Fig. 4.2. In u = (un−1 · · ·u0; i), the cubic coordinate
is ucub = un−1 · · ·u0 for binary u j and the cyclic coordinate is ucyc = i for 0≤ i < n.
A key k = (kcub;kcyc) is assigned to the node whose ID is first closest to kcub and
then closest to kcyc.

The neighbor establishment is similar to Pastry with the metric ρ for cubic
coordinates. A node with ucyc = 0 has no cubic neighbor. If i = ucyc > 0, a cubical
neighbor shares the (n− i− 1)-bit prefix with ucub and differs in bit i:

v = (un−1 · · ·ui+1uivi−1 · · ·v0; i− 1).

Hence, 2i−1 ≤ ρ(ucub,vcub) < 2i. A cubic neighbor allows resolving the ith bit in
lookup keys if the node is at level i.
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The cyclic neighbors are the first larger and smaller nodes v and w such that
(1) vcyc = wcyc = i−1 mod n; (2) ucub shares at least the (n− i)-bit prefix with vcyc

and wcyc; (3) vcub and wcub are closest to ucub among numerically larger and smaller
nodes, respectively. Cyclic neighbors change the current cyclic coordinate without
the prefix change in node’s cubic coordinate.

Similarly to Pastry, u’s leaf set contains nearby nodes. It is divided into inside
and outside leaf sets, each consisting of two neighbors. Nodes with the same cubic
coordinate organize a local cycle by their cyclic coordinates modulo n (clockwise).
The inside leaf set of u includes the immediate predecessor v and the immediate
successor w in the local cycle. All local cycles organize the global ring modulo
2n (clockwise) by their cubic coordinates. In any local cycle, the node with the
largest cyclic coordinate is called the primary node of the cycle. The neighbors
in u’s outside leaf set are the primary nodes of preceding and succeeding cycles
(remote cycles).

Routing proceeds in three phases. In the first phase, the lookup is sequentially
forwarded using outside leaf set. The phase is a kind of local routing and continues
until the cyclic coordinate becomes appropriate to start prefix-matching routing on
the second phase. The latter is similar to global routing in Pastry, each step matches
at least one next bit using long-range cubic and cyclic neighbors. Outside leaf sets
are applicable as well, especially at final steps of the second phase. The third phase
finishes the routing process with finding the node closest in the cyclic coordinate
using the leaf sets.

4.2.4 Pappilon

The design inherits the Ulysses scheme. The ID space S consists of non-negative
integers up to mnn for m,n ≥ 2. The Chord asymmetric (clockwise) distance ρ can
be used as well as its symmetric version. Let us consider the asymmetric case only.

The network has N nodes arbitrary positioned on a ring. A level is defined i(u) =
n− 1− (u mod n) for u ∈ S. Each node has m neighbors defined by the links to
nodes at the next level i = i(u)− 1 mod n,

u+ xmi(u)n+ 1 mod N, 0≤ x≤ m− 1.

For x = 0, the neighbor is immediate successor. Hence, a power mi(u) in Pappilon
plays the same role as a coordinate position in Ulysses.

For a lookup for k, greedy routing proceeds in three phases. First (at most n− 1
hops), the lookup sequentially moves from one level to the next one and arrives
to a node u such that i(u) = n− 1. Note that ρ(u,k) < mnn at level n− 1. Second
(at most n hops), if ρ(u,k) ≥ n, the lookup sequentially goes through levels to a
node v at level i(v) = 0. Then v forwards to a node u at level i(u) = n− 1 such
that ρ(u,k) < n. Third (at most n− 1 hops), the lookup decreases the distance by
immediate successors.
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This greedy scheme provides O(logN/ logn) routing in the worst case. Pappilon
admits further improvement for shorter paths (reducing the constants inside big-O
bounds). As Ulysses, Pappilon guarantees node-congestion-free routing. Further-
more, the improved routing strategies of Pappilon also guarantee link-congestion-
free routing.

4.2.5 Censorship Resistant Network

In the previous butterfly-based designs the routing role of a node depends on the
level to which the node belongs in the butterfly graph. In CRN a node is presented
at many levels.

The design constructs a backbone butterfly-based network of supernodes, where
the number of levels is n = [logN− loglogN]. Supernodes are categorized into top,
middle and bottom, depending on their level in the butterfly.

The backbone network defines the structure of the overlay network topology.
Each supernode is associated with a set of nodes. Each node u belongs to several
supernodes: when joining the system u associates itself with C top supernodes,
C bottom supernodes, and C logN middle supernodes, where C is a system-level
parameter. Nodes that belong to the same supernode form a clique in the overlay
network. If two supernodes are connected in the backbone network then the sets of
their nodes are “high” connected in the overlay (up to the complete bipartite graph).

Resources are stored at bottom supernodes. For each resource several supernodes
are selected randomly. Then the resource is replicated again among nodes of these
supernodes.

Top and middle supernodes are for routing. Multipath routing is actively used
when messages are forwarded. A lookup starts in parallel from all top supernodes
that u knows and from the nodes associated with these supernodes. Then routing
goes along multiple paths downwards in the butterfly. Each path is of logarithmic
length. Some of them reach bottom supernodes that are responsible for the resource.

The CRN design requires O(log3 N) state to keep routing tables. Routing takes
O(logN) hops and O(log3 N) messages in total (because of multipath routing).
The resource replication factor is O(logN). The additional complexity aims at
fault-tolerance, making a CRN overlay robust to churn and orchestrated attacks in
dynamic environments. Even after an adversary deletes up to N/2 nodes, (1− ε)
fraction of the remaining nodes have access to (1− ε) fraction of resources for a
fixed parameter ε .

Although this supernode-based P2P architecture is hierarchical (and we consider
such architectures in Chap. 7), the design solution concerns the flat node space.
Regular nodes are distributed between supernodes independently on their capacity
and other heterogeneous characteristics. Therefore, the routing role of a node is
determined by the combination of supernodes the node belongs.
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4.2.6 Mariposa

In contrast to butterfly-based designs with fixed discrete levels, the Mariposa
design1 applies the small-world principle for constructing a continuous variant of
the Viceroy level-based topology. The circular [0,1) space (modulo 1) is used. Each
node u estimates N and chooses randomly a range δ using the same harmonic pdf
h(x) = 1/(x lnN) as in Symphony.

There are m′ local links, 2 intermediate links, 2m long links and at most m global
links per node (m,m′ ≥ 1). Local links are to immediate clockwise successors.
Intermediate links are to nodes responsible for keys u+ logN and u+ logN/ logm.
The intervals [u− δ ,u] and [u,u+ δ ] are partitioned into m equal subintervals of
length δ/m each, and u establishes a long link per subinterval. Global links are
established if δ < 1/2. The interval [0,1) \ [u− δ ,u + δ ] is partitioned into m
equal subintervals of length (1− 2δ )/m each, and u establishes a global link per
subinterval.

Long links span nodes in two large ranges, clockwise and anticlockwise. Global
links span nodes in u’s opposite part of the ring. Continuous range δ plays the
similar role as discrete level i in Viceroy; the smaller 1/δ , the larger hops u makes
by long and global links. Greedy routing takes O(logN/ logm) hops with high
probability.

4.3 Specialized Node ID Management

Principle 5 defines ID levels for node specialization in routing. DHTs designs from
the previous section assume random assignment of IDs and their levels. As a result,
a node cannot select its ID with desired specialization. Random assignment does
not reflect the node heterogeneity and dynamics in real networks. It leads to load
imbalance when some nodes have a higher load/capacity ratio than others. The
routing performance degrades when a low-capacity node serves many lookups.

Similarly to the local adaptation schemes of Principle 3 in Chap. 3, nodes can
dynamically adapt the overlay to their specialization. The basic approach is non-
random selection of node IDs. It can be further extended with node migration when
underloaded nodes move to overloaded areas of the overlay ID space. Specialized
node ID management schemes were studied in [29, 30, 33, 39, 43] to keep routing
performance and load balance within certain bounds. When a node joins it applies
specific ID assignment to minimize the imbalance. When a node leaves or resource
distribution changes dynamically participating nodes perform ID reassignment,
changing their IDs to reduce observed imbalances.

1“Mariposa” means “butterfly” in Spanish.
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4.3.1 ID Assignment

Consider a Chord-like DHT with a ring-based ID space S and the asymmetric space
distance ρ . A node u is responsible for the keys between itself and its immediate
successor v = argmin

w∈N,w �=u
ρ(u,w),

S(u) = {k ∈ S | 0≤ ρ(u,k)< ρ(u,v)} . (4.1)

If resource keys are distributed uniformly in the ring S, then the fraction of resources
that u is responsible for is proportional to ρ(u,v).

Let node IDs be also taken uniformly in S. Although the expectation E[ρ(u,v)] =
1/N, with high probability the largest fraction [26] served by u is Θ((logN)/N) and
the smallest fraction [31] is Θ(1/N2). Consequently, some nodes become higher
or lower loaded than the average node since they are responsible Θ(logN) times
more or Θ(1/N) times less resources, respectively. Both estimates characterize the
imbalance factor of basic consistent hashing.

If resource keys are distributed uniformly in the ID space then the size of zones
S(u) should be equalized for all nodes u∈N. If nodes differ in their capacity then the
size of S(u) should be proportional to the capacity of u. As was shown, the uniform
selection of node IDs provides biased load per node for large N. A new node can
apply a specific strategy to select its ID preserving a load-balanced distribution as
much as possible. The basic scheme here employs the ability of multiple choice.
A new node has multiple choices for its ID in the assignment, and a ranking model
is applied to select the best ID.

Consider the ID assignment strategy from [27, 29] for a Chord-like DHT with
the ring space S = [0,1). Nodes are assumed to have uniform capacity. The strategy
designates the following points in S to be landmarks:

ai =
2i− 2log2 i− 1

2log2 i for i = 1,2, . . ..

Intuitively, the first N/2 points are roughly equally spaced in [0,1).
A node u operates with several virtual IDs {u j}, where j = 1,2, . . . ,c log2 N for

a fixed constant c > 2. Participating in the system, u considers for each u j the point
ai( j) ∈ [u j,v) with minimal index i( j), where v is the active node preceding u j in
the space. Then u makes active u j∗ to be its current ID where ai( j∗) = min j ai( j).
In case of a tie, u makes active the ID that is closest to this ai( j∗). Although N can
vary, each node u is responsible for interval in [0,1) of length at most 5/N. That
is, the imbalance factor is constant, compared with the logarithmic one when basic
consistent hashing is used.

The strategy allows u to improve regularly its current position in S based on
local knowledge of Θ(logN) virtual nodes. Only one virtual node is activated at a
given time, hence IDs are changed when load imbalance has been detected. In stable
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state, the global assignment is reached. When a node joins or leaves then O(logN)
nodes have to change their IDs to return the system to the stable state. Consequently,
O(logN/N) resource keys have to be reassigned between nodes.

4.3.2 Grouping Node IDs

The classifying model can be applied to form groups of several node IDs. In this
Section, we briefly list strategies for load balancing based on simple groups of
node IDs. Actually, the approach evolves to clustering; please refer to Chap. 5 for
more details on this topic. Note that the ID assignment strategy [27, 29], which
we considered above, is also based on specific groups of node IDs.

One of the first attempts to tackle the DHT load balancing problem was based on
the consistent hashing approach [10, 26]. The hash table is divided into partitions.
A partition is a contiguous subset of the resource key space, typically with specific
left and right limits. For example, in the ring space of a Chord-like DHT, a partition
is an arc, see (4.1). Each physical machine hosts a certain number of virtual DHT
nodes. The hash table is distributed across the machines by assigning one partition
per virtual node. Partitions have random size and they are assigned to virtual
nodes randomly. For the balancing to be effective, each machine must host at least
Θ(logN) virtual nodes.

In bucket solution [36, 39] nodes are grouped into buckets, and each node can
change its ID within the bucket to rearrange the load.

In load-balancing schemes of [43], each physical node uses several IDs (i.e.,
representing a group of virtual DHT nodes); virtual nodes migrate from heavily
loaded physical nodes to lightly loaded ones.

4.3.3 ID Reassignment

When a node leaves, some existing nodes can change their IDs to rearrange
the load or to preserve other useful characteristics like the routing performance.
Such dynamic balancing the overlay topology becomes of high importance in
adversarial scenarios when some node insertions and removals are done by an
adaptive adversary [2]. When a legitimate node has detected imbalance, the node
responses adjusting its ID for more appropriate specialization. This approach is
called node migration [32].

In the multiple choice scheme above, the ID space is split evenly among nodes by
selection of possible node IDs. The scheme ignores the actual resource distribution.
In contrast, if a node changes its ID, moving to another position in the space, then,
for given resource distribution, the system tries to distribute the resources among
nodes adaptively.
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Fig. 4.3 Node migration when u and v discover load imbalance Rv ≤ εRu. (a) Only case 2 happens
when vsucc has reasonable load compared with u. (b) Case 1 happens in addition to case 2 when
vsucc has high load

Consider the reassignment strategy for a Chord-like DHT from [27]. Let Ru be
the number of resource keys u is responsible for. The basic requirement is that each
node contacts random other nodes to check the load imbalance.

Let 0 ≤ ε < 1/4 be a constant. Every node u occasionally contacts a random
node v. Let upred, usucc and vpred, vsucc be the immediate predecessors and successors
of u and v, correspondingly. Note that Ru ∼ ρ(upred,u) and Rv ∼ ρ(vpred,v). If
Rv ≤ εRu then u and v have different load (the case Ru < εRv is symmetrical), u
is overloaded compared with v, and their IDs are updated as follows. This update
reassigns resource keys, which u and v were responsible for.

1. If Rvsucc > Ru then u selects a new position unew in the middle of (vsucc,vpred).
2. Select a new position vnew ∈ (upred,u) such that the node v captures half of

resources of node u.

Figure 4.3 illustrates the reassignment strategy. Case 2 is mandatory; it is
depicted in Fig. 4.3a. The high load Ru ∼ ρ(upred,u) is halved. The first half
Ru/2 ∼ ρ(upred,vnew) is assigned to v := vnew, which moves to the new position in
the arc (upred,usucc). The second half Ru/2 remains at u. The condition Rvsucc ≤ Ru

assumes that the current load of vsucc is acceptable; vsucc takes the additional load
Rv, which is small compared with Rvsucc . As a result, the load of u and v become
balanced.

The condition Rvsucc > Ru of case 1 requires additional reassignment since the
load of vsucc is high, see Fig. 4.3b. In this case, u moves from the arc (upred,usucc),
delegating v its role and assigning the second half Ru/2 ∼ ρ(vnew,u) to usucc (in
addition to the arc (u,usucc)). Now u := unew substitutes the migrated v in a middle
point of the arc (vpred,vsucc). The load of vsucc and u is equalized: u takes all Rv and
a fraction of Rvsucc . Note that if case 1 happens often then it might be better to shift v
to the middle in between its predecessor and successor without execution of case 2.

Dynamic manipulations with node IDs are expensive due to updating routing
tables. A group of n nodes must maintain n routing tables, and migration incurs a
significant cost. Active node migration leads to increasing churn in the overlay.
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Additionally, security vulnerabilities appear since adversaries can affect the
distribution of node IDs to destroy the network [9]. If node migration results
in uneven distribution of node IDs in the space, then the basic assumption of the
underlying DHT routing protocol is violated, and the routing performance degrades.

4.4 Distributing Resources Among Nodes

Node specialization arranges nodes into a global hierarchy. ID manipulation
mechanisms adapt the overlay to node heterogeneity and dynamics. Nevertheless,
another way exists for differentiating nodes for their specialization. Instead of
changing IDs to appropriate specialization, resources are distributed according to
the node specialization. Placing certain resources onto a specific set of nodes
enables provisioning of those nodes to reflect demand, thus resulting in improved
performance. For instance, computational-expensive resources are preferably placed
at nodes with fast CPU; storage-expensive resources are at nodes with large disks.

Principle 6 (Resource distribution). The system provides controlled resource
distribution among nodes.

Resource distribution can be controlled dynamically based on the resource
exchange approach when the load is balanced through iterative resource exchange
between nodes [15, 32].

Similarly to Principle 5, the classifying model can be applied for implementing
Principle 6. Nodes with the same role form a group, and certain resource is
assigned to a node of the appropriate group [28,50]. For example for load-balancing,
nodes are grouped according to their available capacity [23, 44]. Administrative
and geographical structures group nodes by organization membership or by loca-
tion [40]. Different groups can be formed to reflect different levels of trust, locating
important resources at high-trusty nodes. Another topical example is applications
with considerable resource semantics, see Sect. 4.5.

Diminished Chord [28] is a version of Chord that allows any subset of nodes to
jointly offer the same functionality. The design uses O(logn) additional neighbors
per node in an n-nodes group and O(n) additional data in the whole network
(at nodes that are not necessarily in the group themselves). Routing a lookup for
a node of a given group takes O(logN) hops.

Grouped Tapestry (GTap) [50] is a version of Tapestry that allows organizing
nodes into many groups. It is similarly to Diminished Chord, but GTap has some
advantages. At most one additional neighbor is required per node in an n-nodes
group. Furthermore, GTap supports routing within a group, providing the path
locality (see Principle 7 in Sect. 4.5 below).

SmartBoa [23] evolves the idea of large routing tables (see Sect. 3.6) such that
the size of a routing table dynamically depends on the available bandwidth. Nodes
are categorized into discrete levels according to their capacity. The lower the node’s
level is, the fewer neighbors it has to maintain. As a result, nodes are differentiated



4.5 Resource Semantics 99

in routing; a node at a higher level can route a lookup more efficiently. In addition to
node IDs, nodes have level labels and a node can change its level freely, enhancing
the adaptation in heterogeneous environments.

HiGLOB [44] applies Principle 4 from Sect. 3.5 to reflect a global view of load
distribution in the overlay. A node u constructs a histogram by partitioning the
network into non-overlapping groups, each of which is connected to u by a neighbor.
Each bucket in the histogram characterizes the average node load in the group.
Based on this knowledge the node may redistribute the load when a new node joins
the overlay and when an existing node becomes overloaded or underloaded.

One Hop Sites (1HS) [40] is a design for enterprise P2P overlays where each
group (enterprise site) is a separate one-hop DHT. Resources are replicated between
groups. The approach is opposite to Diminished Chord since the latter does not
separate the overlay into independent DHTs. The design improves the resilience to
network partitions.

Such a group hierarchy dynamically changes structurally (group construc-
tion/removal) and by content (node joins/leaves, resource allocation/exchange).
It leads to overhead on both inter-group and intra-group levels.

4.5 Resource Semantics

Most of DHT designs we considered above resemble a balance tree in S [26].
Resources r ∈ D are distributed near-uniformly among alive nodes d ∈ S based on
hashing h : D→ S. It destroys the application-aware semantics with own balance
tree in the resource key space D, leading to inefficient resource distribution.

Resource semantics leads to evolution of Principle 6 to the principle of content
and path locality in resource distribution among participating nodes.

Principle 7 (Content and path locality). Resources are placed close to most of
their users. Routing paths remain within a domain whenever possible, and a path
between two overlay nodes of the same domain is also within this domain.

Intuitively, if Alice works within an organization Foo, her resources are reason-
able to place at nodes that belong to Foo. Each resource must be either explicitly
placed on specific overlay nodes or distributed across nodes within a given resource
domain. In some applications it is likely that documents produced within an
organization are actively used by people at this organization. Another example
is from [20]. A route from node explorer.ford.com to mustang.ford.com could
pass through camaro.gm.com. This scenario people at ford.com might prefer to
prevent.

Content locality allows application-specific data pre-fetching, enhanced
browsing, and complex querying such as range queries, e.g., locating resources
whose keys in D lie in a given range. Nodes store important resources within
their organization, thus resulting in improved manageability and security.
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An organization controls the administrative domain in which its resources reside;
even when encrypted, data stored on arbitrary node outside the organization are
susceptible to DoS and other types of attacks.

Path locality complements the content locality by improving manageability,
security, performance, administrative control, and accountability of participating
organizations. It increases availability and fault-tolerance. Even if an overlay
domain becomes disconnected from the rest, nodes of this domain are able to reach
important data (e.g., because of replication of popular data items in the domain).
These principles are also helpful in the presence of NATs and firewalls that limit
connectivity among hosts in different organizations.

Geometrical routing with zones (3.10) is an inspiration of skip lists for graphs, a
known data structure to represent a balanced tree (see [5,20] and references therein).
A skip list, however, can be constructed on top of D instead of S, hence preserving
the semantic structure of D needed in Principle 7. Skip graphs [5,6] and SkipNet [20,
21] are DHT designs utilizing skip lists. They are similar, and we shall follow closer
to the SkipNet design, which uses cyclic skip lists (rings).

There is no hashing of a resource name into numerical flat keys, and the closeness
of related resources can be ensured in the topology. The original design assumes that
each node represents only one resource item, hence node and resource IDs are the
same. A node participates at multiple levels i = 0,1, . . . ,n = [logN]. Level i = 0
consists of all nodes ordered by their names, the root ring. There are at most 2i

rings at level i, and every node participates in one of them. A node in its ring of
level i links to a neighbor (successor) that is about 2i nodes away in the root ring.
Consequently, the nodes in every ring are sorted according to their resource keys
(e.g., lexicographically).

As shown in Fig. 4.4, this structure is similar to the Chord topology; an i-level
ring consists of ith fingers. The fundamental difference is that Chord fingers skip
over nodes in the numerical flat space. It immediately leads to greedy routing with
O(logN) hops to find the node with closest name: searching first in higher levels
(global routing) and gradually moving to lower levels (local routing). Note that a
node also links to its predecessor in each ring.

The basic resource management scheme exploits ring IDs. Let unum be a binary
string generated at u. (It is a membership vector in Skip graphs and a numerical node
ID in SkipNet.) Each ring is a double-liked list labeled by some binary string x. A
node u belongs to ring x at level i if x is an i-bit prefix of unum. If unum is generated
randomly for any u, then the number of nodes in each i-level ring is balanced.

Starting from the root ring, a new node u inserts itself in some ring at each level.
Using greedy routing, u iteratively finds its immediate successor and predecessor
at each its ring. Similarly, node departure involves iteratively removing a node
from all of its rings. A background repair process maintains the correctness of ring
memberships; the process is complicated due to the maintenance at several levels.

In practice, a node keeps several resources by incorporating node’s name
into its resource names. Resources with semantically close names are concen-
trated at the same node or at neighboring nodes. Hence each node holds a
contiguous segment of resources. It supports Principle 7 of content and path
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Fig. 4.4 An example of the ideal multi-level SkipNet with N = 8 nodes

locality For example, Alice’s documents have names alice.foo.com/〈docname〉
for placing at node alice.foo.com. A path from node alice.foo.com to document
mike.foo.com/song.mpg may go through node john.foo.com but not through
mika.bar.com.

The basic skip lists scheme assumes the uniform resource distribution in D,
otherwise nodes are subject to uneven load [6] (see also Sect. 4.6). To deal with this
problem, various load balancing algorithms can be added, similarly to which were
discussed in Sect. 4.3. However, the semantic ordering complicates load balancing
since the order must be preserved in the system [32]. In the pairing algorithm [7],
heavily-loaded nodes are placed next to lightly-loaded nodes, hence the former can
migrate resources to their lightly-loaded neighbors. In the join algorithm [6], a new
node performs a random walk, recording the load of each node it encounters; then it
splits the load of the most heavily loaded of these nodes. In Skip Graphs++ [22],
the probability that a node appears in higher levels of the skip lists structure is
proportional to the capacity of the node, resulting in the load differentiation of
heterogeneous nodes (cf. with SmartBoa [23] above).

Semantic ordering allows specific extensions to the basic design. Note that such
extensions complicate even more the background repair processes [25]. Since nodes
with close names are placed contiguously in the overlay, failures along domain
boundaries do not completely fragment the overlay. Instead, they result in ring
segment partitions. In the basic skip lists scheme, long-range neighbors at higher-
level rings help to preserve the global connectivity. According to Principle 4 from
Sect. 3.5 nodes can be augmented with additional links for better routing fault-
tolerance and efficiency [14, 24].
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Interesting mathematical schemes for constructing levels in skip list structure
are proposed in [14]. They optimize the routing efficiency when the number of
neighbors is differ than the original n = [logN] node state. Family trees [48] and
rainbow skip graphs [16] are skip lists designs for O(1) node state. Fault-tolerance
properties were studied in [8,16,17]. NoN-routing [38] improves the expected query
cost for searching skip graphs and SkipNet to O(logN/ loglogN), see also Sect. 3.5.
An extension to multidimensional resource names can be found in Skip-webs [4]
and pService [52]. SkipCluster [47] is a two-layer hierarchical overlay network
derived from skip graphs and SkipNet to support both exact-match and range queries
without consumption of extra memory space.

4.6 Non-uniform Resource Distribution

Resource semantics prohibit hashing h : D → S, hence Principle 7 violates the
assumption on uniform resource distribution. Load imbalances can happen when
some nodes are responsible for more resources than other nodes. For example, if
Alice from Foo stores essentially more documents than Bob from Bar, then the load
of node foo.com can be higher than of node bar.com. Consider a DHT design that
hierarchically applies Principle 6 for adapting the node workload to skewed resource
distribution in S.

P-Grid [1, 11] inherits the idea of distributed trie [13] to combine advantages of
structured and unstructured P2P systems into a DHT-like routing infrastructure. The
trie is only virtual since it exists only via routing tables. Lookup paths are organized
as a distributed trie to reflect the non-uniform resource distribution in S. Each node
maintains a part of the trie, i.e., a tree for storing (binary) keys in which there is one
neighbor for every common prefix. The key design choice is adaptive partition of
the key space and assignment of the resultant zones to nodes such that to keep the
load balance among nodes.

There is no maximal length for keys. Basic P-Grid assumes binary keys from
S = {0,1}+. The space is recursively bisected such that the resulting zones carry
approximately the same amount of currently available resources. Each zone is
assigned to one or more nodes, so a certain replication level is possible. This P-Grid
trie construction is implemented by pair-wise random interactions of nodes.

Bisecting S induces a canonical trie structure, a base for prefix-matching routing.
A zone and its node u are identified by a bit sequence, a path from the root in
the trie. For each position in the path, u maintains links to nodes that has a path
with the inverse bit at this position. As a result, each leaf corresponds to a prefix;
its routing table consists of randomly selected nodes responsible for keys with that
prefix. This means that at each level of the trie the node has references to some other
nodes that do not pertain to the node’s subtrie at that level. Each node constructs its
routing table such that it holds peers with exponentially increasing distance in the
key space from its own position. In total, this enables efficient implementation of
prefix-matching routing with O(logN) lookup performance.
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Fig. 4.5 The P-Grid bisection of the resource key space. The trie consists of six nodes responsible
for four zones. Each zone is maintained by one or two nodes

A simple example of is shown in Fig. 4.5. The P-Grid trie consists of six nodes
responsible for four zones, e.g., node A’s path is “00” leading to two entries in its
routing table: nodes D and F with paths “10” and “11” at the first level and node C
with path “01” at the second level.

In routing a lookup for k, a node u first finds a leaf that shares a prefix with k.
Then u forwards the lookup to an appropriate neighbor. The fundamental difference
with prefix-matching routing of Pastry/Tapestry is that the distribution of prefixes in
routing tables is not uniform; it adopts to the current resource distribution in S. In
addition to the maintenance of routing table entries, a node can hash some resources
for certain prefixes, hence also taking Principle 7 into account.

An alternative design that ensures balanced resources distribution among nodes
can be found in [15]. They consider the concern of skew for resource distribution
when only a few nodes are involved in the execution of most queries. Skew can be
characterized by the imbalance ratio σ defined as the ratio of the loads of the largest
and smallest resource partitions the nodes have in the system. In order to ensure
that σ is small, resources may have to be moved from one node to another. On the
other hand, an online load balancing algorithm should minimize the transfer cost
(the number of items moved) subject to σ is bounded by a constant c, where the
bound c is a tunable parameter.

The idea for load balancing is as follows. A node attempts to shed its load
whenever its load increases by a factor δ > 1, and attempts to gain load when it
drops by the same factor. Formally, there is an infinite geometrically increasing
sequence of thresholds Ti = [cδ i] for all i≥ 1 and constant c> 0. When a node’s load
crosses Ti, the node initiates a load-balancing procedure—the threshold algorithm.
Its basic operation is neighbor adjustment: a node moves a portion of its resources
to its neighbor and thus attempt to balance out the load. The threshold algorithm
guarantees σ = δ 3 with a constant cost per resource item insert and delete. When
the set of thresholds Ti is the Fibonacci numbers (with T1 = 1 and T2 = 2) then the
algorithm guarantees σ = φ3 ≈ 4.24, where φ = (

√
5+ 1)/2 is the golden ratio.
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4.7 Topology Evolution

One of the essential P2P properties is that the overlay graph can evolve as nodes
join and leave, the property is commonly referred as churn. Churn disrupts the
network topology, thus its maintenance becomes a central problem for structured
P2P networks. A good topology maintenance protocol should have the following
properties [35]. First, it should run efficiently, because joins and leaves happen
frequently in practice. Second, it should fully maintain the topology invariants,
because structured networks rely on the topology to provide efficient operations
such as lookups. Third, it should not restrict concurrency: trivial solutions such as
allowing only one join or leave at a time are not adequate because of the frequency
of joins and leaves.

In many DHTs, the ID length n has to be fixed before the installation. For instance
in greedy DHTs from Sect. 3.3, IDs are n-digit sequences in base b, yielding N ≤ bn

and preventing easy dynamic enhancement for large sizes. The protocols become
suitable only for the sparse case when N� |S|.

Consider DHT designs that focus on adaptation of the topology to changing N.
Certain ideas are due to de Bruijn graphs, where the ID length and the number of
neighbors per node are independent (see Sect. 3.3). HiPeer [45] forms an overlay
with concentric multi-ring topology, see Fig. 4.6a for an example. The length of IDs
expands from the innermost ring to the outermost ring. The rings are evolutionally
constructed such that nodes on every inner ring from a de Bruijn network. When
nodes join or leave, the overlay expands or shrinks, and some nodes migrate from
one ring to another. As a result, inner ring nodes are more reliable than nodes on the
outer rings.

FISSIONE [34], Moore [18], BAKE [19] and SKY [51] emulate the Kautz
digraph structure. Similarly to the de Bruijn graphs, it has the logarithmic diameter
and constant degree properties while its congestion imbalance is lower. Node IDs
are finite sequences of digits in base m+1. A sequence un−1 · · ·u1u0 must be a Kautz
string where any two consecutive digits are different, ui+1 �= ui. The ID length n may
vary, hence S⊂ {0, . . . ,m}+. There are up to N(n,m) = mn−1(m+1) IDs of a given
length n, since u0 has m+ 1 possibilities and all subsequent ui have m possibilities.
Any resource gets its key k∈ S for large n. The node with the longest common prefix
is responsible for k.

A Kautz graph K (m,n) is similar to de Bruijn graph B(m,n) except that vertices
are labeled by Kautz strings, see Fig. 4.6b. A vertex un−1 · · ·u0 has m links to
un−2 · · ·u0x for x �= u0 and 0≤ x≤m. In routing for k, the key prefixes incrementally
replace the suffixes in node IDs. A current node u finds its longest suffix that
appears as a key prefix and then forwards the lookup to resolve the next digit
in k. For example in Fig. 4.6b, lookup for 012021 from node 010 follows the path
010→ 101→ 012.

FISSIONE [34] emulates K (m,n) for m = 2 as its static topology. The design
uses key space partitioning into zones with complicated zone splitting and merging
algorithms.
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Fig. 4.6 (a) Node joins/leaves in the HiPeer concentric multi-ring topology. (b) Complete Kautz
graph K (2,3). (c) Complete Kautz tree for m = 2 and n = 3

Moore [18] extends FISSIONE to a general Kautz graph K (m,n). A Moore
overlay selects an initial n and starts with N ∈ (N(n−1,m),N(n,m)] nodes forming
the Kautz graph topology. Then the overlay either expands or shrinks to the
range (N(n − 2,m),N(n− 1,m)] or (N(n,m),N(n + 1,m)]. Every node changes
its ID appropriately by adding or removing one digit. The design requires global
information for the topology maintenance.

BAKE [19] extends Moore with balanced Kautz tree structure. It is implemented
on top of K (n,m), see Fig. 4.6c for an example. The idea is close to HiPeer [45]
with its concentric multi-ring topology while nodes in BAKE are assigned only
to vertices of the outermost ring. Each ring consists of nodes of the same level
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in the tree. The root has m+ 1 children. Every other vertex has at most m children.
Vertices of 0-ring are root’s children u = u0 for 0≤ u0 ≤m. Vertices of i-ring (i > 0)
are children v = xui−1 · · ·u1u0 of u = ui−1 · · ·u1u0 for x �= ui−1 and 0≤ x≤m. For a
given n, all overlay nodes are assigned to vertices of (n− 1)-ring. Each node keeps
two additional ring links to its successor and predecessor. Topology expanding and
shrinking leads to transition of overlay nodes from one ring to the next one.

Distributed Kautz graphs were proposed in [51] to support dynamic topology
maintenance without “big” expanding and shrinking as in Moore and BAKE. The
basic idea is to apply the “edge-vertex transition” of line graphs. Distributed Kautz
graphs represent topology evolution as a sequence of graph transitions, starting from
the initial topology and reflecting joins and leaves. SKY [51] is a DHT design based
on those transitions. A general method (for arbitrary constant-degree graphs) of
distributed line graphs was introduced in [49].

4.8 Summary

In this chapter we continued to build a set of design principles for applying hierar-
chical routing schemes in flat DHTs. The considered schemes appears in advanced
DHT designs that operate with groups of nodes. Such grouping differentiates the
role of each node in routing. It leads to global hierarchies in the system and becomes
an unavoidable requirement in heterogeneous environments.

Principle 5 differentiates nodes by IDs, hence each node can manipulate with its
ID in the selection of the role. Principle 6 differentiates nodes by placing resources
to each node in accordance with the role. Principle 7 extends Principle 6 based on
resource semantics, when application specifics define resource domains, and the role
of each node is defined by the domain the node belongs to.
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Chapter 5
Clustering

Abstract In the previous chapters we considered the dynamic differentiation of
nodes and resources in flat P2P systems. This chapter shows that the design
principles of the differentiation evolve to the clustering principle. It is the last
conceptual step before the traditional hierarchy of HDHTs. We focus on reasons
of clustering and consider local group formations possible on the top flat DHT
overlays. Such formations eventually appear non-negligible from the point of view
of the global overlay topology. They provide a mechanism to control the tradeoff
between local and global routing.

5.1 Introduction

Many P2P designs deal with heterogeneity by organizing nodes or resources into
explicit groups. Clustering is introduced in the system design to bring similar nodes
together. It increases the scalability of the system and supports fault isolation. In the
terms of performance, the routing distance depends on the similarity between nodes
in the multi-hop path

u = w0→ w1→ w2→ ··· → wl−1→ wl = d.

If the nodes wi are covered by a small set of clusters, then better performance can
be achieved by improving intra-cluster routing (local routing). A node selects many
neighbors from the same or similar groups. Global routing is required only for few
hops in inter-cluster forwarding, and a node intentionally keeps less neighbors from
far-away clusters.

Clustering aims at constructing generic system-level group structures, which
are efficient for controlling load balance, proximity, administrative domains, data
semantics and trust. In fact, “signs of clustering” appeared in Principles 1, 2, 3,
and 4 of Chap. 3, where each node forms clusters of close nodes in its routing
table. In graph theory, these characteristics are reflected in clustering and expansion
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coefficients [23,24]. For instance, Cayley graphs have good clustering properties [1]
and can be applied in DHT designs [25, 32].

Further elements of grouping nodes appeared in Principles 5, 6, and 7 of Chap. 4.
They adopt the heterogeneity by arranging the nodes appropriately to assign to them
different responsibilities. These arrangements have higher impact on global overlay
topology formation compared with clustering in local routing tables. The sum effect
of local activity becomes higher, and the global topology embeds more complex
hierarchical structures.

The extreme case is left for Chap. 7, where the role of groups in the topology
becomes dominant. There, we shall see that each group can be assigned to one
ore more nodes (supernodes), leading to multi-layer hierarchical architectures. In
this chapter, we focus on explicit group formation that performs differentiation on
local level (individually by a node), although the sum impact to the global network
topology is non-negligible.

Clustering schemes appeared in early DHT designs where spontaneous groups of
similar nodes are organized during the system lifetime. We considered preliminary
techniques in Chap. 4. In virtual servers approach [9, 11, 14, 30, 38], several overlay
node IDs are assigned to one physical machine, achieving better load balance.
Proximity clustering [26, 27, 34, 43] aims at adaptation to the underlying network
topology, leading to better routing performance.

Differentiation of resources applies resource clustering. Semantic clustering [39,
42] allows distributing resources among nodes based on the resource semantics.
Similar resources concentrate in a given cluster, the distance between two nodes in
the overlay is proportional to their resources dissimilarity in semantics. Topology
formation with interest-based and utility-based clusters [3, 12, 20] is oriented to
semantic similarity of participating nodes. The use of resource and node semantics
allows advanced search queries. An initiator node uses a specification of requested
resources instead of a flat resource key. A popular example is range queries, where
the result is a contiguous set of similar resources.

Section 5.2 introduces the clustering principle and overviews possible application
areas of clustering for structured P2P systems. We survey several popular clustering
schemes and techniques they use in the definition of the node and resource
similarity.

Section 5.3 considers cluster-oriented topology models. It begins with a con-
ceptual model of virtual nodes that provides a two-level scheme of load balancing
among active participants. The local knowledge problem prevents achieving a stable
state with optimal clustering, different clustering algorithms perform approximated
clustering, so we also consider the problem of false clustering, which can degrade
the performance improvement of clustering.

Section 5.4 discusses a concrete case of clustering where the similarity between
nodes is based on resources the nodes keep—the case of semantic clustering and
close schemes. In these schemes, queries are routed to nodes who are interested in
similar, in the semantic sense, information.
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5.2 Clustering Principle

Principle 3 from Chap. 3 stated that each node can dynamically adapt locally to a
global network hierarchy according to a metric τ . Principles 5, 6 and 7 from Chap. 4
supported topologies with specialized roles of nodes in routing. In general, node
differentiation can be implemented with regard to a global network hierarchy.

Principle 8 (Clustering). Let τ reflect a global network hierarchy. Nodes that are
close with respect to τ(u,v) are also close with respect to |u→+ v|.

In other words, if the global network hierarchy defines a set U of close nodes
(τ(u,v) is small ∀u,v ∈U) then they form an overlay cluster where each node can
reach another in few hops.

An early example of applying clustering in P2P networks is CAP [16], a Cluster-
based Architecture for P2P. Network-aware clustering technique was employed
for content location and routing in unstructured P2P overlays, where the global
hierarchy is determined by the underlying network topology, i.e., it reflects the
domain-based Internet architecture. A cluster consists of nodes that are topolog-
ically close and under common administrative domain. The additional “cluster”
level aims at scaling up query lookup and forwarding. The measurements based on
real-life Gnutella traces showed performance improvement (in terms of successful
lookup percentage and lookup path length) compared with the flat Gnutella system.

The CAP technique is an evolution of the local adaptation schemes, which we
discussed in Sect. 3.4. In contrast to them, clusters form an additional level in the
global overlay topology; a centralized server (called clustering server) performs
clustering and cluster registration.

Let us survey several popular clustering schemes applicable in structured P2P
networks. Models and concrete design solutions behind these schemes will be
considered in subsequent sections.

The concept of “virtual nodes” for clustering Θ(logN) virtual nodes (overlay
node IDs) on a physical machine was introduced in [9,13]. It was developed initially
for solving the DHT load balance problem, see also Sect. 4.3. With high probability
a machine is responsible for a O(1/N) portion of resource keys D, i.e., the load
imbalance factor is reduced from O(logN) to O(1). The concept is further refined
in [11, 14, 38] by more careful virtual node selection and evolution in such ID-
aware clusters. It reduces the maintenance cost at physical machines and adapts to
heterogeneous capacities and high dynamics. A conceptual group-based model of
virtual nodes is presented in [30] with load balance evaluation.

Virtual nodes are located at the same machine. Proximity clustering develops
further this closeness idea, mainly for improving the routing latency [16, 26].
A node associates with a cluster based on a proximity metric τ and selects
most neighbors from the cluster. Topologically-aware CAN construction [26] uses
proximity clustering. The construction extends a discrete variant of PNS (see
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Principle 3 in Chap. 3). Similarly, it allows selecting a next hop when forwarding
a lookup, i.e., proximity clustering implements a discrete variant of PRS.

Proximity clustering often uses a global coordinate system. A node estimates
physical distances to a few landmark nodes. An early example is topologically-
aware CAN construction [26]. Such estimates form a local distance vector that
characterize the position of the node. Similarity of distance vectors of two nodes
provides a metric τ for clustering, e.g., the difference in landmark ordering that
each of two vectors defines.

A distance vector can be hashed to a node ID space using a Hilbert curve or
another space-filling curve that ensures preserving the closeness relationship [27].
Consequently, physically close nodes can construct close keys in the logical
ID space. In [43], this mechanism complements PNS for selecting the long-
range neighbors (expressways) that are physically close and situated near network
access points. In [34], it allows locality-aware load balancing, see Fig. 5.1a for an
illustration. Clustering schemes can follow Principle 4 (Chap. 3) using additional
knowledge on the global network for more accurate cluster formation.

The idea of extending structured P2P designs with clustering semantically close
nodes is introduced in several works [20, 39, 42]. A cluster is a group of nodes
with similar content forming a semantic overlay [39]; it directly follows Principle 7
from Sect. 4.5. Another way of cluster formation is to place semantically related
resources at nearby nodes, according to Principle 6 from Sect. 4.4. In particular,
τ(u,v) can measure the dissimilarity in semantics between resources stored at
u and v. As a result, many lookups can be resolved mostly with local routing.
Classifications of the overlay content by categories [42] or communities [20] allow
further improvement of the routing performance.

Space-filling curves are applicable in semantic clustering. Locality sensitive (or
preserving) hashing constructs resource numerical keys. In the case of multiple
attributes, several keys are constructed. A locating mechanism implements resource
clustering to place the keys of semantically close resources to the same node or to a
set of close nodes [18, 47].
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According to Principle 5 from Sect. 4.2, Mercury [5] organizes nodes into groups
to support multi-attribute range queries. One group is for each attribute. Similarly to
the idea of grouped DHTs from Sect. 4.4, a node may belong to several groups. In
addition to multi-attribute range queries, NR-trees [21] support k-nearest neighbor
queries by clustering nearby nodes around the most powerful ones (Fig. 5.1b).

The existence of interest-based clusters is studied in [3]. Each node can estimate
its preference of other nodes. The preference is a very general metric, e.g., for
resource semantics (nodes keep similar content) or trust (nodes believe each other).
Mutually preferred nodes form a cluster. In reciprocation strategies, nodes with low
contribution to the P2P system become preferable for requesting more resources.
The corresponding model was introduced in [15]. SkipStream [45] uses a similar
scheme for on-demand streaming. Users are clustered in accordance with their
playback offset and the resultant clusters build a clustered skip graph. Such a
hierarchical overlay facilitates the streaming cooperation among heterogeneous
nodes.

Principle 8 provides a natural base for hierarchical DHT designs. Nodes in each
cluster assign a supernode (or a set of supernodes) according to their capacities. All
supernodes form a higher-layer overlay. Therefore, clustering is the last step in the
evolution of flat DHTs to HDHTs. As an example of the industry-level technology
applicable in practical P2P network construction we refer to JXTA/JXSE project.1

In particular, it defines the concept of PeerGroups to decompose the large number
of nodes into manageable groups.

5.3 Cluster-Oriented Overlay Topologies

The previous section provided a retrospective of clustering schemes and their
application areas for structured P2P systems. Let us consider several concrete
designs with the focus on their reference models of clustering.

5.3.1 Virtual Nodes

Recall that the concept of virtual nodes for DHTs appeared initially [9, 13]. Each
physical machine instantiates one or more DHT nodes—virtual nodes. Their IDs
are taken randomly from the ID space S. A conceptual model of virtual nodes is
introduced in [30]. It aims at dynamic balancing across a set of heterogeneous node.

1JXTA is a programming language and platform independent Open Source protocol started by Sun
Microsystems for P2P networking in 2001. Official website is http://jxta.kenai.com/. In November
2010, Oracle officially announced its withdrawal from this project. It is currently migrating from
Java.net to Project Kenaı̈.

http://jxta.kenai.com/
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Fig. 5.2 The snode composition structure: the first level is for vnodes, the second level is
for partitions a vnode is responsible in the resource key space. The sum size of partitions is
approximately equal for each vnode

An overlay is organized as a set of physical machines: software nodes in [30] or
simply snodes. They are active participants managing parts of the DHT. Each snode
hosts several virtual nodes (or simply vnodes), see Fig. 5.2. In turn, each vnode is
a set of partitions of the DHT. Therefore, each snode acts as a cluster of IDs and
covers their sum responsibility area in the resource key space.

The model contemplates two levels of load balancing between participants: the
first, supported by vnodes, provides coarse-grain balancing; the other one, based on
the assignment of partitions to vnodes, provides fine-grain balancing.

In coarse-grain balancing, the number of vnodes per snode defines the snode
enrollment level, which primarily depends on the amount of local computational
resources an snode reserves for the DHT. Such amount is not necessarily static: for
instance, a snode may start by reserving a certain amount of secondary storage for
a DHT; later, that amount may change dynamically.

Fine-grain balancing is based on the number of partitions per vnode. This number
is allowed to fluctuate between well defined bounds, during the creation or deletion
of vnodes. Hence, all vnodes should be considered almost equal in terms of their
load, while snodes may be heterogeneous in the capacity they provide to the system.

Let Ru be the fraction of D that a vnode u maintains. The model aims at
minimizing a deviation of Ru from an ideal (average) share for all the vnodes in
sum. As a result, every snode keeps the number of vnodes that its capacity supports.
Every vnode is responsible for a similar share of the total load. The set of all vnodes
is homogenous in terms of load balance; the set of all snodes is heterogeneous due
to the tunable number of vnodes per snode.

If every node has global knowledge on the partition distribution over all the
vnodes and their snodes, then join and leave operations can be performed efficiently
to minimize the deviation. In addition, every snode is involved in the creation of
every vnode. Consecutive creations of vnodes are executed serially, thus limiting
the parallelism and reducing the scalability to a small number of snodes. For the
design and evaluation details of the global approach please refer to [31].

In the local approach, all vnodes are partitioned into disjointed groups. Con-
sequently, a group consists of many snodes and an snode participates in several
groups. Within each group, balancing is based on the same algorithm used by the
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global approach, though restricted to the vnode set of the group. Local balancing
actions may be performed concurrently at different groups. The number of vnodes
in each group fluctuates between strict bounds, and the overall number of groups
may change, as vnodes are created.

Each snode keeps knowledge on the local partition distribution over all snodes
and vnodes for any group in which vnodes of the snode participate. The knowledge
includes information about the number of partitions each vnode of the group
maintains. Hence, the approach is a downsized version of the global one, an instance
of the two-level decomposition. (We shall discuss it in more detail in Chap. 7 in the
context of supernode model.) When the number of vnodes per group grows, the
number of group decreases until the single global group, which contains all the
nodes in the extreme case. Clearly, the quality of resultant balance for larger groups
is better for the cost of maintenance performance (snodes joins and leaves, creation
and removal of vnodes, creation, merge and split of groups).

5.3.2 Proximity-Based Clusters

In Brocade [46], a secondary overlay network of supernodes is used to improve the
routing distance. These supernodes are the nodes that are situated near the network
access points such as routers and gateways. Nodes in the primary overlay network
establish direct connections with a supernode that is nearby, so forming a cluster.
Supernodes advertise the nodes that are connected to them as objects served by the
supernode in the secondary overlay. Routing from node u to d in the primary overlay
involves three steps: (1) locating a supernode s0 locally, (2) routing in the secondary
overlay to the supernode s1 that stores d, and (3) hopping from s1 to d.

Although Brocade produces reasonable improvements from the flat overlay case,
it pushes the problem to an auxiliary network of a smaller size. Brocade faces
a dilemma in choosing the appropriate number of supernodes: if the number of
supernodes is large, the logical overlay routing cost gets higher; if the number of
nodes in the secondary network is small, a regular node needs to keep more state
about the addresses of other nodes that are linked to the same supernode. This can
be an issue in a dynamic environment. Some related models for this dilemma we
shall consider in Chap. 7.

In eQuus [22], a Pastry-like DHT, nearby nodes form a clique in place of a single
Pastry node. The goal is to make a DHT network locality-aware and highly resilient
to churn. The eQuus network tolerates churn as long as there are surviving nodes in
cliques. However, using cliques also entails the problem of maintaining the cliques,
in addition to maintaining the overall topology. In particular, cliques have to be split
(when cliques become too large due to joins) and merged (when cliques become
too small due to leaves or crashes). In fact, eQuus applies two-layer hierarchical
architecture, see more details in Chap. 7.

There are schemes that use landmarks to cluster nearby overlay nodes. Landmark
clustering assumes that nodes close to each other are likely to have similar network
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Fig. 5.3 False clustering with landmarks. Let au = τ(u,A), av = τ(v,A), bu = τ(u,B), bv = τ(v,B).
Although u and v are distant, they have a similar ordering of landmarks A and B if au ≈ av and
bu ≈ bv. Cases (a) with au ≈ av > bu ≈ bv and (b) with au ≈ av ≈ bu ≈ bv show that u and v have
similar landmark orderings and similar landmark distance vectors. Note that the triangle inequality
is not hold in the Internet, and the case τ(u,v)> au +av or τ(u,v)> bu +bv is also possible

latencies to a few landmarks spread evenly across the Internet. A pioneering work on
landmark clustering is topologically-aware CAN construction [26]. Physically close
nodes are clustered into logical vicinity during overlay formation. When a new node
u joins the overlay, u finds such nodes that are close to u in the IP distance.

A distributed binning model supports this clustering scheme. Nodes partition
themselves into bins such that nodes that fall within a given bin are relatively close
to one another. The system provides a global set of well-known landmark machines.
An overlay node measures its distance (round-trip time) to all landmarks, estimating
the local distance vector. Arranging the distances, the node obtains its associated
ordering of landmarks. Then the node independently selects the bin that corresponds
to this ordering. Little effort is required for the landmarks to allow nodes to identify
their bin by simple pinging.

Although this yields good performance improvements, it may cause significant
imbalances in the distribution of the nodes in the CAN space that leads to hot-
spots [7], e.g., there are bins with sparse and dense population. The clustering
scheme is applied only when node join the system, so it does not handle properly
changing network conditions. The distributed binning model is a coarse-grained
approximation [33]. It may be inaccurate in differentiating close nodes—the false
clustering problem, see illustrative examples in Fig. 5.3. Furthermore, an inadequate
selection of landmarks can make landmark ordering completely useless.

To overcome the disadvantages of Brocade and topologically-aware CAN, ex-
pressway routing [43] constructs an auxiliary network (topology-aware expressway)
for clustering nodes that observe the same latency behavior with a few chosen
landmarks.2 As in the previous designs, such an expressway overlay aims at
approximation of the physical network topology, making performance independent
of the network size N.

Consider the landmark clustering model used in the expressway design. Similarly
to topologically-aware CAN construction, an expressway overlay uses a global

2Another variant, which [43] also considered, makes clusters from nodes belonging to the same
autonomous system.
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set of n landmark nodes. They can be part of the overlay itself or standalone.
Each overlay node measures its network distance to the n landmarks, producing a
landmark distance vector (l1, l2, . . . , ln), a point in the Cartesian space (the landmark
space). Intuitively, close nodes in terms of network latency distance τ have similar
landmark vectors. To reduce false clustering, landmark vectors are used only in a
pre-selection process to identify nodes that are potentially close to a new node. After
that each node uses actual round-trip time measurements to other overlay nodes to
identify the closest neighbors.

The expressway nodes independently determine their positions in the landmark
space and publish their positions on the DHT. A node finds expressway nodes that
are physically close to it by referring to this published information by using its own
landmark vector as the key. The Hilbert curve (a particular instance of space-filling
curves) is used to map landmark vectors to the DHT ID space. Importantly, this
mapping preserves clustering properties, and close landmark vectors remain close
in the ID space.

Expressway landmark clustering inherits shortcomings of landmark order-
ing [33]. Clustering with a common fixed set of landmarks is a coarse-grained
approximation; it is not always effective in differentiating close nodes and is
vulnerabile to landmark misplacements.

One of the key points of expressway construction is that network distance can be
estimated without the need of direct measurements between overlay nodes. There
exist network coordinate systems that embed nodes into some Cartesian space,
similarly to the landmark space model above. An example is Vivaldi [10]. Latency
between two nodes can be estimated using distance computation in that space.
Consequently, a clustering scheme can exploit the coordinate model to clusters
nodes, since nodes close to each other should have similar coordinates.

Although coordinate systems are useful in determining the latencies among
nodes that have never communicated, there are also several important shortcom-
ings [17, 35]. On the one hand, estimates are quite unpredictable. While many
nodes obtain good estimates, a few ones can get extremely bad results. On the
other hand, the network coordinate model assumes the triangle inequality, which is
commonly violated due to Internet routing policies [10], see also the discussion for
Fig. 5.3 above. Moreover, congestion or re-configuration of the underlying network
can suddenly change the relative location of many nodes. Dynamics force nodes
to recompute periodically their coordinates, leading to oscillations since a local
decision making is hard to determine when it is convenient to update the coordinates.

TR-clustering [35] exploits traceroute paths instead of unstable measurement
data such as round-trip-times. The traceroute tool makes clusters more stable,
resilient to changing network conditions, though this supposes more effort to the
nodes. The algorithm clusters together those nodes that share the same paths to a
common set of landmarks. It is not based on Internet coordinate systems, attempting
to form clusters with a low rate of falsely clustered nodes.

The key algorithm idea is exploitation of Internet routers with high vertex
betweenness centrality, see also discussion in [24] on the role of this measure in
models of complex networks. In the context of P2P overlays on top of the Internet,



120 5 Clustering

the betweenness centrality γA of a router A is the fraction of Internet paths between
all pairs of nodes in N running through A (for simplicity we assume A /∈ N),

γA =
1

N(N− 1) ∑
u,v∈N,u �=v

σuv(A)
σuv

,

where σuv is the number of shortest paths from u to v in the IP network and σuv(A)
is the number of them that run trough A.

This measure characterizes the influence of A over the flow of information
between other nodes, assuming that information travels over the network by
primarily following shortest paths. Traceroute probes are used to discover routers
with high betweenness centrality. They are then selected to be landmarks for the
overlay.

If a network contains clusters that are loosely connected to each other by a few
intermediate routers, all the traffic is expected to go along these routers. As a result,
they will report the highest vertex betweenness. By equipping the landmark set
with these routers, the overlay is able to detect the clusters currently present in the
network while partially revealing the structure of the Internet graph.

In contrast to other landmark-based algorithms, the TR-clustering algorithm
allows its landmark set to be dynamic. Each cluster maintains an own set of
landmarks and recomputes it based on traceroute probes of all nodes of the cluster.
Selecting landmarks for the next round is followed by clustering, when each node
individually selects its cluster based on landmark distances. The process is repeated
until the either there are not more too dense clusters, or the desired clustering quality
is achieved. The quality criterion is minimization of false clustering.

5.3.3 False Clustering

When distant nodes are clustered near each other the problem of false clustering
appears, degrading the routing performance. The quality of existing clustering
algorithms strongly depends on the quality of measurements of τ(u,v). In proximity
clustering, clustering can be significantly inferior to the optimum when artificial
data such as network coordinates are used. Moreover, the network coordinate model
assumes that latency estimates satisfy the triangle inequality

τ(u,v)≤ τ(u,w)+ τ(w,v) ∀u,v,w ∈ N,

which is not true in the Internet [10]. Violations of the triangle inequality lead to
inaccuracies that rise the fraction of falsely clustered nodes.

Consider the clustering model from [35]. It represents an overlay network as a
connected undirected graph G = (N,E), where N represents the set of nodes and
E the set of links. A clustering C = {C1,C2, . . . ,Cm} of a network G = (N,E) is
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a division of N into a finite number of disjointed sets such that
⋃m

i=1 Ci = N and
Ci ∩Cj = ∅ ∀i �= j. The sets Ci are called clusters. The total number of nodes in a
cluster Ci is its size |Ci|. Denote Cu the cluster that contains the node u. If u and v
are in the same cluster then Cu =Cv.

False clustering rate f is modeled as the fraction of falsely clustered nodes in a
cluster. Intuitively, if a node contacts a randomly selected node from its cluster, then
f is the probability of contacting a falsely clustered node. That is, false positives
are taken into account: the quality of clustering degrades when a cluster contains a
distant node.

Let Ĉu = Cu \ {u}. Denote Γv(l) the set of l closest nodes to u in terms of some
metric τ , e.g., the round-trip time. For a node u, its individual false clustering rate is
defined as

fu =
Ĉu∩Γ (lu)

|Ĉu|
where lu = |Ĉu|. (5.1)

It measures the overlap between the lu = |Ĉu| closest nodes to u and its cluster
neighbors. The model assumes that the degenerated case Cu = {u} is not possible.

Then the false clustering rate can be defined as the average over all nodes,

f =
1
N

N

∑
u=1

fu. (5.2)

A clear property is 0 ≤ f ≤ 1, where values of 0 and 1 are assumed at best and at
worst, respectively.

Model (5.1) does not account false negatives, i.e., the nodes in other clusters that
should be included in Cu but not have been. Accounting false negatives requires that
the optimal partitioning must be known in advance. It is a complicated problem even
for static network and becomes more challenging in such a dynamic and large-scale
environment as the Internet, where topology changes frequently due to detour paths
and multi-homed nodes. That is, the false clustering rate does not depend on the
benefit of any a priori structure and dynamics of the underlying network. The only
knowledge is a distance metric τ , which allows defining the closest nodes.

Model (5.2) penalizes “dense” clusters than “sparse” clusters. It again relates the
ration between false positives and false negatives. The sparser a cluster the more
false negatives are, leading to the degenerated case Cu = {u} ∀u ∈ N. If clusters
become dense then false positives start playing a more important role in the quality
of clustering. Therefore, (5.1) rewards clustering algorithms that attempt to create
dense clusters.

Cluster validity is one of the most important issues of cluster analysis [4]. It
aims at the evaluation of clustering results to give an indication of the partitioning
that best fits a given data set. Although there are many traditional cluster validity
indexes, they are not sufficient when one must deal with arbitrarily-shaped clusters.
In contrast, (5.1) and (5.2) are based on no prior information about the geometry of
the clusters. Consequently, the false clustering rate does not bias toward a particular
underlying network shape.
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Based on this model, [35] experimentally showed that false clustering is
non-negligible for proximity-based clustering. It may impact negatively any
proximity technique and have an important influence in solving the underlying
network topology mismatching problem. Note that the model can also be applied
for other clustering schemes where distance metrics τ are not related to proximity.

5.4 Cluster-Oriented Search Queries

5.4.1 Semantic Clustering

Content-based semantic-aware search is a challenging problem in P2P systems.
For instance, conventional flat DHTs have no support for keyword searching.
Although such DHTs can be extended, the search process may incur either huge
traffic load for result intersection, or large overhead for multiple publication and
update [8, 20, 47]. A possible solution is that resource keys are distributed over
the nodes based on resource semantics, see also the discussion started in Chap. 4.
The performance of locating content can be greatly improved by grouping peers
interested in similar resources and routing their search requests within these groups.
Clustering semantically close nodes together has been proposed in many studies,
e.g., see [37, 39, 41].

5.4.1.1 Continuous Semantic Similarity Metric

The notion of semantic overlay was introduced in [39]. Such an overlay is a logical
network where resources are published such that the routing distance between
two nodes in the network is proportional to the dissimilarity in semantics of their
resources. pSearch system [39] implements a semantic overlay using latent semantic
indexing (LSI). It represents resources and queries as vectors in a semantic Cartesian
space. Each element of a semantic vector corresponds to an abstract concept (e.g.,
a term in a common vocabulary) and the value shows the concept importance. The
similarity between a search query x and a resource item y is measured as the cosine
of the angle between their vector representations:

Similarity = cos(x,y) =
1

|x| · |y|∑i

xiyi.

Given a query, the problem of finding the most relevant resources is reduced to
locating the resource vectors nearest to the query vector.

pSearch maps the semantic space to nodes in an overlay network and conduct
efficient nearest-neighbor search in a decentralized manner. The CAN protocol is
used where semantic vectors are keys in the CAN space. In the simplest case, the
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semantic space and CAN dimensions are equal. The lookup operation routes a query
to the destination node, which is an instance of inter-cluster routing. Upon reaching
the destination, the query is flooded to nodes within a radius r, determined by the
similarity threshold or the number of wanted items specified by the requester. The
latter step is an instance of intra-cluster routing for retrieval of a set of semantically
close resources.

A close approach uses similarity indexes [2], based on the well-known technique
of locality-sensitive hashing. Resources are hashed such that “similar” resources are
much more likely to collide than dissimilar resources. A hash function is designed
for a particular similarity metric of interest. At query time, the query is also hashed,
and resources that are hashed to the same bucket are retrieved as answers. Some
other cluster-based designs with the same idea of using a metric for estimating the
distance between nodes sharing similar content can be found in [40, 47].

5.4.1.2 Discrete Semantic Classification

A different approach for semantic clustering was introduced in [20]. Clusters
represent node communities, each shares similar resources. Resources are described
with an ontology, which specifies formal classes of resources. The key assumption
is that node’s local resources fully represent interests of the node. That is, data
ontology properties are used to classify nodes as well as search queries. Importantly
that resource distribution is pure local: each node keeps own resources only, the
storage is not delegated to other nodes.

When a new node joins the system, it first classifies its own resources, and then
registers its major interests to the overlay. Specifically, an interest of the joining
node is hashed into a key in the ID space and a responsible node is found by
lookup operation. Then the new node would know other existing nodes sharing
the same interest. The node contacts some of these existing nodes and joins their
communities. In this way, nodes always connect to other nodes sharing common
interests, and thus they can form a community overlay. In fact, this design is nearly
a two-layer hierarchical DHT with all nodes connected into a flat DHT overlay on
one layer and many community overlays on the other layer, see Chap. 7. Note that a
node can participate in several community overlays at the same time.

An ontology-based DHT design was introduced in [28, 29]. It presents a struc-
tured P2P overlay network, which uses an upper ontology as a binary partition tree
to organize nodes in a semantic space. The upper ontology is a static shared ontology
with just “is-a” relationship between concepts (concept hierarchy) to annotate
resources. The hash function is based on an upper ontology that partitions semantic
space of the domain concepts. The partition tree organizes nodes in the semantic
space as well as allows efficient routing of search queries. Each partition forms a
community of nodes (cluster); the nodes are mirror of each other, maintaining the
same resource information. The cost of a lookup query depends on depth of the
shared ontology tree and is independent on the network size.
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A similar approach is employed in [37] with the principle called interest-based
locality. The principle posits that if a node has a particular piece of content that one
is interested in, it is very likely that it will have other items that one is interested in
as well. We also refer to [36] where the problem of ontology-based clustering in the
context of P2P databases is discussed and experimentally evaluated. In particular,
they contributed an architecture to group semantic similar peers within clusters and
an incremental clustering process considering the dynamic aspect of P2P networks.

5.4.2 Interest-Based Clusters

Static semantic relationships between nodes and their resources can be discovered
relatively easily. The biggest challenge is to build a network that maintains and
exploits the discovered semantic structure. It is, however, is subject to dynamics,
an evitable property of P2P systems. The behavioral patterns of participating nodes
influence the semantic relations, thus affecting the cluster formation.

5.4.2.1 Resource Popularity

Non-uniform resource popularity leads to interest-based clusters when some nodes
communicate between each other frequently, so forming a group. Queries are
confined to members of groups (not necessarily disjoint) whose sizes are smaller
than the network size. The non-uniform request patterns defines a global hierarchy.
Based on it, the routing and node state complexity can be made a function of the
cluster size, independent on the network size N.

Let nodes u and v frequently communicate with each other. Then making them
neighbors (u ∈ Tv and v ∈ Tu) improves the routing performance for the frequent
lookups. The improvement could come possibly at the expense of an increase
in the routing distance between some other pair of nodes that do not frequently
communicate with one another. An effective P2P design should preserve that (1) the
routing distance between nodes within a cluster scales with the cluster size and
(2) the average routing distance between any pair of nodes is lower than that in the
underlying flat DHT.

Consider the cluster-based design from [3], which implements this idea to
optimize routing in a Chord DHT. Denote λuv the frequency of lookups from a node
u for resources k located at v. Define a node v a preferred node for u, if λuv ≥ λ0,
where λ0 is a threshold constant. For each node u, its preferred nodes form a set Pu,
which varies over time.

A request graph is GR = (N,ER) where a direct edge (u,v) ∈ ER if an only if
v ∈ Pu. Clearly, the connectivity of GR depends on threshold λ0; for larger λ0 the
connectivity becomes sparser.

A disjointed cluster is a subset C ⊆ N that satisfies the closure property Pu ⊆
C ∀u ∈ C . The notation Cu designates the cluster to which node u belongs. All
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nodes within a cluster share the common interest, distinct from other clusters. As
a result, the set of nodes N is partitioned into several distinct clusters. Each cluster
corresponds to a connected component in GR.

Nodes with multiple interests could lead to the flat case when Cu = N ∀u ∈ N.
Identification of interest-based groups is still possible based on analysis of weakly
linked clusters in GR. Some of these clusters, however, are overlapped by nodes
with multiple interests. The degree of overlap can be reduced by replication. Let
(u,v) ∈ ER where u and v belongs to different clusters Cu and Cv. (The number of
such edges is small.) Then those resources of v that u is interested in are replicated
on some nodes of Cu. The edge (u,v) is removed shrinking Pu.

A cluster can optimize interest-aware communications by keeping the routing
distance small among its members. The optimization of routing with respect to one
interest group may conflict with that in the other interest group if there are nodes
with multiple interests. Besides that, even if there is a tendency for nodes to cluster
while serving their own interests, an outlier node in some cluster may frequently
communicate with outliers in other clusters. When the improvement in routing for
some interest group comes at the expense of a deterioration of routing distance for
another interest group, the overall performance depends on the degree of overlap.

Consider the routing table of a node u. Let mc = log2 |Cu| and m = log2 N. As in
the basic Chord DHT, Tu includes the immediate successor on the ring. In contrast,
other neighbors (fingers) are classified into mc cluster neighbors and m−mc non-
cluster neighbors. Cluster neighbors are selected from Cu with progressive distance
steps 2i for i= 1,2, . . . ,mc. Similarly, non-cluster neighbors are selected from N \Cu

with steps 2i−mc for i = mc+1,mc+2, . . . ,m. In fact, two sub-rings are formed, one
within the cluster for local inter-cluster routing and the other for global routing.

In a lookup for k, if u knows that the destination is in Cu then u forwards the
lookup to the best cluster neighbor. If u knows that the destination is outside Cu then
u forwards the lookup using the best non-cluster neighbor. If u has no knowledge
on the destination then u performs standard greedy routing, selecting the closest
neighbor to the key.

In summary, each node u performs the following iterations.

1. Profile the requests to determine Pu.
2. Apply the replication protocol to prune Pu.
3. Apply the cluster identification protocol to determine Cu.
4. Configure the routing table Tu.

In its pure form, the iterations should be synchronized with other nodes, since the
construction involves the global request graph GR. Nevertheless, u can apply only
local knowledge to determine Pu and Cu approximately.

Theorem 5.1. Consider a Chord DHT network extended with the above protocol.
Let N be the number of nodes and M≤N be the mean cluster size. If ε is the fraction
of times a lookup is forwarded to a non-cluster neighbor then the expected routing
distance between random nodes u and d is
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E[|u→+ d|] = O

(

(1− ε) log2 M+ εM(1−M
N
) log2

N
M

)

(5.3)

for large N and M.

Proof. Since each cluster forms own Chord sub-ring, the routing within the cluster
takes O(log2 M) hops. The expectation is (1− ε)O(log2 M).

Consider a Chord ring of X nodes, each has l < log2 X neighbors, i.e., the number
of neighbors can be less than in the basic Chord. Let us prove that the routing
distance is at most Xl/2l hops when the following two phases are used. At the first
phase, the routing moves a lookup to the interval of size 2l where the destination
resides. It can be done by using the longest-range neighbors and requires at most
X/2l hops. At the second phase, the standard Chord routing takes at most l hops to
resolve the lookup within the interval.

For inter-cluster routing, l = m−mc neighbors is used for the sub-ring of X =
N−M nodes. Using the previous assertion, it takes at most

(N−M)(m−mc)

2m−mc
=

(N−M)M(log2 N− log2 M)

N
= (1−M/N)M log2

N
M
.

The expectation is εO(M(1−M/N) log2(N/M)). ��
An interesting problem is finding M∗ = M(N,ε) that minimizes (5.3). Note that

ε depends on the ratio M/N. In particular, ε ≈ 1 if M is very small and ε ≈ 0 if M
is close to N.

For moderate cluster sizes 1�M�N, the improvement in routing performance
is significant if ε is preserved small. That is O(logM) hops instead of O(logN).
It means that u needs additional knowledge to determine for a given key there is
d ∈ Cu responsible for k or there is no such d ∈ Cu.

5.4.2.2 Social Rationality

Many P2P applications require that nodes behave altruistically in order to perform
tasks collectively. This requirement is called social rationality: if a node has a
choice of actions it should chose the action that maximizes the social utility (sum
of all node utilities in the system). Individual nodes, however, even if they wish to
follow the socially rationality, often will not have enough information to gauge the
effects of their actions on others. Social rationality is also contrasted with individual
rationality when nodes should select actions that maximize their individual utility. In
addition, selfish or malicious nodes can get into the system, since P2P environments
are typically designed for open.

The SLAC rule (Selfish Link-based Adaptation for Cooperation) provides a
simple selfish re-wiring protocol that spontaneously self-organizes the network into
internally specialized clusters [12]. Nodes within the cluster pool their interests,
sharing tasks and working altruistically as a team although their individual behavior
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is selfish. In this design solution, the adaptation principles from Chap. 4 are evolved
to offer dynamic specialization and respecialization if nodes recognize they could
do better playing another role (and have the ability to do so).

Let u be engaged in some activity and Bu be some measure of its utility (or
performance). The higher the value of Bu, the better the node performs in its target
domain. The first assumption is that u tends to use its abilities to selfishly increase
Bu in a greedy and adaptive way. The second assumption is that u can change its
behavioral strategy (that is, change how it behaves at the application level) as well
as drop and make links to nodes u knows. Third assumption is that u can discover
other nodes randomly, compare its utility against those nodes, make links to them
and their neighbors, and copy their strategies.

SLAC specifies how u should update its behavioral strategy and neighbors
(routing table). Regularly, u compares its utility against a random node v. If Bu < Bv

then u copies behavioral strategy of v and “rewires” itself in the network by dropping
all current neighbors from Tu and adding v and all v’s neighbors to Tu.

Also, periodically and with low probability, u applies a kind of “mutation”
operation. Mutation of the links involves removing all existing neighbors from Tu

and replacing them with a single link to a node randomly drawn from the network.
Mutation of the behavior (role) means changing the behavioral strategy randomly.

Note that the interactions between nodes are pair-wise between network neigh-
bors. All the rewiring operations are symmetric: if node u makes a link u→ v then
v makes a link v→ u and on the other hand if u drops a link u→ v the link v→ u
has to be dropped as well.

If many nodes apply the SLAC rule then naturally some clusters are formed
containing nodes of the similar utility. In fact, the rule uses the metric τ(u,v) =
|Bu−Bv|. The strategy is similar to BitTorrent, when nods with equivalent upload
rates form a cluster in a file-sharing swarm. (Chapter 6 considers this topic in more
detail.) Extensive experimental study [19] confirmed that the BitTorrent choking
algorithm for neighbor selection facilitates the formation of clusters with nodes of
similar upload bandwidth. Nodes of the same utility class prefer to upload to each
other, with the occasional exception of random optimistic unchokes.

When applied in a suitably large population, over time, SLAC follows a kind of
evolutionary process in which nodes with high utility tend to replace nodes with low
utility with nodes periodically changing behavior and neighborhood. Experiments
showed that there is no dominance of selfish behavior, as might be intuitively
expected. A SLAC produced network is close to the social optimum although nodes
behaved in a bounded rational and myopic selfish way.

Actually, a form of link-based incentive mechanism emerges. The focus is on the
elimination of free-riding. Nodes make and drop links in the network to minimize
the effects of others nodes’ selfish behavior. Consequently, the topology itself
reflects a network of cooperation.

Another social network-based design was introduced in [44]. Virtual social
groups of nodes are formed using dynamic interrelationships (e.g., preferences,
interaction history, and trust relationship). In fact, it builds a social network on
top of the flat overlay to assist in exploring resources in the P2P overlay network.
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The interactions between the nodes are used to incrementally build the social
relationships between the nodes in the associated social groups. In such a P2P
network, a search query is propagated along the social groups in the overlay social
network.

PROSA [6] is a semantic P2P overlay network also inspired by social dynamics.
In a PROSA overlay, nodes sharing similar resources are eventually connected with
each other, naturally evolving to a small-world network. The PROSA topology
dynamically changes, following changes in node preferences and attitudes: if a node
gets involved in different topics, it will link to other nodes that provide resources in
those topics, just making queries and waiting for responses.

5.5 Summary

A key challenge that is tackled with hierarchical routing schemes is the usability of
a P2P system that consists of many heterogeneous nodes and keeps a huge amount
of diverse resources. For scalability such a system must implement efficient and
effective techniques for search and retrieval. Search techniques depend on overlay
network topology and resource management, i.e., resource placement and resource
indexes. As we showed the latter two problems can be solved based on mechanisms
with grouping nodes and resources in the network.

This chapter finalized our exposition of the evolution of hierarchical routing
schemes in flat DHT designs. Elements of grouping nodes, which appeared initially
in Principles 5, 6 and 7, converge to system-level cluster structures. Eventually
the evolution comes to Principle 8. The clustering mechanics lead to DHT designs
which we called pre-hierarchical. It is the last step before pure HDHTs.
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Chapter 6
Local Ranking

Abstract Intrinsically, P2P networks are anonymous, dynamic, and autonomous.
Participants have natural disincentives to cooperate because cooperation consumes
their own resources and may degrade their own performance. Consequently, each
node selfishly attempts to maximize own utility lowering the overall utility of the
system. Avoiding this “tragedy of the commons” requires incentives for cooperation.
This chapter considers design principles for providing incentives for cooperation in
resource sharing among nodes. Fair resource sharing needs differentiation based on
the contribution/consumption each node has in the system. We state the problem of
local ranking in a P2P resource sharing system with multiple resources. It provides
rank-based differentiation of competing nodes and their resources. Introducing
ranks rewards cooperating nodes and punishes defect behavior. In this chapter, we
focus on ranking models with local knowledge only; the class of models with global
system knowledge is discussed later in Chap. 10.

6.1 Introduction

A P2P resource sharing system consists of nodes where each node is controlled by
an independent entity and all nodes must cooperate as a self-organizing network
with no central control. Cooperation is based on two operations: a node provides
and consumes resources to and from other nodes, forming node’s costs and gains.
Concrete implementations include such popular systems as Amazon Simple Storage
Service, P2PSIP, and BitTorrent (see Chap. 13).

By pooling together the resources of many participants, a P2P network provides
a highly scalable platform for distributed resource sharing such as storage, con-
tent, bandwidth, or computing. The previous chapters primarily discussed the
corresponding design principles of effective resource distribution. Being coopera-
tive, participating nodes altogether achieve good system performance, scalability,

D. Korzun and A. Gurtov, Structured Peer-to-Peer Systems: Fundamentals of Hierarchical
Organization, Routing, Scaling, and Security, DOI 10.1007/978-1-4614-5483-0 6,
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security, etc. This chapter focuses on design principles of cooperation in a P2P
system, an essential issue when the environment is autonomous, anonymous, and
dynamic.

Lack of cooperation can essentially degrade a P2P system [9, 20, 23, 35]. Due to
autonomy, individual actions are voluntarily chosen and determined by independent
and rational behavior. Nodes are intrinsically selfish; they attempt to maximize own
utility lowering the overall system welfare. Individual consumption tends to come
without proper contribution (freeriding). Anonymous nodes are less accountable
for their activity and change their IDs with near zero cost (whitewashing). Due to
dynamics, most interactions among nodes are one-time; nodes have no idea about
other nodes’ behavior history, except their current behavior, so operational decision-
making is needed.

Cooperation among nodes can be supported with incentives [10]. A system
incentive mechanism encourages every node to balance rationally when contributing
its own resources and consuming external ones. In its simplest case, each node
acquires and contributes equal amounts of resources, as used in BitTorrent [8] and
its variants [5, 14, 16, 19, 29]. Even for this extremely simple case, stimulating
participants to voluntarily provide resource is a very challenging task [26]. No
exogenous organization can effectively enforce the punishment or reward. A rational
node has to locally compute individual scores for its neighbors and resources. Based
on this ranking the node operationally decides current provision and consumption
strategies in its neighborhood.

The purest P2P assumption is that all communications are through neighbors.
Any node u ∈ N is assured only in a local view onto the network. In fact, u knows
at a time instance t two metrics, avk = avk(u, t) and bvk = bvk(u, t), which are u’s
consumption and provision of resource k through neighbor v, respectively. The
metrics aggregate the local history of u’s direct observations. This assumption is
known as bilateral exchange or direct reciprocity, see [4, 18, 20, 23]. In this chapter,
we attempt to understand to which extent a node can rationally apply the scant local
knowledge (a,b) for ranking in its neighborhood.

Section 6.2 considers the role of incentives and differentiation in P2P resource
sharing. We study rank-based operational approach when a node computes separate
local ranks for nodes and resources based on the current behavior of its neighbors.
Then the node decides its provision and consumption in proportion to these ranks.

Section 6.3 discusses a generic linear model for P2P local ranking and its
applicability for rank-based reciprocal incentives. We reduce the local rank
computation to a LP problem and provide the condition of effective rank existence.

Section 6.4 relates other linear ranking model to prior work. We show that
known deficit-based models are simply described as instances of this model. We
also discuss techniques of such theories as economics, operations research, control
theory, and game theory, which is widely applicable in modeling fair cooperation
but have certain shortcomings when the local knowledge problem is essential.
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6.2 Local Ranking Problem

Let each node observe activity of others directly and make own decisions based on
this local knowledge. Decisions are operational since behavior of other participants
is unpredictable, with no assumption on long-term invariants. In this section we
consider operational decision-making in P2P resource sharing systems. We use
BitTorrent-like (BT) systems as a reference case of single-resource exchange. It
provides intuition and model assumptions for the general form of local ranking
problem in multi-resource exchange.

6.2.1 Rank-Based Operational Decision-Making

Consider a P2P resource sharing system with a set N of nodes. Each node u∈ N has
links to its neighbors Nu ⊂ N, see Fig. 6.1a. In turn, any u’s neighbor has own set
of neighbors, and the global network topology is formed. Assumption |Nu| � |N|
leads to the local knowledge restriction when u’s directly observable knowledge
about the entire system is partial [15, 24, 33]. Let R denote the index set of all
system resources. For simplicity assume that each resource is of unlimited supply,
e.g., video streaming. A node u consumes external resources k ∈ R+

u and provides
local resources k ∈ R−u ; let Ru = R+

u ∪R−u . Consumption and provision are through
neighbors v ∈ Nu. Evolution is Nu = Nu(t) and Ru = Ru(t) in time t since u updates
its neighbors and decides resources to provide/consume to/from the system.

Let avk(t) ≥ 0 denote u’s consumption of k through v and bvk(t) ≥ 0 be the
provision of k to v. Both avk and bvk are in the same units, e.g., consumption
and provision rates. In the matrix form, A(t) and B(t) are positive (|Nu(t)| ×
|Ru(t)|)-matrixes, where rows and columns change with t. They accumulate directly
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Fig. 6.1 Participation of a node u in the P2P resource sharing system: u’s local perspective. (a) u
makes exchanges (trades) with each neighbor v ∈ Nu for resources k ∈ Rv ⊆ Ru. (b) u directly
observes provision A(t) from neighbors and knows their actual consumption B(t), then u makes
control decisions for expected consumption B(t +1)
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Table 6.1 Decision-making at a node u in multi-resource consumption and provision. Ranks
support the capacity allocation among resources and neighbors

Consumption: u is a client, v ∈ Nu are servers Provision: u is a server, v ∈ Nu are clients

Selection of (k,v) for k ∈ R+
u and v ∈ Nu is the

consumption decision problem: which
resource k and from which neighbor v to
request.

Selection of (v,k) for v ∈ Nu and k ∈ R−u is
the provision decision problem: to
which neighbor v which resource k to
provide.

Resource ranks s = (sk)k∈Ru

Node ranks r+ = (r+v )v∈Nu Node ranks r− = (r−v )v∈Nu

1. Allocate consumption capacity among
resources k ∈ R+

u proportionally to sk.
2. For given k, allocate its capacity share among

neighbors v ∈ Nu proportionally to r+v .

1. Allocate provision capacity among
neighbors v ∈ Nu proportionally to r−v .

2. For given v, allocate its capacity share
among resources k ∈ R+

u proportionally
to sk .

observable participation history of the neighbors during τ ≤ t. For instance, the
latest activity (short-term history) is used in BT-systems [5, 8, 14, 16, 19, 29, 32]
and aggregation over a lengthy period (long-term history) is used in reputation
mechanisms [2,7]. Each node applies a preferable accumulation method on its own.

Define u’s local knowledge at time t the tuple (Nu(t),Ru(t),A(t),B(t)). It has
strong practical reasons. Propagation of global knowledge is inefficient in large-
scale and high-dynamic systems. Information from non-neighbor nodes is indirect,
observed via intermediate nodes, thus becoming subject to trust constraints.

Consider discrete time periods {1,2, . . .}, indexed by t and possibly infinite. Let u
decide its activity for period t+1 based on the local knowledge collected in period t,
see Fig. 6.1b. Decisions are on the operational level [13]: u performs actions in
period t and then observes the feedback from neighbors in t + 1. Further we omit
t in our notation when the context of repeated transitions t → t + 1 is clear. The
operational approach is reasonable when the system cannot be completely specified
even as some types of stochastic processes. For instance, a neighbor may arbitrary
refuse its rational or altruistic behavior, e.g., because of a bug or ill-will [17].

BitTorrent [8] is an example of a single-resource sharing system (file sharing),
where the shared resource is bandwidth. Neighbors v consume from u in period t+1
according with their provision to u in t. This is an instance of bilateral exchange; u
operationally makes bv(t +1) close to av(t). Table 6.1 shows the general case when
a node u performs two parallel iterative processes in t + 1. In provision, u iteratively
selects (v,k) to provide v a portion of k, so having full control of bvk(t+1) for v∈Nu,
k ∈ R−u . In consumption, u observes avk(t + 1) for v ∈ Nu, k ∈ R+

u since it depends
on v’s provision strategy. Nevertheless, u can reduce avk by requesting less from v
or u can stimulate increasing avk by more requests to v. Accordingly, u iteratively
selects (k,v) to make a request for k to v.

These two processes result in sharing u’s consumption and provision capacity
between neighbors and resources. The bottom part of Table 6.1 shows two-phase
rank-based sharing. Resource ranks sk and node ranks r+v and r−v are non-negative
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real numbers that quantify importance of k ∈ Ru and v ∈ Nu to u (local ranks or
scores). The iterative rank-proportional allocation can be implemented in a round-
robin fashion, typically with normalized ranks

∑
k∈Ru

sk = 1, ∑
v∈Nu

r+v = 1, ∑
v∈Nu

r−v = 1. (6.1)

Further we assume normalization property (6.1) if the reverse is not stated explicitly.
Since u in consumption is primarily interested in resources, not from whom they

consume, u decides which resource to request and only then from which neighbor.
Similarly, in provision, u serves neighbors, allocating its capacity for them, and
only then u decides which resources to provide to a selected neighbor. Now we can
formulate the following principle for rank-based decision-making in multi-resource
exchange.

Principle 9 (Rank-based multi-resource exchange). A node u computes separate
local ranks for nodes and resources. The ranks are used in two parallel iterative
processes of provision and consumption according to Table 6.1. Provision of k from
u to v is proportional to r−v sk. Consumption of k from v to u is proportional to skr+v .

6.2.2 Node Ranks in BT-Exchange

Consider BT systems [5, 8, 14, 16, 19, 29, 32] as a reference case for generic model
assumptions on node ranks. A BT-system shares node bandwidth—bilateral single-
resource exchange. In this exchange, resource rank s is needless (s = 1). The BT
consumption rule is “consume as much as you can from any neighbor”, thus node
rank r+ is also needless. The provision process in Table 6.1 becomes one-phase; u’s
upload bandwidth is allocated as bv = r−v b for v ∈ Nu.

A node u provides its upload bandwidth b = ∑v∈Nu bv and consumes download
bandwidth a = ∑v∈Nu av. The incentives for u are straightforward: if u makes bv(t)
low then v may reduce av(t + 1).

Definition 6.1 (BT incentives). There are incentives for u to cooperate with v if
there exists δv ≥ 0 such that for any t

av(t)− bv(t)≤ δv, (6.2)

where dv(t) = av(t)− bv(t) is recent surplus of v.

That is, low provision bv limits consumption av, up to av ≤ δv for bv = 0; high
consumption av is possible only if u provides appropriately high bv. Parameter δv

is an upper imbalance bound that v tolerates. If δv = 0 then u has no credit, and
unit consumption requires provision in advance or immediate response; the case is
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difficult to realize in open network environment (exchange initialization, transfer
latency, data retransmissions, etc.). If v is altruistic then δv = ∞.

BT-exchange follows Principle 9 and can be easily described in terms of node
ranks r−v . The provision process in period t + 1 aims at making bv(t + 1) = r−v b. In
original BitTorrent [8], u uploads to n top neighbors from Nu sorted by av, i.e., r−v =
1/n for v∈Nbest

u and r−v = 0 otherwise. In proportional sharing [16,32], all neighbors
are fed with r−v = av/a. Block-based BitTorrent [5, 14, 19] is more operational and
immediately sets r−v = 0 if av−bv is lower a threshold.1 FairTorrent [29] makes ultra
operational decisions with one upload per period—to the neighbor with highest rate
av− bv, reducing the largest term in the sum surplus ∑v∈Nu(av− bv).

The above decision-making aims at the rational use of (6.2) with uncertainty
about δv. On one hand, dv < 0 is unprofitable for u. On the other hand, u has to
merely assume that δv is small, and dv > 0 signals on possible violation in (6.2).

The traditional technique of operations research can be applied to this problem.
Consider ranks r−v that minimize expected deviation from the balance dv(t + 1) =
0. Setting bv(t + 1) = r−v b and approximating unknown in advance av(t + 1) with
observed av = av(t), we yield the following optimization problem (the mean-square
deviation was selected).

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∑
v∈Nu

(av− r−v b)2→min

∑
v∈Nu

r−v = 1,

r− ≥ 0.

(6.3)

The solution to (6.3) can be found by applying the Lagrange multipliers method
and provides the following node ranks:

r−v =
av

b
+

b− a
|Nu|b if min

v∈Nu
av ≥ a− b

|Nu| , (6.4)

where b−a
|Nu|b is average relative skew of u’s participation in the system. The condition

in (6.4) is due to r− ≥ 0. If a = b then r−v = av/b, coinciding with proportional
sharing [16, 32].

If u provides in sum less than it consumes (a > b) then there can be neighbors
lower the average (av < (a−b)/|Nu|), and solving (6.3) becomes more complicated.
Some BT-exchanges use the discrete heuristic—only highest dv are important. If
av(t)� bv(t) then u takes r−v > 0 to keep v’s generosity and sets r−v = 0 otherwise.
The case is similar to (6.3) but ranking is reduced to the best neighbors Nbest

u ⊂ Nu.

1In general, u checks γav − bv for exceeding the threshold, where γ ≥ 1 is a design parameter;
higher γ increases the overall system performance by sacrificing fairness towards high-capacity
nodes [19].
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Fig. 6.2 Local single-resource exchange with v ∈ Nu. Let u have surplus x = dv for given v.
Activity of other neighbors w �= v is fixed (in terms of dw). Node ranks r−v (x) and r+v (x) behave
monotonically

When u has limited consumption capacity then node consumption rank r+ can
be computed similarly to (6.3) and (6.4). The expected mean-square deviation
∑v(r

+
v a− bv)

2 is minimized subject to ∑v r+v = 1 and r+ ≥ 0. The solution is
symmetrical to (6.4):

r+v =
bv

a
+

a− b
|Nu|a if min

v∈Nu
bv ≥ b− a

|Nu| , (6.5)

and u consumes proportionally to its provision bv.
Model (6.3) captures the property important for reciprocal incentives. If u mini-

mizes deviation from the balance dv = av−bv = 0 then u supports preserving (6.2),
even in unfavourable cases δv ≈ 0. Note that r−v = r−v (av) in (6.4) and r+v = r+v (bv)
in (6.5) are non-decreasing functions on av and bv, respectively.

The model has certain drawbacks. First, the conditions in (6.4) and (6.5)
complicate the computation of optimal solution when a �= b. In practice they are
likely violated since a and b change unpredictably over the time: the same v
can behave essentially differently, e.g., due to strategy mutation [12, 31]. Hence
heuristics like “select some best neighbors to have non-zero rank” have to be
employed. Second, dependences r−v = r−v (av) and r+v = r+v (bv) do not properly
capture that high (low) values of av should be compensated with appropriate
values of bv. According to (6.4), u sets high r−v for high av(t) regardless of bv(t).
If u expects in (6.5) that bv = bv(t + 1) = r−v b then u sets r+v = av/a, making
r−v and r+v independ on how generous or stingy u behaved on t. Simultaneous
minimization of ∑v∈Nu(r

+
v a− r−v b)2 is unhelpful since the sum consumption and

provision “dissolve” individual activity.
Consider another approach for node rank modeling, which formalizes and

generalizes the BT heuristics and incentives. Instead of fixing an optimization
problem which ranks are solutions to, we assume that node ranks r−v and r+v are
monotone functions of x = dv = av− bv, reflecting imbalance between the actual
provision and consumption as shown in Fig. 6.2.
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Similarly to (6.3), node rank aims at reducing deviation from the balance: high
|dv| leads to appropriate response. We do not require r+v (x) = r−v (−x). For example,
u may be more conservative in provision to stingy neighbors than in consumption,
i.e., r−v (x) decreases faster for x→−∞ than r+v (x) for x→+∞.

6.2.3 Local Ranks: Nodes and Resources

In multi-resource exchange, surplus of v is a sum of its resource surpluses,
dv = ∑k∈Rv dvk. Resource compensation is possible since u operates with a set
of resources. For example, u tolerates low provision avk from v because of high
provision avi for k, i ∈ Ru and i �= k. Furthermore, cross-node resource compensation
is possible when small avk are compensated with high awi for w �= v.

In the multi-resource case, r+ and r− are functions of the surplus matrix D =
{dvk} instead of the surplus vector d = {dv}. Varying dvk when other surpluses are
fixed leads to appropriate changes in ranks to reflect the imbalance. The following
definition models such behavior in terms of monotone functions, not necessarily
contiguous (see also Fig. 6.2 for single-resource case).

Definition 6.2 (Local node rank). Let every dwi be fixed abut x = dvk. Then r+

and r− are local node ranks if and only if they satisfy the following properties for
all v ∈ Nu and k ∈ Rv.

Monotony: r−v (x) is a non-increasing function and r+v (x) is a non-decreasing
function.

Marginality: lim
x→−∞

r−v (x) = lim
x→+∞

r+v (x) = 0 and lim
x→+∞

r−v (x) = lim
x→−∞

r+v (x) = 1.

The BT-heuristics for positive ranking the highest-providers agree with this
definition (only r+v is considered). For example, FairTorrent uses

r+v =

{
1, if dv = max

w∈Nu
dw (in ambiguous case select one v only),

0, otherwise.

If u operates as many independent BT-nodes, one for each resource, then there is
no resource compensation. Each dvk is balanced independently for each k ∈ Ru. In
contrast, we aim at u that accounts all resources when cooperating with v.

Definition 6.3 (bilateral incentives for multi-resource exchange). There are in-
centives for u to cooperate with v if there is δv ≥ 0 such that for any t

∑
k∈Ru

(avk(t)− bvk(t))≤ δv, (6.6)

where dv(t) = ∑
k∈Ru

(avk(t)− bvk(t)) is sum recent surplus of v.
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Although the same resource can be used in exchanges with different nodes there
is no neighbor to parasitize because of generosity of some other neighbors. The
latter easily happens when u considers only the overall sum:

∑
v∈Nu

∑
k∈Ru

(avk(t)− bvk(t))≤ δ .

Similarly to BT-exchange, u realizes the incentives by balancing near dv = 0 for
all v ∈ Nu: high dv likely violates (6.6) and low dv is unprofitable for a rational
node. Expected deviation is minimized by controlling bvk(t + 1) for v ∈ Nu and
k ∈ Ru. For each k reaction to observation avk(t) may affect bvk(t + 1) as well
as bvi(t + 1) for some i �= k. Consequently, resource differentiation is needed to
select appropriate resources for the reaction. Resource ranks sk ≥ 0 quantitatively
implement the differentiation.

Resource rank needs different qualitative model assumptions than node rank. In
the latter case, a neighbor v is both provider and consumer; each role receives its
own rank. The simplest case for resource rank happens if any resource k has a single
role being either local (u provides k ∈ R−u ; avk = 0, bvk ≥ 0 ∀v ∈ Nu) or external (u
consumes k ∈ R+

u ; avk ≥ 0, bvk = 0 ∀v ∈ Nu).
A generalization is transit resource, which can be used for better trading

opportunities in resource exchange. For example, assume u downloads file k from v
(avk > 0); the file is not of interest of u itself; uploading k to w (bwk > 0) allows
u to download another file i from w (awi > 0). Hence k is transit resource that
u uses to receive another resource i. This generalization reduces the gap between
bilateral and multilateral exchanges, allowing multi-hop cyclic exchange paths, see
more discussion in Chap. 10 and related work [18, 23]. A particular case of transit
resource is bidirectional resource (avk,bvk > 0), e.g., bandwidth in BT-systems.

For further analysis denote pure consumption and provision

αvk =

{
dvk = avk− bvk, if dvk > 0,
0, otherwise.

βvk =

{−dvk = bvk− avk, if dvk < 0,
0, otherwise.

Clearly, dvk = αvk − βvk. Let R+
v = {k | αvk > 0}, R−v = {k | βvk > 0}, and

Rv = R+
v ∪R−v . The notation emphasizes the fact that R+

v consists of external-like
resources (currently under u’s consumption) and R−v consists of local-like resources
(currently under u’s provision) Then R+

u =
⋃

v∈Nu
R+

v and R−u =
⋃

v∈Nu
R−v . Although

R+
v ∩R−v =∅ ∀v ∈ Nu the set R+

u ∩R−u can be nonempty.
Let dk = ∑v∈Nu dvk be surplus of k for u. Resource k is balanced when dk = 0, i.e.,

neighbors provide in sum the same amount of k as they consume. The less |dk| the
more preferable for u to consume or provide k. Hence sk can be treated a balance
closeness index and defined using the same technique of monotone functions as for
local node ranks in Definition 6.2 above.
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Fig. 6.3 Qualitative behavior of resource rank sk as a function of surplus x = dvk when other
activity is fixed. If k is pure local or pure external then sk(x) is defined on (−∞,0] or [−∞,0),
respectively. The function is neither required to be symmetrical sk(x) = sk(−s) nor contiguous

Definition 6.4 (Local resource rank). Let every dwi be fixed abut x = dvk. Then s
is local resource rank if and only if s satisfies the following properties for all v ∈ Nu

and k ∈ Rv.

Monotony s j(x) is a non-decreasing function on (−∞,0] for any j ∈ R−v and si(x)
is a non-increasing function on [0,∞) for any i ∈ R+

v .
Marginality lim

x→−∞
s j(x) = lim

x→+∞
si(x) = 0 for any i ∈ R+

v and j ∈ R−v .

The qualitative behavior is shown in Fig. 6.3. Intuitively, when dvk becomes
high then s prioritizes reduction in provision of any external-like resource i ∈ R+

v ,
including k (since k ∈ R+

v if dvk > 0). When dvk becomes low then s prioritizes
reduction in consumption of any local-like resource, including k (since k ∈ R−v if
dvk < 0).

Normalized resource rank induces node ranks for every v ∈ Nu as “sum rank” of
resources available through v.

Let
r+v = ∑

i∈R+
v

si, r−v = ∑
j∈R−v

s j, (6.7)

Since s is normalized and R+
v ∩R−v =∅ then r+v + r−v ≤ 1.

Theorem 6.1. If R+
v ∪R−v = Ru then r+v and r−v in (6.7) are local node ranks (in

terms of Definition 6.2).

Proof. Consider a given local resource rank s as a function the surplus matrix D =
(dvk). Compute r+ and r− by (6.7). For v ∈ Nu and k ∈ Ru taken arbitrary consider
variation dvk + ε .

Case 1: dvk ≥ 0 and ε > 0. The variation of ε does not affect R+
v . Summing si(dvk)≥

si(dvk + ε) over i ∈ R+
v gives

r+v (dvk) = ∑
i∈R+

v

si(dvk)≥ ∑
i∈R+

v

si(dvk + ε) = r+v (dvk + ε).
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Table 6.2 Symbol notation for the local ranking problem

Notation Description

u, Nu Node u locally observes the set Nu of all its neighbors.
Ru, R+

u , R−u Resources that u knows; Ru = R+
u ∪ R−u , Ru, where R+

u =
⋃

v∈Nu
R+

v and R−u =⋃
v∈Nu

R−v are the sets of external-like and local-like resources, respectively. It is
allowed R+

u ∩R−u �=∅.
Rv, R+

v , R−v Resources that u and its neighbor v exchange; Rv = R+
v ∪R−v , R+

v = {k | d+
vk > 0},

R−v = {k | d−vk > 0}, R+
v ∩R−v =∅.

avk , bvk Metrics of u’s consumption and provision of k ∈ Ru through v ∈ Nu.
dvk , dv, dk Surplus counters: dvk = avk−bvk, dv = ∑

k∈Ru

dvk , dk = ∑
v∈Nu

dvk .

αvk, βvk Clear u’s consumption and provision of resource k ∈ Rv through v ∈ Nu; dvk =αvk−
βvk such that min{αvk,βvk}= 0.

sk Local resource rank of k ∈ Ru, both for provision and consumption.
r−v , r+v Local node ranks of neighbors v ∈ Nu, for provision and consumption, respectively.

Application of this inequality to the equations

r+v (dvk)+ r−v (dvk) = 1 and r+v (dvk + ε)+ r−v (dvk + ε) = 1

yields r−v (dvk)≤ r−v (dvk + ε). Since limx→+∞ si(x) = 0 ∀i ∈ R+
v then

lim
x→+∞

r+v (x) = 0 and lim
x→+∞

r−v (x) = 1− lim
x→+∞

r+v (x) = 1.

Case 2: dvk ≤ 0 and ε > 0. The proof that

r−v (dvk− ε)≤ r−v (dvk), r+v (dvk− ε)≥ r+v (dvk), lim
x→−∞

r+v (x) = 1, lim
x→−∞

r−v (x) = 0

is symmetrical to the previous case.

Finally, the notation of local ranking problem is summarized in Table 6.2.

6.3 Linear Ranking Model

In single-resource exchange, such as BT-exchange, reciprocal incentives can be im-
plemented with node ranks only. When nodes exchange multiple resources, resource
ranks become essential for proper differentiation of nodes in accordance with their
multi-resource activity. In this section we study a particular model of resource ranks.
They are defined as solutions to a homogenous linear equation system. It states
local exchange balance for all neighbors and resources. Computation of the ranks is
reduced to an LP problem.
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6.3.1 Linear Resource Ranks

Let a node u maintain surplus counters dvk = αvk− βvk for all its neighbors v and
resources k. Consider the following homogenous system of n = |Nu| equations in
m = |Ru| non-negative unknowns.

∑
k∈Ru

dvksk = 0, v ∈ Nu. (6.8)

Let ||s||1 = ∑k∈Ru |sk| = ∑k∈Ru sk (i.e., the L1 norm). If s �= 0 (non-trivial) then
s/||s||1 is a normalized solution. We call linear resource rank any normalized
solution to (6.8) or the trivial solution if (6.8) has no normalized solutions.

Given a linear resource rank s. Intuitively, if sk = 1/m then k is balanced. If
sk < 1/m then the lower rank value is due to k excites the imbalance. If sk > 1/m
then the higher rank value is due to other resources excite the imbalance.

Choose arbitrary k ∈ Ru and then fix dvi for all i �= k. Coefficients {dvk}v∈Nu are
varied such that x = dk = ∑v dvk taking all real values. Consider a vector function
s(x) where s(x) is a linear resource rank (selected arbitrary). The following theorem
shows that linear resource rank approximates properties 1 and 2 of local resource
ranks (see Definition 6.4).

Theorem 6.2. Given k ∈ Ru and s(·). For any x = dk ∈ (−∞,∞), if x < 0 then there
is y < x such that sk(y)≤ sk(x); if x > 0 then there is y > x such that sk(x)≥ sk(y).
Moreover, lim

x→−∞
sk(x) = lim

x→+∞
sk(x) = 0.

Proof. It is sufficient to find ε = y−x �= 0 such that Δsk = sk(x+ε)−sk(x)≤ 0. Let
ε = ∑v∈Nu εv where εv is the corresponding variation of dvk. Since s(x) and s(x+ ε)
are solutions to (6.8) the following equalities hold for any v ∈ Nu:

∑
i∈Ru

dvisi(x) = 0 and ∑
i∈Ru

dvisi(x+ ε)+ εvsk(x+ ε) = 0.

Summation over all v gives

∑
i�=k

disi(x)+ xsk(x) = 0 and ∑
i�=k

disi(x+ ε)+ xsk(x+ ε)+ εsk(x+ ε) = 0.

Subtracting the first one from the other results in ∑
i�=k

diΔsi + xΔsk + εsk(x+ ε) = 0,

Δsk =−1
x

(

εsk(x+ ε)+∑
i�=k

diΔsi

)

, (6.9)

sk(x+ ε) =−1
ε

(

xΔsk +∑
i�=k

diΔsi

)

. (6.10)
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Case 1. sk(x) = 0. Then for any ε �= 0

xΔsk +∑
i�=k

diΔsi =

(

xsk(x+ ε)+∑
i�=k

disi(x+ ε)

)

−
(

∑
i�=k

disi(x)− dksk(x)

)

= ∑
i∈Ru

disi(x+ ε)+ ∑
i∈Ru

disi(x) = 0.

Hence sk(x+ ε) = 0 by (6.10), and consequently Δsk = 0.

If sk(x)> 0 then take ε with |ε|= 1
sk(x)

∑
i�=k

|di| and consider the further two cases.

Case 2. sk(x + ε) = 0. Then sk(x + ε) ≤ sk(x) since s(x) ≥ 0 by definition.
Consequently Δsk ≤ 0.

Case 3. sk(x + ε) > 0. If the expression in brackets in (6.9) is non-negative for
x,ε < 0 and non-positive for x,ε > 0 then Δsk ≤ 0. Otherwise, let us prove by
contradiction that none of the inequalities εsk(x+ ε)+∑i�=k diΔsi > 0 for x,ε < 0
and εsk(x+ ε)+∑i�=k diΔsi < 0 for x,ε > 0 is possible for the selected ε . First, the
following upper bound is independent on ε:

∣
∣
∣
∣
∣∑i�=k

diΔsi

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣∑i�=k

disi(x+ ε)−∑
i�=k

disi(x)

∣
∣
∣
∣
∣
≤ ∑

i�=k,di>0

di + ∑
i�=k,di<0

(−di) = ∑
i�=k

|di|= const.

Second, assume in (6.9) that Δsk > 0 and εsk(x+ ε) < −∑i�=k diΔsi for x,ε > 0.
Then

sk(x+ ε)<
1
|ε|

∣
∣
∣
∣
∣∑i�=k

diΔsi

∣
∣
∣
∣
∣
≤ 1
|ε|∑i�=k

|di|.

The same bound is true for the case with x,ε < 0. Substituting |ε| = 1
sk(x)

∑i�=k |di|
we yield the contradiction sk(x+ ε)< sk(x).

Finally, since |Δsi| ≤ 1 ∀i ∈ Ru the absolute value of the expression in brackets
in (6.10) is bounded by ||d||1 =∑i∈Ru |di|, which is independent on ε . Consequently,
sk(x+ ε)→ 0 when |ε| → ∞. ��

If dvk = 0 ∀v ∈ Nu then the resource k is inactive in the exchange, e.g., k is a
new resource. System (6.8) provides no information for ranking k, and an additional
rule is needed. For instance, set sk = ε0, where ε0 > 0 is a small default parameter.
Inactive resources do not appear in (6.8), and further we assume that every k ∈ Ru is
active in (6.8).

Now consider a linear rank s with sk = 0. Then the rank-proportional allocation
ignores k. The knowledge {dvk}v∈Nu is unused though dvk �= 0 for some v and k.
Consequently, k does not influence to other ranks, as if k is not presented in (6.8).
Hence, there is no differentiation compared with inactive resources. Furthermore, if
there are several such k then there is no differentiation between them.
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Let us call linear resource rank s effective if sk > 0 ∀k ∈ Ru. Rejection of too
imbalanced resources is possible when needed: if 0< sk < ε0 then k is worse than an
inactive resource. Additionally, high si does not necessarily lead to high productivity
with i, e.g., (a) u requests much i but the neighbors suddenly become stingy,
(b) altruistic neighbors provide much i in spite of u’s low response, or (c) u can
provide much i but the neighbors request less. The capacity should be redistributed
proportionally to ranks, including low-ranked resources since their sum share in Ru

can be appreciable. In particular, it diminishes the problem of BT-exchange when
many nodes are excluded from participation or underutilize capacity [25].

Given v ∈ Nu we call v-equation the corresponding equation in (6.8). Rewrite
each v-equation such that its unknowns appear with positive coefficients and
consider the following linear system.

⎧
⎨

⎩

∑
i∈R+

v

αvisi = ∑
j∈R−v

βv js j , v ∈ Nu,

s≥ 1.
(6.11)

Given i ∈ R+
v and j ∈ R−v define the ith and jth v-families of solutions:

Hv j =
{

h =

(
σ
e j

)

| ∑
k∈R+

v

αvkσk = βv j, σk ≥ 0
}
,

Hvi =
{

h =

(
ei

σ

)

| αvi = ∑
k∈R−v

βvkσk, σk ≥ 0
}
.

(6.12)

Hence Hv j contains solutions to the v-equation such that s j = 1 and sk = 0 for
k ∈ R−v \ { j}. Similarly, s ∈Hvi is such that si = 1 and sk = 0 for k ∈ R+

v \ {i}.
Further let vectors in Hv j and Hvi be of the same dimension m= |Ru| as solutions

to (6.8) or (6.11). Since the v-equation does not necessarily contain all unknowns of
the whole system, sk takes arbitrary non-negative values for k ∈ Ru \ (R+

v ∪R−v ).
Construct the following set of solutions to v-equation.

Hv =
{

s = ∑
k∈Rv

λkh(k) | h(k) ∈Hvk, λk ≥ 1
}
. (6.13)

We call a solution s to (6.8) a v-effective rank if and only if s ∈Hv. Any v-
effective rank contains one h(k) ∈Hvk, thus every resource k always “influences” to
the rank with a level λk, where λk ≥ 1 is a lower bound. The latter is uniform for all
k ∈ Rv. Let us call h(k) atomic contribution of k.

Each v-family in (6.12) defines the set of all atomic contributions—a subset of
the general solution to the v-equation.

Theorem 6.3. The general solution to a v-equation in (6.11) is

H 0
v =

{
s = ∑

k∈R+
v ∪R−v

λkh(k) | h(k) ∈Hvk, λk ≥ 0
}
.
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Proof. A linear combination ∑k λkh(k) of solutions h(k) is also a solution to the
v-equation. Let us prove now that any solution s belongs to H 0

v .

Let s = s(1) be a non-zero solution with s(1)k1
> 0. Assume that k1 ∈ R−v since the

case k1 ∈ R+
v is symmetrical. Construct the solution s̃(1) = s(1)/s(1)k1

. Thus s̃(1)k1
= 1

and

∑
i∈R+

v

avis̃
(1)
i = bvk1 + ∑

j∈R−v \{k1}
bv js̃

(1)
j .

Since the right-hand side is non-negative and fixed, there exist non-negative σ (1)
i

and s(2)i such that s̃(1)i = s(2)i +σ (1)
i and

∑
i∈R+

v

aviσ
(1)
i = bvk1 , ∑

i∈R+
v

avis
(2)
i = ∑

j∈R−v \{k1}
bv js̃

(1)
j .

Hence s̃(1) = s(2) + h(k1) for some h(k1) ∈Hvk1 , and

s(2)k =

⎧
⎪⎨

⎪⎩

s̃(1)i −σ (1)
i , if k = i ∈ R+

v

0, if k = k1

s̃(1)j , if k = j ∈ R−v \ {k1}

is a solution to the v-equation.

If s(2) is non-zero then continue, find s(2)k2
> 0, let s̃(2) = s(2)/s(2)k2

, and construct

s(3) such that s̃(2) = s(3) + h(k2).
After L≤ |Ruv∪Pvu| steps, we yield the required representation

s = s(1) = λ1

(
s(2) + h(k1)

)

= λ2

(
s(3) + h(k2)

)
+λ1h(k1) = . . .= ∑L

l=1 λlh(kl).

where λ1 = s(1)k1
, λ2 = s(2)k2

λ1, . . . , λl = s(l)kl
λl−1. ��

In fact, the proof provides a stronger result that allows any of the following two
decompositions

s = ∑
j∈R−v

λ jh
( j), h( j) ∈Hv j, λ j ≥ 0;

s = ∑
i∈R+

v

λih
(i), h(i) ∈Hvi, λi ≥ 0.

At each step of the iteration in the proof, select always kl ∈ R−v (resp. kl ∈ R+
v ),

since for a non-zero solution the right-hand (resp. left-hand) side of the v-equation
is positive. Such decompositions of a v-equation solution in the basis {Hvk} are not
unique and close to the notion of Hilbert basis for linear Diophantine equations [28].
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To construct a v-effective rank we must select exactly one h(k) among many
candidates in Hvk for each k. In Sect. 6.3.2 we shall show that this selection can
be implicitly made using linear programming.

Each v-equation in (6.11) defines balance that supports our economic intuition.
The sets R+

v and R−v are the opposite sides of “the market” between u and v. Variation
in si for local-like resources i ∈ R+

v leads to proportional changes in s j for external-
like resources j ∈ R−v and vice versa. For v-effective ranks, the following theorem
provides quantitative estimates of this dependence.

Theorem 6.4 (Resource influence proportions). Given s∈Hv, i∈ R+
v , j ∈ R−v .

1. A contribution unit of i in si gives h(i)k units to sk to for all k ∈ R−v , where

0≤ h(i)k ≤
αvi

βvk
=

avi− bvi

bvk− avk
.

2. A contribution unit of j in s j gives h( j)
k units to sk to for all k ∈ R−v , where

0≤ h( j)
k ≤

βv j

αvk
=

bv j− av j

avk− bvk
.

Proof. Since these two case are symmetrical consider the first one only. From (6.13)
we yield the representation

s = ∑
l∈Rv\{i}

λlh
(l) +λih

(i) = s(i) +λih
(i),

where s(i) does not depend on the contribution of i. Application of (6.12) leads to
the following component structure of s:

sk = s(i)k +λi

⎧
⎪⎨

⎪⎩

1, if k = i,
0, if k ∈ R+

v \ {i},
h(i)k , if k ∈ R−v ,

(6.14)

where 0≤ h(i)k ≤ αvi/βvk for all k ∈ R−v due to ∑
k∈R−v

βvkh(i)k = αvi. ��

Therefore, certain proportions

si :
(
sk
)

k∈R−v = 1 :
(
h(i)k

)
k∈R−v ,

(
sk
)

k∈R+
v

: s j =
(
h( j)

k

)
k∈R+

v
: 1

are in ranks for i ∈ R+
v and j ∈ R−v . Similarly to normalized ranks, the parameters λi

and λ j are relative. The mandatory influence of every k is a key point of our model.
The rank normalization does not require every resource to influence the rank, hence
there can be sk = 0 for some k, which is impossible in our model.
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The model differentiates the influence of resources in u’s exchange with v. Every
resource k has own set Hvk of atomic contributions. Each h(k) forms of an influence
proportion of k to the opposite side of the resource market. Depending on the
selection of h(k) the resource ranks of the opposite side grow differently. The sum
growth, however, is preserved proportional either to αvk or βvk.

The term “effective” emphasizes that such ranks proportionally affect the
decision-making processes for every resource, see Table 6.1 above. Qualitative
characterization of incentives in the exchange between u and its neighbors is
summarized in Table 6.3. If v changes its provision then u reacts in response and
vice versa.

6.3.2 Reduction to Linear Programming

Let us analyze the role of the constraint sk ≥ 1 in (6.11). The following theorem
shows that the constraint eliminates many ineffective ranks compared to a single
v-equation.

Theorem 6.5. Any v-effective rank s ∈Hv is a solution to the linear system

⎧
⎨

⎩

∑
i∈R+

v

αvisi = ∑
j∈R−v

βv js j,

sk ≥ 1, k ∈ R+
v ∪R−v .

(6.15)

Proof. Let s ∈Hv, where Hv is defined in (6.13). Accordingly, s is a solution to the
v-equation in (6.15), and

s = ∑
i∈R+

v

λih
(i) + ∑

j∈R−v

λ jh
( j),

where h(i) ∈ Hvi and h( j) ∈ Hv j . Take arbitrary i ∈ R+
v . The definition of Hvi

in (6.12) leads to h(i)i = 1, h(i)k = 0 for k ∈ R+
v \ {i}, and

si = λi + ∑
j∈R−v

λ jh
( j)
i ,

Since λ ≥ 1 we conclude that si ≥ 1. Symmetrically, taking arbitrary j ∈ R−v we
prove that s j ≥ 1. ��

The converse is not true. Although any solution to (6.15) can be presented as

s = ∑
k∈R+

v ∪R−v

λkh(k),
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there can be 0 < λk < 1, see Theorem 6.3 above. Therefore, some solutions are
ranks to which the resources influence less than the uniform bound λk ≥ 1 dictates
in (6.13).

Nevertheless, the accuracy is within multiplication to a constant. The following
theorem states that system (6.11) is a proper model of the set of all effective linear
resource ranks.

Theorem 6.6. There exists a v-efficient rank s = Cs′ for any solution s′ to (6.15)
and a constant C ≥ 1.

Proof. It can be easily proved that if s′ is a solution to (6.15), then s′ = ∑k λ ′kh(k)

for some λ ′k > 0. If there is λ ′k < 1 then let λ∗ = min{λ ′k | λ ′k < 1} and C = 1/λ∗.
Otherwise, let C = 1. Hence

s =Cs′ = ∑
k∈R+

v ∪R−v

λ ′k
λ∗

h(k),

where λk = λ ′k/λ∗ ≥ 1. ��
As a result, there is no difference whether to use s′ or s when computing the

normalized rank. No further reduction of the search space is needed in (6.15).
Taking into account all neighbors of u, define a rank effective if it is v-effective for

all v ∈ Nu. The set of all effective ranks is H ⊆⋂v∈Nu
Hv. Note that for different v

the same rank has different representations in (6.13). All effective ranks are among
solutions to (6.11).

The definition of effective ranks is not oriented to computation. We now reduce
it to a linear programming (LP) problem, where an optimization criterion (cost
function) is used to find the best effective rank in the possibly infinite set of solutions
to linear system (6.11).

Depending on a particular instance of the resource sharing problem some ranks
account u’s interests better. We can bound si since if (6.15) is solvable then there are
solutions with arbitrary high sk. Note that normalization preserves the proportions
despite of how high the absolute values are. The following generic linear cost
function provides the bound if c > 0:

∑
k∈R

cksk→min . (6.16)

The weights ck allow additional problem-aware resource differentiation; the higher
ck the lower sk.

Based on the point of view of market pricing, if many nodes provide resource
i∈ R+ then its rank decreases. If many nodes consume resource j ∈ R− then its rank
increases. In this case, ci counts all nodes v ∈ Nu such that i ∈ R+

v and c j counts all
v such that j ∈ R−v . These counters appear implicitly in node ranks:

∑
v∈Nu

r+v = ∑
v∈Nu

∑
i∈R+

v

si = ∑
i∈R

cisi, ∑
v∈Nu

r−v = ∑
v∈Nu

∑
j∈R−v

s j = ∑
j∈R

c js j.
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Table 6.4 Linear optimization criteria

Ref. Cost Interpretation

(C) ∑
v∈Nu

r+v Higher priority in u’s consumption to rare external resources
since few nodes provides them.

(P) ∑
v∈Nu

r−v Higher priority in u’s provision to neighbors that consume
resources of small variety.

(C+P) ∑
v∈Nu

(r+v + r−v ) A trade-off in u’s consumption/provision.

(C–P) ∑
v∈Nu

(r+v − r−v ) A respectability threshold in u’s consumption/provision: u
minimizes its consumption and maximizes its provision.

(P–C) ∑
v∈Nu

(r−v − r+v ) A selfishness threshold in u’s consumption/provision: u mini-
mizes its provision and maximizes its consumption.

Table 6.4 shows possible linear cost minimization criteria based on these coun-
ters. Criterion (C+P) states a trade-off since neighbor consumption and provision
ranks are bounded equally. Criteria (C–P) and (P–C) state thresholds of moving from
this trade-off to the respectable and selfish direction, correspondingly. Obviously,
they can lead to an unbounded optimization problem.

As in many optimization models for P2P resource sharing, this ranking model
allows a generic function f (r+v ,r

−
v ) that specifies the relation between r+v and r−v .

For instance, u can prioritize nodes v ∈ Nu using mutual trust among them and use
quadratic cost functions, similarly to [6]:

∑
v∈Nu

cv(r
+
v − r−v )

2→min .

For every neighbor the consumption and provision ranks are equalized. The model,
however, becomes nonlinear, hence increasing its computational complexity.

Instead of the use of homogenous linear constraints in (6.17) we can consider the
equivalent linear programming (LP) problem:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

f = ∑
k∈Ru

dkσk→min

∑
k∈Rv

dvkσk =−dv, v ∈ Nu,

σk ≥ 0 ∀k ∈ Ru.

(6.17)

Any feasible solution σ to (6.17) yields a solution s = σ +1 to (6.11) and vise versa.
The cost function f in (6.17) prioritizes resources by their surplus, and resources

with high dk will be of low rank. It agrees with Definition 6.4, and the optimization
aims at better approximation of the rank monotony property than Theorem 6.2 for
the general case of linear resource ranks.

One can construct the dual problem to (6.17), where the dual variables−ρv take
any real value.
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⎧
⎪⎨

⎪⎩

φ = ∑
v∈Nu

dvρv→min

∑
v∈Nu

dvkρv ≤ dk, k ∈ Ru.
(6.18)

According to the duality, ρv =
∂ f
∂dv

. It means that ρv arranges nodes by their influence
to the resource-aware cost. Consequently, they can be used to compute node ranks,
alternatively to (6.7) in Sect. 6.2.3.

6.3.3 Rank Existence

System (6.11) is not always solvable due to the constraint s ≥ 1. Recall that it
requires for every k to influence the rank. The balance equations are less restrictive
since the number of nodes (the number of balance equations) is typically essentially
less than the number of resources (the number of variables). LP methods require
an initial solution for efficient computations. It concerns the more general problem
than the solvability asking how we can construct a solution.

Consider the assumption (the left square bracket stands for logical OR)

[ |V | ≤⋃v∈V R+
v ∀V ⊆ Nu, (X)

|V | ≤⋃v∈V R−v ∀V ⊆ Nu. (Y)
(6.19)

Bound (6.19.X) states that the number of distinct resources u consumes is not less
than the number of their providers. Bound (6.19.Y) is similar but for the number
of distinct resources u provides to their consumers. In particular, if u provides
(consumes) at least one distinct resource for any neighbor, then (6.19) holds.
This case is typical in practice since nodes differentiate resources depending on
neighbors. That is, (6.19) is true for a wide class of P2P resource sharing systems.

Let Rext
u , Rloc

u , and Rtrn
u be the distinct sets of external, local, and transit resources

for node u, respectively. Then R+
u ⊆ Rext

u ∪Rtrn
u and R−u ⊆ Rloc

u ∪Rtrn
u . Rewrite balance

equations (6.8) separating resource ranks s = (x,y,z) to external (x, i ∈ Rext
u ), local

(y, j ∈ Rloc
u ), and transit (z, k ∈ Rtrn

u ) resources:

∑
i∈Rext

u

avixi + ∑
k∈Rtrn

u

avkzk

= ∑
j∈Rloc

u

bv jy j + ∑
k∈Rtrn

u

bvkzk, v ∈ Nu.
(6.20)

The following theorem shows that (6.19) is sufficient for existence of an efficient
rank. A solution can be constructed explicitly, see the proof.

Theorem 6.7. If (6.19) holds then (6.20) has a solution s = (x,y,z) such that x,y≥
1 and z = 1.
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Proof. Consider the case without transit resources. Then (6.20) is reduced to

∑
i∈Rext

u

avixi = ∑
j∈Rloc

u

bv jy j, v ∈ Nu. (6.21)

The unknowns x and y are disjunctive. We also assume that

∑
i∈Rext

u

avi > 0 and ∑
j∈Rloc

u

bv j > 0 for any v ∈ Nu,

otherwise y j = 0, xi = 0, or the ranks are not constrained.
Let (6.19.X) be true. Apply Hall’s theorem (the marriage theorem) to find a

distinct representative xi(v) for each v-equation of (6.21). Set all other xi to 1,
splitting (6.21) to left-hand side independent v-equations

avi(v)xi(v) = ∑
j∈Rloc

u

bv jy j− ∑
i∈Rext

u

avi,

which can be solved with x ≥ 1 taking large enough y ≥ 1. Any such y that makes
the right-hand side greater or equal avi(v) ∀v ∈ Nu is appropriate.

Let (6.19.Y) be true. The case is symmetrical to the previous one; distinct
representatives are selected among y j and a solution can be found with x,y≥ 1.

Return to the general case of (6.20). Let (6.19.X) be true. (The case of (6.19.Y) is
symmetrical.) Select distinct representatives xi(v) as above and set z = 1. We obtain
the system

avi(v)xiv = ∑
j∈Rloc

u

bv jy j + ∑
k∈Rtrn

u

bvk− ∑
k∈Rtrn

u

avk− ∑
i∈Rext

u

avi, v ∈ Nu.

Consider
Cv = ∑

k∈Rtrn
u

bvk− ∑
k∈Rtrn

u

avk− ∑
i∈Rext

u

avi = const.

If Cv < 0 then taking large enough y≥ 1 results in a positive value in the right-hand
side. The value can be made bigger than avi(v), leading to xviv ≥ 1.

Summarizing the proof, a solution to (6.20) with x,y≥ 1 and z = 1 is constructed
explicitly. ��

Consequently, (6.19) results in the solvability of (6.11). When (6.11) is unsolv-
able then there are too few distinct resources compared with the number of their
providers or consumers. It means that some neighbors become indistinguishable
from u’s point of view. In this case, u can, for example, provide finer granularity in
the resource distribution among neighbors, aggregate some neighbors into a bigger
entity, or remove some neighbors from Nu.
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6.4 Comparison with Other Resource Exchange Models

Design of incentives for P2P resource sharing has attracted much attention recently.
In this section we overview known models for P2P exchange economies and
compare the linear ranking model with them. We show that some approaches are
reduced to the linear model. Also, there exist approaches for rank-based resource
sharing that allows incorporation of the linear model.

6.4.1 Allocation of Common Resource

Each node u has common local resource to contribute to the system, e.g., storage
space, CPU cycles, or bandwidth. As an example consider the bandwidth allocation
problem; u distributes its upload bandwidth B among competing neighbors. Each
neighbor v provides u with download bandwidth av > 0 and consumes upload
bandwidth bv > 0. There are the only local resource and the only external resource
for any neighbor (one-to-one mappings R−u ↔ Nu and R+

u ↔ Nu).
For upload bandwidth allocation u decides r−v = f (av,bv) > 0 such that

∑v∈Nu r−v = 1, where av and bv are observed in the previous round. Then u
proportionally assigns bandwidth b′v ∼ r−v to v for the next round. The linear ranking
model reduces the problem to the system of independent equations in unknowns
s = (x,y):

avxv = bvyv, xv,yv ≥ 1, v ∈ Nu,

where xv is rank of v’s provision and yv is rank of v’s consumption.
Let a = ∑

w∈Nw

aw and a = ∑
w∈Nw

bw. A feasible solution is x′v = bv, y′v = av, v ∈ Nu.

Computing normalized ranks s = (x,y) and using (6.7) yield

xv =
bv

a+ b
, yv =

av

a+ b
, v ∈ Nu; S+ =

b
a+ b

, S− =
a

a+ b
.

Then the rank r−v = av/a defines the upload bandwidth allocation proportional to v’s
contribution. The solution coincides with proportional sharing [16, 32], see also the
discussion in Sect. 6.2.2.

Consider optimization criteria from Table 6.4 (on page 152). Criteria (C), (P),
and (C+P) all lead to the following solution:

x′v = max{bv

av
,1}, y′v = max{av

bv
,1}, v ∈ Nu,

Criterion (C–P) defines a finite solution if and only if bv ≥ av ∀v ∈ Nu, and the best
rank is

x′v =
bv

av
, y′v = 1.

Similarly, criterion (P–C) is valid if and only if av ≥ bv ∀v ∈ Nu, and
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y′v =
av

bv
, x′v = 1.

Note that the parameters γuv = av/bv and γvu = bv/av are known as exchange ratios
in bilateral models [4]. Let γ+u = ∑v γvu and γ−u = ∑v γuv.

If u is interested in local resource allocation only, then the model is simplified
to avx = bvyv for v ∈ Nu, where x is common for all neighbors and yv differentiates
only the provision of local resources. Similarly, if u is interested in external resource
allocation only, then the model is avxv = bvy for v ∈ Nu. The solution is

x′ = 1, y′v =
av

bv
, r−v =

av/bv

∑
w∈Nu

aw/bw
= γuv/γ−u , (6.22)

for local resource provision and, symmetrically,

x′v =
bv

av
, y′ = 1, r+v =

bv/av

∑
w∈Nu

bw/aw
= γvu/γ+u , (6.23)

for external resource consumption.
Furthermore, if u is uninterested in differentiating bv or av in the local or external

allocation case, respectively. Then

r−v =
av

∑
w∈Nu

aw
=

av

a
, r+v =

bv

∑
w∈Nu

bw
=

bv

b
. (6.24)

This solution coincides with (6.4) and (6.5) for a = b, see Sect. 6.2.2.
Yang and Veciana [35] studied symmetric peerwise proportional fairness using a

global linear model. The system aims at resource allocation that follows the balance
at time instance t,

bv(t;u) =
av(t;u)

∑
w∈Nu

aw(t;u)
b(t;u) =

av(t;u)
a(t;u)

b(t;u), v ∈ Nu,

where a(t;u) and b(t;u) is u’s total download and upload bandwidth at t. The
symmetric assumption is av(t;u) = bu(t;v) and bv(t;u) = au(t;v). Considering all
nodes u ∈ N, the balance formally defines a global equation system in unknowns
xuv(t) = bv(t;u), and the fair resource allocation is its solution. In practice, exact
solution of this system seems infeasible. Instead, u tries to reach the fair resource
allocation by providing v with the upload bandwidth bv(u) = r−v b(u) for r−v =
av/a(u), hence directly following (6.24).

Note that [35] also formally found the importance of strictly positive allocations
xuv > 0. The linear ranking model explicitly requires strictly positive ranks, see the
definition and interpretation of effective ranks in Sect. 6.3.

Ma et al. [21] analyzed bandwidth allocation with the game-theoretic approach.
Neighbors bid for u’s bandwidth. Each v suggests bv to u, and u considers it
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the upper bound of the bandwidth assignment. The upload bandwidth allocation
is proportional to av and bv. The model suffers when neighbors misrepresent bv

strategically, see [34] and references therein.
Yan et al. [34] assumed that u computes ranks r−v = f (av,bv) knowing f in

advance. The latter is increasing in av and decreasing in bv. A node improves its
ranking by contribution to the P2P system or deteriorates its ranking by provision.
An utility function and a corresponding social welfare function are associated with
each neighbor, where the ranks are parameters. Maximizing the minimum social
welfare every v could obtain leads to the unique optimal allocation of the max-min
fairness. The upload bandwidth that u allocates to v is a function of the ranks r−v .
The linear ranking model can be incorporated into this model to provide the latter
with ranks r−v in place of the function f (av,bv).

Many authors suggest a reputation system for differentiating nodes, see [22] and
references therein. A node reputation statistically aggregates the past behavior of the
node. Opinions from many other nodes are collected, and such indirectly observed
knowledge leads to non-local models with corresponding scalability and trust issues.
The linear ranking model can be applied with a reputation system, where the latter
evaluates the input parameters av and bv.

The neighbor selection problem is an instance of external resource allocation.
Each node decides how actively to consume from each of its neighbors. Adler
et al. [1] applied mathematical programming to study optimal rate selection for
downloading from neighbors when the cost function is concave. The optimal rate
is proportional to the maximum rate. In linear ranking model, it defines external
resource allocation where bv refers the available maximum rate. Consequently, u’s
download rates are proportional to r+v for v ∈ Nu.

Habib and Chuang [11] considered the peer selection problem for P2P streaming.
They considered a P2P media streaming system consisting of rational nodes who
choose their contribution level in order to maximize their individual utility. The
individual contribution level is converted into a score, which in turn is mapped
into a percentile rank that determines the node rank (among other nodes in
the system). Node selection depends on the rank ordering of the requesters and
candidate suppliers. Contributable nodes are rewarded with high quality streaming
sessions. The authors contributed a model of mapping node ranks to expected
quality based on the rank-order tournament theory. Consequently, the linear ranks
can be straightforwardly integrated into the streaming system in place of the score
mechanism referred originally.

6.4.2 BT Systems

BitTorrent-like P2P file sharing systems implement bilateral tit-for-tat (TFT) strate-
gies aiming in fair bandwidth allocation [5, 8, 14, 16, 19, 29, 32]. We show that they
can be described with a particular instance of the linear ranking model for local
resource provision.
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BitTorrent TFT [8]

Each node u forms a set of the n1 best neighbors v with the highest download
rates av (v’s provision history). Besides, u selects random n2 “optimistic” neighbors
(unchoking); the aim is in discovering new neighbors that would offer good
downloads. During the recent time slot u uploads only to these n1 + n2 neighbors
in a round-robin fashion. For downloading no specific selection strategy is used: u
exploits all neighbors v ∈ Nu consuming as much as possible.

It is an instance of model (6.24) for local resource provision regardless consump-
tion history. Note that u needs the ranks for selecting the best neighbors to upload
(ranking and then selecting nodes from the top). After the selection, u treats the
selected neighbors equally (in a round-robin fashion), allocating the same upload
bandwidth.

BitTorrent as Auction [16, 32]

A proportional share mechanism replaces the original BitTorrent unchoking algo-
rithm. Each node u allocates its total upload bandwidth b to all its neighbors in
proportion to the download rates from them,

b′v =
av

∑
w∈Nu

aw
b =

av

a
b, v ∈ Nu.

Wu and Zhang [32] showed that this mechanism allows converging quickly to a
market equilibrium. Levin et al. [16] introduced the algorithms and implementation
as well as showed with experiments that the mechanism improves system-wide
performance. It is again an instance of (6.24) with r−v = av/a, which uses local
resource provision regardless consumption history.

Block-Based TFT [5, 14, 19]

The strategy is similar to BitTorrent TFT except that u always checks the constraint

bv− γav ≤ d (6.25)

before uploading a data block to v, where γ and d are system parameters. If
bv − γav > d then u postpones uploading to v. Bharambe et al. [5] proposed
a scheme with γ = 1 in (6.25), i.e., d defines a threshold for the deficit −dv.
Liao et al. [19] suggested γ ≥ 1 as a design parameter; when γ increases the overall
system performance improves by sacrificing fairness towards high-capacity nodes.

It is an instance of model (6.22) for local resource allocation based on directly
observable provision and consumption histories. Let u select n top neighbors with
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highest av at the beginning of each round, forming Nbest
u as in the original BitTorrent

TFT. During each round, av and bv change due to activity of the neighbors. Ranks
r−v = γuv/γ−u in (6.22) differentiate the n top neighbors in accordance with (6.25),
and u uploads a data block to v ∈ Nbest

u if

r−v ≥
(

1− d
bv

)

/

(

γ ∑
w∈Nu

aw/bw

)

=
1− d/bv

γγ−u
.

The top neighbors are still served uniformly: each v ∈ Nbest
u that satisfies (6.25)

receives equal upload bandwidth from u. Ranks (6.22) allow a more intelligent
strategy with proportional bandwidth allocation, operationally adapting to recent
behavior of neighbors within each round.

FairTorrent [29]

Each node u uses a deficit counter av−bv for v ∈ Nu, a particular case of dv in (6.8).
The neighbors are sorted by their deficit counters. The top neighbor (highest deficit)
is selected in every provision action. This sorting is similar to ranking by (6.22),

r−v = γuv/γ−u = (1+ dv/bv)/γ−u .

6.4.3 Plant-Like Systems

Let u consider the system as a plant from which u consumes n = |R+
u | resources

(R+
u = Rext

u ) and to which u provides m = |R−u | resources (R−u = Rloc
u ). Direct

differentiation is used for resources only, regardless through which nodes the access
is. This kind of abstraction comes from control-theoretic approach [30].

In the linear ranking model the plant can be presented as the only neighbor
(aggregate entity), and (6.8) is reduced to a single equation

∑
i∈R+

u

aixi = ∑
j∈R−u

b jy j.

Setting all λk = 1 in (6.13) gives the following solution

s =

(
x
y

)

= ∑
i∈R+

u

h(i) + ∑
j∈R−u

h( j) = 1+

⎛

⎜
⎝

∑
j∈R−u

σ ( j)

∑
i∈R+

u

σ (i)

⎞

⎟
⎠ .

Assume that ai = a for i ∈ R+
u and b j = b for j ∈ R−u . The symmetry yields
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σ ( j)
i =

b
an

, σ (i)
j =

a
bm

, ∑
j∈R−

σ ( j)
i =

bm
an

, ∑
i∈R+

σ (i)
j =

an
bm

,

and the ranks are

xi =
b

(a+ b)n
, y j =

a
(a+ b)m

, r+ =
b

a+ b
, r− =

a
a+ b

.

They differentiate between external (i ∈ Pu) and local ( j ∈ Ru) resources. There is
no differentiation of resources inside each group. This model allows u to control the
sizes m and n of its two resource sets.

When ai and b j are non-uniform then the effective ranks provide further resource

differentiation. In particular, the rank (σ ( j)
i =

b j
ain

, σ (i)
j = ai

b jm
)

xi ∼ 1
ain

∑
j∈R−u

b j =
B

ain
, y j ∼ 1

b jm
∑

i∈R+
u

ai =
A

b jm

provides proportional allocation strategies, where A = ∑
i∈R+

u

ai and B = ∑
j∈R−u

b j.

Now consider the plant divided into several parts, each is accessed through
a separate node. Introducing more neighbors constrains the rank stronger, and it
results in more sophisticated differentiation. Instead of a single equation, we deal
with the following system

∑
i∈R+

v

avixi = ∑
j∈R−v

bv jy j, v ∈ Nu.

Effective ranking follows two proportions: one is to the consumption and
provision of different resources by a node v and another is to the total consumption
and provision of different nodes. The v-equation defines the first proportion and the
equation system as a whole captures the second one.

In the previous case (plant as a single aggregate neighbor), xi ∼ B and y j ∼ A.
Generalization is that several aggregate neighbors appear. Then

xi ∼ ∑
v∈Nu

c+v Bv, y j ∼ ∑
v∈Nu

c−v Av, Av = ∑
i∈R+

v

avi, Bv = ∑
j∈R−v

bv j,

i.e., proportionally to a linear combination of the overall interests Av and Bv. The c+v
and c−v are v’s shares in this proportion.

6.4.4 Network Games and Market Pricing

Considerable work has been appeared recently on applying the network exchange
theory and graphical games for network resource sharing, see [4, 21, 34, 36] and
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references therein. The game-theoretic models are mostly focused on defining
node utility functions U(a(u),b(u)), where consumption a(u) and provision b(u)
define u’s strategy. The sum of these utilities is the social utility to be maximized.
Less attention is given to constraints that define feasible strategies. The constraints
typically reflect node capacity bounds only. In contrast, constraints of the exchange
balance is core of the linear ranking model, leading to essentially reduced search
space for optimal strategies.

The work of Aperjis et al. [3, 4] is closest to the linear ranking approach.
They considered the bilateral exchange balance where nodes charge each other for
resources in a common monetary unit with settlement-free transactions. Node u
charges node v a price puv > 0 per unit rate. Then each node u faces one exchange
balance constraint for each neighbor v,

pvu ∑
k∈R+

u

avk(u) = puv ∑
k∈R−u

bvk(u), v ∈ Nu,

where avk(u) = buk(v) is the rate at which u downloads resource k from v (or the
rate at which v uploads resource k to u).

The model is close to linear ranking without transit (R+
u = Rext

u , R−u = Rloc
u ).

In (6.8) and (6.11) the ranks sk = sk(u) can be interpreted as the price of k at u. When
sk = pvu ∀k ∈ R+

v and sk = puv ∀k ∈ R−v the models describe the same exchange
balance. Note that the linear ranking model does not require globally synchronized
prices puv and pvu; different nodes u deal with own prices sk = sk(u).

Aperjis et al. [4] also considered multilateral exchange balance. The system
globally maintains one price per node. Let pv > 0 be the price of node v. Then
the balance is a single exchange constraint,

∑
v∈Nu

pv ∑
k∈R+

u

avk(u) = pu ∑
v∈Nu

∑
k∈R−u

bvk(u).

As in the previous model, if it is possible unambiguously set sk = pv ∀k ∈ R+
v and

sk = pu ∀k ∈ R−v then the linear ranking model states the same balance.
Aperjis et al. [3] considered the model with pk > 0 (one price per resource) and

the exchange constraint

∑
v∈Nu

∑
k∈R+

u

avk(u)pk ≤ ∑
v∈Nu

∑
k∈R−u

bvk(u)pk

It can be treated an aggregation model. Any global solution to the linear ranking
model is a solution to the aggregation model.

The above game-theoretic models are focused on characterizing global equilib-
rium qualitatively, e.g., the existence of a point (a,b, p) such that maximizes the
utility of each node u subject to its exchange balance constraints. In contrast, the
linear ranking model aims at computing optimal ranks s for locally observable u’s
exchange (a,b).
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6.5 Summary

We have discussed an approach for local P2P ranking and a corresponding analytic
model framework. In the approach, a node differentiates its neighbors in accordance
with their directly observed provision and consumption. Each node computes
ranks operationally, with no assumption on long-term invariants in strategies of
other nodes. Local rank computations are performed independently on the rank
computations at other nodes.

Multilateral exchange models take into account a system of complex reciprocal
relations between nodes and resources. If the balance for resource k in exchange
u↔ v has changed then it changes the strategies of other nodes for k and for some
other resources related to u and v. The presented linear ranking model describes
in (6.8) all exchange chains that pass through u. The model is a linear system of
balance equations. Its solutions are ranks that reflect imbalances in the resource
consumption and provision. The rank computation is reduced to an LP problem,
which allows efficient computation.

The ranks reflect shifts in load balance when nodes vary their interests in
resources. Balance shifts are mapped to effective ranks that provide incentives
for cooperation (see Table 6.3 on page 150). These incentives can be improved
depending on a given resource sharing problem. Various optimization criteria can
extend the model for selecting the best rank among effective ranks. The solvability
is preserved for typical P2P configurations.

This ranking model explicitly introduces transit resources into P2P exchange.
They are applicable if u has no local resources interested to its neighbors, dimin-
ishing the gap between bilateral and multilateral exchanges. In the model, the same
transit resource k simultaneously plays the role of local resource for some exchanges
u↔ v (k∈R−v ) and the role of external resource for other exchanges u↔w (k∈R+

w ).
The sum rank sk aggregates this composite influence of k from all nodes with the
influence from other resources.

Many known exchange models treat consumption and provision symmetrically.
In our notation it means that avk(t;u) = buk(t;v) and bvk(t;u) = auk(t;v). In
P2P networks the symmetry assumption is often violated due to network loss,
communication latency, and misrepresentation from other nodes. In local ranking,
each u measures avk(t;u) and bvk(t;u) independently on other nodes.

As in many deficit-based models, we utilize both consumption a and provision b
as input parameters for ranking. Importantly that this model provides both consump-
tion (r+) and provision (r−) ranks for neighbors. This explicit distinction of nodes
in the consumption and provision strategies leads to more flexible control when
variation of r−v does not immediately result in change of r+v and vice versa.
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Summary of Part II

This part has discussed hierarchical routing schemes existing in recent DHT designs
where the assumption that nodes are homogeneous in their roles is fundamental.
Such DHT designs are traditionally known as flat, in contrast to a hierarchical DHT.
The discussion argues that hierarchies are implicitly inherited in flat DHT designs.
The approach uses three basic arrangement models and their combinations, leading
to a variety of hierarchies. Based on an arrangement the nodes can be structured
onto groups. Recursive application allows further structuring within groups. It is a
crucial step in constructing global hierarchy.

We sequentially built a set of design principles; each provides a base for applying
hierarchical schemes. Chapters 3–5 focused on principles aimed at efficient routing.
They assume that the participating nodes are cooperative. The logical structure
of the principles is depicted in Fig. II.1, where the evolution levels from pure flat
designs and to pre-hierarchical designs go from the top to the bottom. Principles at
the same level are complementary. Each evolution level introduces more hierarchies
in a design, achieving requisite performance and scalability properties.

Then in Chap. 6 we moved to the complementary problem—cooperation in P2P
systems. It is a very broad topic covering issues that are beyond what traditional
distributed systems have encountered. We paid attention to the incentive problem,
which is undoubtedly required for fair cooperation in anonymous, dynamic, and
autonomous P2P networks. The corresponding principles introduce local ranks to
effectively reward cooperating nodes and to punish defect behavior. It brings more
security and resistance to the whole system even if the local knowledge problem
limits each node with direct observations in its neighborhood.

Hierarchical routing schemes and incentive mechanisms complicate DHT de-
signs, especially the overlay maintenance. It leads to overhead, additional vulner-
abilities and other shortcomings. Nevertheless, we argued that, given application
demands, a flat design can be extended with locally constructed hierarchies. The
extension aims at attaining a tradeoff between the protocol complexity and the
required efficiency.
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Fig. II.1 The logical structure of principles for hierarchical routing schemes in DHT designs



Part III
Beyond the Local Knowledge



Overview of Part III

The independence of dedicated infrastructure and centralized control are clear
strength of P2P systems. On the other hand, these properties also become P2P
weakness. To attain full efficiency, a network protocol must have complete infor-
mation about all nodes who join the network. For instance, common assumptions
of classical game theory are full-rationality of nodes, perfect knowledge of the
game being played and all possible outcomes along with infinite computational
time. Given these assumptions it is sometimes possible to analytically derive some
equilibrium state for the game.

However, nodes of a P2P system can efficiently operate with local knowledge
only. Achieving a globally optimal solution is too expensive or even irrelevant.
For instance, the above classic game-theoretic assumptions do not hold in dynamic
open P2P networks and the derivation of equilibria within dynamic topologies
and changing populations is currently a hard problem for analytical techniques.
Straightforward engineering solutions when a node collates accurate global statistics
are non-scalable and impractical in any large and highly dynamic system.

Previously, Part II showed that careful structuring of local knowledge leads to
reasonable approximations and a node can extrapolate its partial knowledge to the
rest network. In this case it is not necessary to collect large amounts of information,
or to undertake complicated and expensive distributed calculations, in order to
implement the efficient protocol in a P2P network. Nevertheless, if node’s capacity
is high then acquisition of more knowledge about the global network can lead to
further improvement. For instance, powerful nodes can keep bigger routing state
or a node adjusts its routing table size in accordance with experienced churn and
system population changes.

In this part, we consider methods for a node to collect additional knowledge about
the global network. They provide tradeoffs between local and global knowledge. A
base P2P protocol, which states default amount of local knowledge per node, can be
appended such that appropriate nodes extend their local knowledge. This extension,
as previously, follows some arrangement model to embed effective composition
structure into the overall system of many nodes.
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Chapter 7 describes further evolution of hierarchical routing schemes to hier-
archical DHT (HDHT) architectures. Such architecture is a result of layering—
nodes and their groups are arranged onto multiple layers. The stack of layers is
decomposition of the network architecture along the vertical dimension. A layer
consists of “close” groups that are structured along the horizontal dimension. Node
role and responsibility depend on both group and layer which the node belongs to.
The essence of HDHT design is that node’s specialization is agreed with a global
invariant—hierarchical architecture. This invariant extends node’s local knowledge.
We give taxonomy of HDHT architectures and make an overview of popular HDHT
designs.

Chapter 8 introduces the cyclic routing (CR) method. It provides a systematic
way for a node to collect stable and efficient overlay paths that run beyond
neighbors. We consider cyclic paths; a cycle starts from the node to its neighbor, then
runs through the overlay and returns to the source. On one hand, their construction
is cheap since it is a result of performed lookups. On the other hand, cycles present
global knowledge about available paths in the overlay. CR generalizes the idea of
look-ahead approach to DHT routing, allowing a tradeoff between the look-ahead
level and available node resources. It takes a place in between DHT routing using
only neighbors (local) and optimal-path routing (global).

Chapter 9 focuses on the problem of describing P2P routes. It uses recent
progress in the linear Diophantine analysis, which allows us to formulate the
theoretical framework for P2P routing in general. We consider a Diophantine model,
where a route aggregates several P2P paths that packets follow. Such aggregation is
due to multipath routing as well as multiple sources and destinations. The model
is based on abstract parallel process algebra, and we use a commutative context-
free grammar to describe forwarding behavior of P2P nodes. A derivation in the
grammar corresponds to a P2P route such that derivation initial and final strings
define packet sources and destinations, respectively.

Chapter 10 targets the problem of fair cooperation in P2P systems. Known
methods are based on trust and reputation models, which require accurate global
statistics. We apply the same idea as in cyclic routing and propose a cyclic method
for ranking P2P nodes based on available information of some cyclic paths. It can
be thought of as a downsized version of such well-known global ranking algorithms
as PageRank.



Chapter 7
Hierarchical DHT Architectures

Abstract Distributed Hash Tables (DHT) are presently used in several large-scale
distributed systems in the Internet and envisaged as a key mechanism to provide
identifier-locator separation for mobile hosts in Future Internet. Such decentralized
structured data storage systems become increasingly complex serving popular social
networking, P2P applications, and Internet-scale infrastructures. Hierarchy is a
standard mechanism for coping with complexity, scalability, and heterogeneity
in distributed systems. To address the shortcomings of flat DHT designs, many
hierarchical P2P designs have been proposed over recent years. The last generation
is hierarchical DHTs (HDHTs) where nodes are organized onto layers and groups.
This chapter discusses concepts of hierarchical architectures in structured P2P over-
lay networks, focusing on HDHT designs. We introduce a framework consisting of
conceptual models of network hierarchy, multi-layer hierarchical P2P architectures,
and principles affecting the design choices. Based on the framework we provide
taxonomy of existing P2P systems and thoroughly go over proposed hierarchical
P2P alternatives.

7.1 Introduction

Designs of Internet-scale distributed systems evolve towards extremely compli-
cated environments with a multitude of essentially heterogeneous and dynamic
participants. It is a challenge that has been appearing in ubiquitous computing,
Internet of Things, and other recent paradigms of computing. In this case, “flat”
approaches lack in efficiency. System designs have to apply various differentiation
and decomposition techniques. It results in hierarchical network architectures for
organizing the participants, see, e.g. [3, 34, 35].

Structured P2P systems achieve their efficiency due to dynamic maintenance
of rigorous network topology structure—its topology graph belongs to a class
with well-defined invariant properties of connectivity [14, 21, 26, 36, 37, 43, 53].
Resources, functionality, and other types of responsibility are uniformly spread
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over all the nodes. It ensures low node degree and small network diameter, leading
to modest node state and high routing performance. In this case, however, a P2P
node knows only a part of the entire network—the local knowledge problem. To
approximate the state of the rest network, the node extrapolates its local state
based on invariant structural properties of the network topology. We studied these
properties and corresponding design principles in Chap. 3.

The heterogeneity requires differentiation of nodes in a P2P system. Some of
them are able to maintain bigger state becoming high degree nodes, which reduce
the network diameter. On the other hand, there can be low-capacity nodes (e.g.,
running on mobile devices) that are not so active and resilient; their state and
degree are minimal, which decreases the network connectivity efficiency. A system
design adopts the heterogeneity by arranging the nodes such that they are subject
to different responsibilities. Differentiation on local level (individually by a node)
leads to pre-hierarchical P2P designs [26] that augment a flat P2P network with
many locally-conducted hierarchies. We discussed them in Chap. 4.

Differentiation on the global level leads to hierarchical P2P networks. The
network architecture considers an additional kind of entities—groups. Each group
consists of nodes of similar responsibility. An example of group formation is
clustering of proximity close nodes, the important design principle pointed in [27]
and then further actively elaborated [26, 34, 51, 69]. Other examples are virtual
servers [4, 12, 56, 59] when distinct P2P nodes reside at the same machine and
semantic clustering [60,64] when a group consists of nodes with semantically close
content. We considered the clustering principle and its consequences in Chap. 5.

Layering is a further conceptualization step—nodes and their groups are arranged
onto multiple layers [34, 35, 70]. The resultant stack of layers is decomposition of
the network architecture along the vertical dimension. A layer consists of “close”
groups, and the structure of groups on the same layer is along the horizontal
dimension. Node role and responsibility depend on both group and layer which the
node belongs to.

Layering supports traditional three-based hierarchies with the “divide-and-
conquer” decomposition into disjointed parts. Leaf vertexes correspond to P2P
nodes, non-leaf vertexes correspond to groups, and levels in the tree correspond
to network layers. A typical example is administrative domain hierarchies, when a
node belongs to an organization and the organization, in turn, belongs to a region.
More general group-based hierarchies are also possible when relations between
groups on different layers are not pure ancestor-descendant; some groups may be
essentially overlapped and even nested. For example, the same node belongs to
several groups, each group is responsible for a service, and the groups define nodes’s
service pool.

Section 7.2 introduces a framework of network hierarchy models, hierarchical
P2P architectures, and principles affecting the design choices. We derive a set
of conceptual models that describe global hierarchy in a structured P2P network,
They cover possible hierarchies and support multi-layer hierarchical architectures
using two design principles, which are dual. The disjoining principle provides node
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differentiation by forming low-overlapping groups. The nesting principle aims at
functional differentiation when nodes with similar roles belongs high-overlapped
groups.

Section 7.3 presents the taxonomy and essence of most known hierarchical P2P
systems. A wide spectrum of existing hierarchical P2P designs is considered in a
unified way, which our generic framework provides. In accordance with the above
design principles we consider two classes of the hierarchical designs. The class
with disjointed architecture uses the vertical dimension to differentiate the node
responsibility by arranging heterogeneous nodes. The class with nested architecture
uses the vertical dimension to arrange the overlay functionality: each layer performs
the same function using different mechanisms.

Section 7.4 overviews basic performance models used for analysis of hierarchical
P2P architectures. In contrast to flat designs, a hierarchical architecture has addi-
tional dimensions (groups, layers) that affect the fundamental lookup performance
vs. node state tradeoff. Any design has to carefully set parameters along these
dimensions to achieve reasonable performance bounds.

7.2 Conceptual Models

This section introduces conceptual models that cover possible hierarchies in
decentralized networks. The models are further supported with a set of design
principles for constructing P2P network hierarchy architectures. It provides a
general framework that unifies the wide spectrum of existing HDHT designs with
hierarchical multi-layer architectures.

7.2.1 Network Hierarchy Models

Kleinberg [24] considered three conceptual models for decentralized networks:
grids, hierarchies, and set systems. The arrangement approach allows their modi-
fication to cluster-based hierarchies, tree-based hierarchies, and group-based hier-
archies, respectively. Note that Kleinberg aimed at network models for analysis of
decentralized search algorithms. We apply Kleinberg’s results to describe system-
level hierarchies appropriate for structured P2P networks.

7.2.1.1 Cluster-Based Model

The small-world phenomenon—connectivity by short chains of acquaintances—has
become the subject of computer and social network analysis [5, 23], including P2P
networks [37, 38]. Chapter 3 showed that many conventional DHT designs follow
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small-world models in constructing local routing tables (see also survey [26]).
It results in geometrically progressive routing when the hop length |u →+ v| is
exponentially shorter than the space distance ρ(u,v).

The basic scheme of neighbor selection is as follows. A node u divides its
neighbors onto local and long-range ones (classifying model). Local neighbors of u
are equal in terms of the space distance. Long-range neighbors are structured in u’s
vicinity (ordering model). The space distance metric provides ranks ρ(u,v) for u to
arrange other nodes v (ranking model).

Kleinberg’s grid-based model is a simple example [23, 24]. The network is
embedded in a two-dimensional n×n grid graph, defining all local neighbors for all
nodes. Then a long-range link is established between nodes u and v with probability
proportional to [ρ(u,v)]−α , where α ≥ 0 is a model parameter. Symphony [38] is
the first DHT design that adapted this model for practical P2P settings.

The idea of distance has further evolved in DHT designs. Instead of the space
metric ρ , composite distance metrics, such as routing distance τ , can be applied
to reflect proximity of the underlying IP network, semantic closeness of resources
kept at nodes, node service reputation, etc. The small-world phenomenon is then
interpreted [24] as embedding a network into an underlying space with distance τ .
Nodes tend to know their close neighbors in this space as well as to have contacts
that span long distances. Establishing a link with a closer node is more likely.

This distance-aware neighbor selection leads to various hierarchical structures
in the network as was shown in Chap. 4. The clustering principle evolves the
distance idea further, see Chap. 5. The principle states that the routing distance τ
must positively correlate with the space distance ρ . Consequently, given two groups
of nodes

Cxr = {u | ρ(x,u)≤ r}, CyR = {u | ρ(y,u)≤ R}

for some landmarks x,y ∈ S and positive scalars r < R. Then intra-group routing
in Cxr is more efficient than in CyR. In other words, taking arbitrary u,v ∈ Cxr and
u′,v′ ∈CyR we expect likely τ(u,v)< τ(u′,v′). Note that this principle is continuous
in nature.

P2P clusters are a result of the discretization with the classifying model.
Close nodes become densely connected and form a discrete entity—the cluster
with explicit space bounds. Figure 7.1 visually supports the intuition. Within a
cluster each node can reach another in few hops. Therefore, a global structure of
interconnected groups of close nodes appears, forming a two-layer hierarchy. In
intra-cluster communication the routing distance τ is shorter than in inter-cluster
communication.

P2P designs that follow the clustering principle were considered in Chap. 5
(see also surveys [26, 35, 43]). They are called “pre-hierarchical” in [26], “hybrid”
in [43], or “planar group-based” in [35]. Initial designs have no mechanism for a
cluster to be a decision-making entity, and nodes benefit only from the topological
properties of cluster-based network structure. In this chapter we focus on the designs
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Fig. 7.1 The network with two clusters, where each cluster defines a community of 256 nodes.
Nodes are densely connected within their community, in contrast to the poor inter-community
connectivity. As a result, ρ(u,v) is smaller within a cluster compared to the case when u and v
belong to different clusters. The picture is from [63]

C1 C2
C1

C2

uw vw

v

u

a b

Fig. 7.2 When clusters C1 and C2 are not disjoint then there can be nodes u, v and w for which the
distance relations contradict with (7.1): (a) partially overlapped clusters, (b) nested clusters

where each cluster (or a group of nodes in general) becomes a peer entity that
can make own distinct decisions and actions in the network. We call such designs
and their further generalization hierarchical; they are also known [35] as “partially
centralized”, “hybrid”, “layered”, or “multi-tier”.

Principle 10 (Cluster-based model). The hierarchy is two-layer with participant
nodes on the bottom layer and clusters on the top layer. Nodes of the same cluster
are densely connected; the inter-cluster connectivity is sparser.

The model defines a hierarchy as a set of n interconnected clusters. It embeds
the network such that its network structure ensures the following routing distance
property

({Cs}n
s=1,τ

)
,

τ(u,v)� τ(u,w) for u,v ∈ C ,w ∈ C ′,C �= C ′.
(7.1)

Each particular model defines its concretization of the relation “�”. It must
support the intuition that clusters are disjointed or almost disjointed, which is a
consequence of the classification model. When clusters are essentially intersected
then the intuition behind “�” suffers, see two examples in Fig. 7.2.
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Fig. 7.3 A hierarchy of nodes at a university. Circles stand for P2P nodes. Each faculty consists
of several departments. Each department has research groups with own nodes

Note that (7.1) captures the crucial role of hierarchy for the P2P routing
dependability, e.g., see [54]. When u,v ∈ C (i.e., they are within one domain) then
even if a node w of another domain C ′ is failed or if C is disconnected from the
system, the nodes u and v are still able to communicate.

A simple formal model of cluster construction is a set of balls in the ID space S,
e.g., in grid [24]. There is a set of landmarks {cs}n

s=1; they are points or dedicated
nodes in S. Cluster Cs consists of all nodes u that satisfy ρ(cs,u) ≤ R for a given
radius R. The construction can be easily enhanced to construct disjointed clusters;
if u belongs to several balls then a decision-making procedure assigns u in exactly
to one cluster. In fact, the decision is about which cs to associate each node with.

7.2.1.2 Tree-Based Model

The clustering principle allows constructing global two-layer hierarchies based on a
distance metric. Another approach is to define a hierarchy in S more rigorously.
In turn, the hierarchy induces space distance ρ in terms of the hierarchy tree.
Then the hierarchy embeds the network, forming the hierarchy-aware connectivity
structure with the resultant routing distance τ . This abstraction arises from classical
hierarchical methods, known also as “divide and conquer”.

An obvious example is location and administrative hierarchies. Nodes are
categorized on lowest-level groups depending on which local area network they
belong to. The upper level groups are defined in accordance with their scale, e.g.,
city, region, and state. Figure 7.3 depicts an example fragment of the university
hierarchy where participant nodes belong to different administrative entities.

Kleinberg [24] described a formal network model based on a complete b-ary tree
T = T (b,N) with N leaves (hence T is of height M = logb N). Given leaves u
and v, the hierarchy-induced distance h(u,v) is the height of their lowest common
ancestor in T . Then a network of N nodes is constructed such that the probability
of establishing a link u→ v is proportional to b−αh(u,v), where α ≥ 0 is a model
parameter. As in the cluster-based model, shorter paths (routing distance τ) exist
between nodes of the same group.
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In general, an arbitrary tree T defines a hierarchy where N leaves correspond
to nodes and other vertices are groups consisting of descendant groups and nodes.
The distance metric is the tree distance as in the above model. In fact, it is a kind
of introduction of more layers to two-layer cluster-based model (7.1); groups (non-
leaf vertices) correspond to clusters, some of them are nested Ci ⊂C j in accordance
with the predefined hierarchy.

Principle 11 (Tree-based model). The hierarchy is M-layer. The bottom layer
i = 1 consists of N nodes. On the upper layer i + 1 each group consists of all
nodes from its descendant groups on the layer i. Groups of the same layer are
node disjointed. On each layer the inter-group connectivity is sparser than the intra-
group connectivity.

The tree-based model can be thought as iterative application of the cluster-based
model. Each iteration results in the next layer, reflecting a higher scale level. Layer
i+ 1 consists of “clusters” for layer i. If {Ci j}m

j=1 are all groups of a fixed layer i
then they satisfy (7.1). The model preserves the property of dense node connectivity
within a group compared with the connectivity to nodes of other groups.

Further generalization is that there can be several distinct trees {Tk}m
k=1,

reflecting the notion that nodes were simultaneously taking into account several
“proximity” characteristics. For example, nodes in Fig. 7.3 can be distributed over
many geographically different locations, and we should consider an additional area-
location tree. Each Tk defines its own distance metric ρk. The resultant connectivity
with routing distance τ must follow (7.1) on any layer of any Tk. Note that in fact
the set {Tk}m

k=1 defines additional m layers (superlayers) in the hierarchy.

7.2.1.3 Group-Based Model

Each of the above two models defines specific rules of group formation. Kleinberg
et al. [22, 24] considered generalization where groups of the same network may be
formed by means of different models, including at least cluster- and tree-based ones.

Assume that each node can belong to several groups. For example, a node u can
belong to group C1 (Helsinki Institute for Information Technology—administrative
entity), group C2 (powerful machines—performance level) and group C3 (Europe—
geographical location). As in the cluster- and tree-based models, nodes are more
likely to be connected if they belong to the same group.

Kleinberg’s group-based network model establishes the following properties
using parameters 0 < λ < 1 and 1 < μ .

(i) The full set N of all nodes is a group.
(ii) If C is a group of size |C | ≥ 2 and u∈C , then there is a group C ′ ⊂C such that

C ′ �= C , u ∈ C ′, λ |C | ≤ |C ′|< |C |.

(iii) For any set of groups {Ci} with a common node u,
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∣
∣
⋃

i

Ci
∣
∣≤ μσ , where σ = max

i
|Ci|.

Property (i) ensures that for any subset of nodes there is a group such that
it includes the whole subset. Property (ii) is a type of the “hierarchy balance”
requirement when a group consists of subgroups of proportional size. For example,
the tree-based model with a complete b-ary tree defines groups of b node-disjoint
subgroups each, hence λ ∼ 1/b. Property (iii) is a type of “bounded size growth”
requirement; if groups has a common node then they are close in certain sense,
so they cannot contain many distinct nodes. For example, the cluster-based model
forms node-disjoint groups, hence a set in property (iii) always consists of one
group.

For two nodes u and v, the induced space distance ρ(u,v) is the minimum size
of a group containing both u and v. Similarly to the previous models, it allows
embedding the network into the hierarchy such that the connectivity structure
positively correlates the routing distance τ with ρ . In Kleinberg’s network model,
the probability of establishing a link u→ v is proportional to [ρ(u,v)]−α for α ≥ 0.

Properties (ii) and (iii) motivate explicit separation of two dimensions in network
hierarchy: vertical and horizontal. The vertical dimension defines layers and rules
for nesting groups. Any hierarchy contains at least one chain of nested groups for
any node u:

u ∈ C1 ⊂ C2 ⊂ . . .⊂ Cm = N, (7.2)

where each Ci belongs to a distinct layer and there is no C such that Ci ⊂C ⊂Ci+1.
In this sense, the tree-based model is pure vertical since the only chain of nested
groups exists for a given node.

In the general case, there can be several chains for the same node, e.g., if the tree-
based model uses several trees. The following requirement preserves the vertical
structure “approximately nested”. If {Ci} are arbitrary groups having a common
node and any two of them do not belong to the same layer then

∣
∣
⋃

i

Ci
∣
∣≤ μ(max

i
|Ci|), (7.3)

where μ(·) is a monotone increasing function, defined by each particular model.
The horizontal dimension defines classification onto groups on the same layer i.

⋃

j

Ci j = Ni, |Ci j ∩Cik| � |Ci j�Cik| ∀ j �= k, (7.4)

where� is the symmetric difference. In this sense, the cluster-based model is pure
horizontal; its group distribution is always a partition of N, thus Ci j ∩Cik =∅.

In the general case, groups on the same layer may overlap. For example, when
different research groups in Fig. 7.3 share some nodes. Requirement (7.4) preserves
groups “low overlapped”, where each particular model defines its concretization
of the relation “�”. Note that alternative chains in (7.2) can appear because of
overlapping.
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Node’s neighborhoods on layer i are an example of overlapping groups Ciu =

{u}∪T (i)
u , where T (i)

u is u’s routing table on layer i. If groups Ciu and Civ are high
overlapped then, from the interconnectivity point of view, they can be replaced with
the cluster Ci,uv = Ciu∪Civ.

The following principle summarizes the unified conceptual view on hierarchy
construction.

Principle 12 (Group-based model). A hierarchy is a set of interconnected
groups (7.1). It spans both vertical and horizontal dimensions satisfying (7.2)–(7.4).

Lloret et al. [35] introduced several types of group-based topologies appropriate
for centralized and decentralized networks. That work focused on the topology
graph and its role in the network efficiency improvement. They considered the case
of disjointed groups, a particular instance of the general model of Principle 12.
An essential finding they did is the importance of layering for scalable network
structures. The optimization techniques for group formation algorithms and group
distribution among network layers are considered by Lian et al. [34].

7.2.2 Layering Principle

Although pre-hierarchical P2P designs, see Part II and [26], utilize the clustering
principle, an individual node does not necessarily identify itself a member of a
certain global group as well as a group does not act as a decision-making entity in the
network. The straightforward application of the clustering principle is continuous.
There is no global group set fixed a priori. Each node u is able to compute the
metric ρ , which numerically reflects the global network hierarchy. Values ρ(u, ·)
control u’s connectivity to the network. Other nodes apply the same rules. As a
result, clusters appear at the global network level, approximating the given hierarchy
in actual overlay network topology.

Pre-hierarchical P2P designs follow the entire overlay agreement approach of
flat P2P. All participants must globally agree on a set of protocols and parameter
settings like the routing rules, size of routing tables, synchronization intervals, and
replication strategy [45]. Optimal settings for these parameters depend on dynamic
factors like churn rate, node failure probabilities, and fault correlation. They can be
difficult to assess or estimate for a large overlay.

In the hierarchical approach, the overlay is a priori (by design) partitioned onto
discrete layers, so forming the vertical dimension of network hierarchy. Many
problems can be solved within a layer, hence the problem size and complexity are
reduced compared with the entire overlay agreement approach.

In contrast to Kleinberg’s hierarchy models, our conceptual models of net-
work hierarchy emphasize the importance of vertical dimension. This requirement
directly comes from practice; multi-layer architecture is a distinct characteristic
property of any hierarchical P2P design, including HDHT designs [21, 48].
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Fig. 7.4 Example of ordered two-layer architecture. Nodes are organized into clusters C1, . . . , C5
on the bottom layer. They appoint supernodes A, B, . . . , H to form own overlay on the top layer.
Each A, B, . . . , H is physically one node acting as two virtual nodes, one per layer

Principle 13 (layering). There is a priori partitioning onto fixed discrete layers.
Each node u identifies itself with a concrete layer when u performs its functions in
the P2P system.

The layering principle benefits from simplicity in the relation between the global
network hierarchy and the actual overlay topology. A network layer can correspond
to a domain in the global hierarchy. The maintenance cost is reduced by distributing
the load among levels. Protocol and parameter settings are done within each domain.
The principle first appeared in unstructured P2P systems [27, 70], then it was
adopted in structured P2P designs.

A simple hierarchy is ordered two-layer (basic supernode model): the top layer
of supernodes and the bottom layer of networks of regular nodes. This hierarchy is
an instance of the cluster-based model, see Principle 10. Each supernode is assigned
to a network of regular nodes and connects this network by proxying lookups on
behalf of its regular nodes (a gateway to the top-level network). Supernodes are more
available and powerful overlay nodes. For regular nodes this hierarchy reduces the
impact of their short online times on the P2P system. Figure 7.4 shows an example
network where nodes form clusters on the bottom layer; then each cluster maintains
its own overlay and selects its supernodes to represent the cluster in the top layer
overlay.

The layering principle is applicable for arbitrary finite number of layers to
provide efficient scaling and organization. For instance, a design defines M ≥ 2
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layers to enable distinction between nodes with different capabilities, domains, and
other global characteristics. The result is a hierarchy with multiple layers ordered
among the vertical dimension.

Similarly to clustering in pre-hierarchical P2P designs, a multi-layer hierarchy
influences the network topology, but the impact is higher. Nodes of the same domain
form own network. Consequently, hybrid P2P systems that combine unstructured
and structured topologies are possible [43, 57, 62]. A network on each layer runs
own P2P protocol, either structured or unstructured. The anonymity is also improved
(compared with flat designs); a network on a given layer is a black box for an
external overlay node.

One disadvantage of layering is the assumption that a supernode can participate
in any overlay. The assumption is not always true in IP networks since they have
connectivity restrictions, e.g., due to NATs or firewalls.

7.2.3 Network Hierarchical Architectures

The layering principle introduces a stack of interconnected layers, structuring the
network vertically. The horizontal dimension is for the intra-layer connection struc-
ture. A concrete design with composition of the vertical and horizontal dimensions
defines a hierarchical architecture.

Artigas et al. [2] distinguished vertical and horizontal approaches for hierar-
chical architectures. The original definition focused on inter-overlay connection
structure—a result of multiple routing tables that nodes maintain to participate
in several overlays. This definition does not always provide a clear classification
criterion, especially for the case of group-based hierarchy model. We modify the
criterion accenting the role of layering and considering the relation between layers
and their overlays.

Our further analysis brings two new design principles: disjoining and nesting.
They focus on the relation between groups in the hierarchy. A group defines a role
that group’s nodes perform in the system. Layers and overlays are specific instances
of the notion “group”.

7.2.3.1 Vertical Approach

The characteristic property of this approach is that every layer is a self-contained
P2P overlay network. Vertical architecture is a set (ordered or not) of M overlays.
Each layer i overlay follows its own protocols. Layers may consist of different
number of nodes, Ni ≤ N. Any supernode u participates in several overlays, i.e.,
u is a gateway connecting them. Thus u has to maintain multiple routing tables,

u ∈ Ni∩Nj , T (i)
u ∪T ( j)

u ⊂ Tu for some i �= j.
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Fig. 7.5 Vertical architecture for M = 3 layers. A regular node (unfilled circle) belongs to exactly
one layer. A supernode (filled circle) connects two or more layers. Linked circles represent
one physical node acting as several virtual nodes due to layering. (a) Supernodes connect any
combination of layers. (b) Any node is a supernode for every layer. (c) Regular node appears
on one layer; supernode appears on all layers. (d) Tree- or group-based hierarchy; grey ovals are
clusters of layer i overlay, which provides the P2P connectivity for all its nodes in spite of their
clustering structure

In routing, u has to decide which of its overlays to use for a lookup. A regular node
participates in exactly one overlay and forwards lookups to supernodes for inter-
layer (global) routing.

Intuition behind vertical architecture is that the system partitioning is along the
vertical dimension only. Within each layer one overlay network is presented, thus
there is no specific horizontal partitioning. The division onto supernodes and regular
nodes is for vertical glue between layers.

Vertical architecture benefits of the simplicity and straightforward implementa-
tion. For example, the ordered two-layer architecture is similar to shown in Fig. 7.4
earlier. All nodes participate in the bottom layer (N1 = N), forming one big overlay
network (e.g., flat DHT). The most responsible nodes become supernodes (N2 ≤ N),
forming an additional overlay on the top layer (e.g., another flat DHT).

Increasing the number of layers provides more design opportunities, see Fig. 7.5
for illustration. Supernodes in Fig. 7.5a have two or three independent routing
tables: F connects layers 1 and 2; C and G connect layers 1 and 3; A, D, H connect
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layers 2 and 3; B and E connect all three layers. When layers use essentially different
P2P protocols (e.g., a mix of structured and unstructured protocols) the hierarchical
architecture is hybrid.

In terms of the group-based model (Principle 12), each layer i defines own group
Ni of nodes. The non-empty pair-wise intersection is due to supernodes,

N =
M⋃

i=1

Ni, Ni∩Nj = Si j �=∅ for i �= j,

where Si j consists of all supernodes participating in the overlays of layers i and j.
There are several alternatives for a supernode in (7.2). Requirement (7.3) can be

satisfied, e.g., with the moderate number of layers M�N, then either approximately
equal-sized layers or few ones that cover the majority of nodes.

Layers in vertical architecture can be ordered or non-ordered. The ordered verti-
cal architecture applies layering to define different classes of the node responsibility
or functional role in the global system. For instance, in the two-layer supernode
model (see Fig. 7.4 on p. 180) the supernode overlay assures more efficient routing
than the bottom overlay. A typical case is the decreasing number of nodes for the
higher responsibility:

N1 > N2 > · · ·> NM, (7.5)

which is natural for nesting requirement (7.2). The pictorial idea is shown in
Fig. 7.5d.

The non-ordered variant is suitable for federated architectures, when several
domain-independent P2P overlays are combined. The case is illustrated in Fig. 7.5a,
where a layer might represent a distinct administrative domain. A few supernodes
belong to multiple domains. Layers are equal in their participation in the global
system. The design must define rules for a supernode which layers it is associated
with. Nesting requirement (7.2) becomes minor due to its reduction to u ∈ Ni ⊂ N
(for some i).

In certain sense, non-ordered vertical architecture is close to two-tier horizontal
architecture (see Sect. 7.2.3.2): the bottom tier of regular nodes and the top tier of
supernodes. Nevertheless, this architecture is vertical, and the distinctive property is
that supernodes do not organize themselves into own overlay or a set of overlays.

The vertical approach allows multi-hierarchical architectures. Since every layer
is a self-contained P2P overlay, the same procedure can be further applied to any
layer to construct its own hierarchical architecture. For instance for multi-tree
hierarchy (Sect. 7.2.1.2), each tree Ti corresponds to layer i, where the hierarchy
is applied to all nodes N = Ni and any node is a supernode for all M layers, see
Fig. 7.5b. For federated architecture this recursive approach leaves much design
freedom for the overlays that participate in the federation. Note that multi-hierarchy
may combine layers with ordered and non-ordered architectures.

Ou et al. [48] further divided the vertical architecture class into fully vertical
and partially vertical. In fully vertical architecture all N nodes are present on
all M layers, as illustrated in Fig. 7.5b. Therefore, there is no need in dedicated
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gateway nodes. Since each layer is a full N-node overlay, lookup can be successively
routed within any layer. Nevertheless, for the routing efficiency a node decides an
appropriate layer i to bring into play for a given lookup.

Fully vertical architecture can be extended with regular nodes, as shown in
Fig. 7.5c. Each supernode still must participate on all M layers, hence being a
“universal gateway”. Each regular node is presented within its domain (layer) only.
In practice it can be because of the domain security policy does not allow such
a node to be accessible directly from other domains, node capacity is low for
maintaining multiple routing tables, or NATs and other IP-level restrictions prevent
direct connectivity.

We use the term pure vertical for partially vertical architecture since it inherits
the origin two-layer supernode model. The idea is depicted in Fig. 7.5d. The order
of layers is essential. A node u participates in the overlays on layers i = 1,2, . . . ,mu,
thus u does not appear on layers i > mu. This solution is appropriate for highly
heterogeneous environments. For example, a mobile device, which cannot maintain
many routing tables, is presented only on the bottom layer.

The obvious merit of pure vertical architecture is that it naturally admits the
cluster-based and tree-based hierarchy models with iterative layer construction.
Nodes of the layer i overlay are organized into clusters Cik. A cluster assigns one
or more its nodes to be supernodes for layer i+ 1. If all supernodes of Cik belong
exactly to one cluster Ci+1, j on the next layer, then the hierarchy is tree-based. If
supernodes of Cik participate in different clusters on layer i+1, then the hierarchy is
group-based. Moreover, some nodes on layer i may ignore clustering and supernode
assignment so far as the layer i overlay preserves its connectivity.

The known drawback of straightforward designs of vertical architecture is the
overhead that supernodes afford in their routing table maintenance. The number
of network connections can reach a big value for large N and M, worsening the
scalability. For instance consider a federated network where its layer i overlay
consists of Ni = N/M nodes and uses a flat DHT like Chord [58]. A node
has a routing table T (i) of log(N/M) entries. Since a supernode belongs to m
layers it keeps ∑m

i=1 |T (i)| = m log(N/M) entries. If the N-node network would be
implemented with a single flat DHT then every node has routing table of size logN.
Let concretization of M� N be Mα < N for α > 1. The ratio

m
α

<
m log(N/M)

logN
< m

shows that the state overhead of a supernode is proportional to the number of layers
the node participates in.

Note that this high overhead happens when the supernode maintains its routing
tables independently. Contrary to the widespread opinion, vertical architecture does
not always prevent lower overhead maintenance when routing entries are effectively
reusable on different layers, as it first appeared in horizontal architecture designs
(see the next section). In networks with low-overlapped layers, like federated P2P
networks, the routing table maintenance, however, cannot efficiently benefit from
the routing links reusability.
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Fig. 7.6 Horizontal architecture for M = 3 layers. (a) An inter-layer connected combination of
overlays; there is no intra-layer connectivity between overlays. (b) Pure horizontal. Bottom layer
i = 1 consists of the smallest overlays C11, C12, . . . , C19. Layer i = 2 merges them to the medium-
sized overlays C21 =C11 +C12, C22 =C13 + · · ·+C16, C23 =C17 +C18 +C19. Top-most overlay C3
includes all N nodes

7.2.3.2 Horizontal Approach

The characteristic property of horizontal architecture is that, in addition to layering
along the vertical dimension, every layer is divided onto several disjointed overlays,
see Fig. 7.6. In this certain sense vertical architecture is a particular case of
horizontal architecture with one overlay per layer. The term “horizontal” supports
the intuition that the overlays of each layer spread out the horizontal dimension. In
fact, partitioning a layer into overlays can be treated the application of the layering
principle for the horizontal dimension.

As in vertical architecture, the horizontal approach allows non-ordered variants,
see Fig. 7.6a. In contrast, they are not popular in P2P designs since the maintenance
of the inter-layer connectivity between all overlays is complicated. Another property
of the horizontal approach is that any layer i can cover all N nodes in sum (Ni = N),
which is similar to fully vertical architecture.

Consider the pure variant of horizontal architecture: ordered stack of layers with
Ni =N. Recall that in pure vertical architecture (Fig. 7.5d) every layer forms in exact
one overlay, all N nodes participate in the bottom layer, the number of participating
nodes is reduced in the overlay of the next layer, as shown in (7.5), and finally few
supernodes participate in the top overlay. In contrast, pure horizontal architecture
(Fig. 7.6b) partitions all N nodes into many small overlays on the bottom layer i= 1.
The number of overlays is then reduced on every next layer i+ 1 by merging layer
i overlays, while keeping the same sum number of nodes on the layer. Finally, a
single global overlay of N nodes appears on the top layer i = M.

This construction directly reflects the tree-based hierarchy (Principle 11), thus
the pure horizontal architecture is appropriate for systems with explicit domain
hierarchy, like shown in Fig. 7.3. Moreover, it allows the advantage that horizontal
architecture typically provides: the sum routing table size is kept moderate. Instead
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of maintaining independent routing tables, a node u reuses its routing table entries
in overlays on upper layers. It can be achieved with the telescoping scheme:

T (1)
u ⊂ . . .⊂ T (i)

u ⊂ T (i+1)
u ⊂ . . .⊂ T (M). (7.6)

The routing table size grows up with i = 1, . . . ,M. Any layer i+ 1 overlay inherits
and then extends the link structure of its layer i overlays (sibling networks).

Additional links Δui = T (i+1)
u \T (i)

u are carefully chosen such that the size of every

routing table remains small, comparable with a flat DHT, e.g., |T (i)
u |= O(logN).

Further generalization allows partial inheritance, i.e., some entries of T (i)
u are

not in T (i+1)
u . For instance, if layers have unequal sets of nodes (Ni �= Nj), then some

neighbors from T (i)
u are absent on layer i+1, thus they cannot be in T (i+1)

u . The reuse

requirement is reduced to keeping the symmetric difference T (i)
u �T (i+1)

u small. This
way is also appropriate for non-ordered horizontal architectures architecture, where

T (i)
u �T ( j)

u should be kept small for i �= j.
Contrary to the widely accepted opinion the routing entry reusability is not a

distinct property of horizontal architecture. For instance, full vertical architecture
designs can also benefit from supernodes that rationally maintain routing tables in
the reusable manner. In fact, the reuse requirement is an instance of generic group-

based principle (7.3) with groups Ciu = {u}∪T (i)
u , leading high overlapped node’s

neighborhoods on different layers.
Since the requirement Ni = N or at least Ni ≈ N is typical in horizontal

architecture, the already mentioned disadvantage is that IP connectivity restrictions
or high responsibility requirements can prevent participation of certain nodes in
some layers. A more specific disadvantage is the unclear distinction among the load
that different nodes take in the system. Node differentiation becomes difficult when
almost every node participates in all layers.

One solution to mitigate the above disadvantages can be brought from pure
vertical architecture. Each layer states the node responsibility level. A node u
maintains its (nested) routing tables up to layer mu < M, cf. (7.6). Communication
with layers mu < i ≤ M is through such nodes (supernodes for u) that maintain
routing tables up to layer i at least. Hence, the node distribution among layers
satisfies (7.5).

7.2.3.3 Disjoining and Nesting Principles

The group-based model can describe the core of any hierarchical architecture. A
concrete architecture design further clarifies which relations exist among the groups,
e.g., some groups are disjointed and some ones are nested. Some instances of
such relations were considered above. Their analysis leads to two general design
principles formulated in Table 7.1.
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Table 7.1 Disjoining and nesting principles for hierarchical P2P architecture designs

Principle 14 (disjoining). Nodes with dif-
ferent roles belong to disjointed or low-
overlapped groups.

Principle 15 (nesting). Nodes with sim-
ilar roles belong to nested or high-
overlapped groups.

Properties

Classifying model: Groups are separated
in accordance with their node popula-
tion, responsibility, or functional role.

Low-overlapped groups: If u,v ∈ G and
u /∈ G ′ then likely v /∈ G ′. This tendency
correlates with (7.4).

Coarse responsibility granularity:
The number of m-responsible
nodes decreases rapidly with
m = 1,2, . . . ,M. The number of layers M
is typically small, hence providing few
responsibility levels. Low-responsible
nodes prevail, otherwise the hierarchy
degenerates to a flat structure.

Ordering model: Higher layer groups in-
herit partially the node population and
increment the responsibility and func-
tional role.

High-overlapped groups: If u,v ∈ G and
u ∈ G ′ then likely v ∈ G ′. This tendency
correlates with (7.3).

Fine responsibility granularity: The
number of m-responsible nodes
decreases slowly with m = 1,2, . . . ,M.
The number of layers M is can
be big, hence allowing many
responsibility levels and non-trivial
nested structure (7.2). There are many
high-responsible nodes, up to the totally
supernode population.

Typical evidence in architectural design
Layering

Layers represent distinct domains; the
overlap is low due to a small set of
supernodes (compared with the major
population). Popular in non-ordered
architectures.

Every next layer increments the node
responsibility. An mu-responsible node
u participates in layers
i = 1,2, . . .,mu ≤M. Popular in ordered
architectures.

Clustering
Construction of the horizontal dimension.

Each layer is composed of disjointed or
low-overlapped groups by clustering
similar nodes.

Construction of the vertical dimension.
Some nodes of each cluster also appear
on upper layers.

Multiple routing tables
A node maintains layer-independent routing

tables, leaving freedom for the
intra-layer connectivity. Typical for
vertical architecture.

A node maintains nested routing tables,
allowing reuse of routing entries on
different layers. Typical for horizontal
architecture.

Node heterogeneity in load distribution
A group acts as a collective entity. A

high-responsible node affords essential
capacity to represent the group on
behalf of all its nodes.

A node increments its responsibility up to
its own individually appropriate level.
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Each principle captures an ideal case. Concrete hierarchical architecture designs
are always subject to tradeoffs. The terms low- and high-overlapped groups show
the possibility of deviation from the ideal cases. In fact, for a given architecture we
can only say about the tendency: either it follows closer the disjoining principle or
the nesting one.

Both principles state that a hierarchical architecture design reflects the node
role differentiation and similarity by the construction of groups. The principles
are opposite since they result in decreasing and increasing the group overlap,
respectively. Nevertheless, they are applicable in a composition for both vertical
and horizontal dimensions. They provide more understanding of the propositions
we introduced in the group-based model and the layering principle.

The layering principle can be considered as an instance of the disjoining
principle applied for constructing the vertical dimension of the hierarchy. Along
the vertical dimension the groups can also follow the nesting principle and form
a nested structure as it was formalized earlier in (7.2). Moreover, if groups from
different layers are overlapped then their intersection is essential and the sum size is
bounded with (7.3), an evidence of the nested principle. The horizontal architecture
approach utilizes disjoining principle: all nodes of the same layer are partitioned
into independent overlays, defining groups that follow (7.4).

The disjoining and nesting principles allow introducing another classification
for hierarchical architectures onto disjointed and nested. This classification reflects
the use of vertical stack of layers to capture the node responsibility level. The
classification criterion is combinative; a given architecture cannot be pure disjointed
or nested. Instead, it should be considered rather disjointed then nested and vice
versa.

Disjointed architecture is based on conceptual separation of groups of different
layers. Inter-layer overlapping is kept low. A node participating in several layers
performs different roles on each its layer. The node responsibility is primarily
measured with the number 1 ≤ m ≤ M of layers that the node connects (m-
responsible node). Regular nodes are least responsible. The population size of
m-responsible nodes decreases rapidly with growing m (e.g., exponentially).

The characteristic property is the major population consists of low responsible
nodes. A common case is when many supernodes connect two layers only (adjacent
layers in ordered architecture) even if M > 2. Since m is not large at least for
majority of nodes, the responsibility scale has coarse granularity; the simplest
case is binary classification: low-performance and powerful nodes. Note that if the
major population becomes consisting of high-responsible supernodes then the node
differentiation disappears, degenerating the hierarchy.

The architecture is suitable for non-ordered layers, where groups of different
layers represent essentially diverse domains. Each layer consists of many regular
nodes of its domain, making the separation of groups of different layers. Few
supernodes are gateways, providing sparse inter-layer connectivity. Protocols on
each layer are domain-aware, and this diversification separates roles the same
supernode plays in overlay routing and maintenance on different layers.
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In the ordered case the responsibility may correlate with the layer index i =
1,2, . . . ,M when nodes in Ni+1 provide more capacity than nodes in Ni. Although
it is similar to the nested case, disjointed architecture requires rapid layer size
reduction in (7.5). Furthermore, some nodes from Ni may be not presented in Ni−1.
Importantly that a higher layer provides more efficient routing mainly due to smaller
network size and only partially due to higher node responsibility. The latter, in fact,
is distributed among m layers, usually with no specific prioritization.

Even in the ordered case, groups of different layers are conceptually disjointed.
A supernode on layer i+1 acts on behalf of its group from layer i. In other words, a
layer i+ 1 supernode aims at group-aware decisions and actions; it can be replaced
with another node of the group. Actually, it is evolution of the “virtual nodes”
concept [4, 12, 59] when a physical node runs a group of virtual overlay nodes.

Layers are sparsely connected by a few supernodes; it makes disjointed architec-
ture close to vertical one. However, disjointed architecture also allows the horizontal
approach. See example schemes in Figs. 7.5a, c, d and 7.6a.

Nested architecture primarily arranges the overlay functionality among layers
i = 1,2, . . . ,M, where M can be large, allowing fine granularity of the node respon-
sibility. For simplicity we assume the case of ordered hierarchical architecture. The
bottom layer contains all N nodes and implements the basic function that every node
must perform. Every next layer enhances the function with advanced mechanisms
that more responsible nodes apply for better performance or for other improvements
of the overlay operability.

Each node u appears on layers i = 1,2, . . . ,mu ≤M, participating in mu networks
in total:

u ∈
mu⋂

i=1

Ni, u /∈
M⋃

i=mu+1

Ni, ∀u ∈ N,

where mu depends on u’s available capacity. Consequently, the following “nested”
structure appears:

NM ⊂ . . .⊂ Ni+1 ⊂ Ni,

which generalizes (7.5). Each node can be intuitively thought “a column” in the
pyramid of layers. In contrast to disjointed architecture, the size reduction between
layers may be low.

The layer differentiation is due to routing criteria, not due to the population. A
popular solution is that each layer aims at own routing scale, and higher layers
require longer-range links for better global routing. They form expressways for
lower layers. Actually, it is evolution of the “large routing table” concept when
every node varies its routing table size depending on the capacity, see such flat DHT
designs as SmartBoa [18], EpiChord [30], and Accordion [31].

The characteristic property is the major population consists of high responsible
nodes. It is a counterpart of disjointed architecture. The number of high responsible
nodes can be big and even comparable with the size of the whole population.
This property does not degenerates the hierarchy since efficient routing applies an
appropriate criterion within its layer depending on the current lookup state.



190 7 Hierarchical DHT Architectures

Nested architecture includes ordered variants of vertical and horizontal
architectures. An obvious instance is fully vertical architecture (Fig. 7.5b) with
diverse routing criteria on different layers. Also, pure vertical architecture
(Fig. 7.5d) can be considered nested if each cluster may delegate many supernodes
to the next layer.

Similarly, in horizontal architecture (Fig. 7.6b) the bottom layer consists of
small-scale overlays. The node responsibility is restricted within a small overlay.
Overlays on upper layers scale up in size, and the node responsibility level grows
appropriately. This case is an example when any node participates in every layer.

7.3 Hierarchical DHT Taxonomy

This section overviews particular designs of HDHT architectures. Since a multitude
of proposals has been appeared in the literature we cannot present here all of them.
Nevertheless, we expect that our list is representative, and a proposal that is not in
the list is close to one we described. The difference is non-principal in architectural
terms, e.g., the ID space realization or the communication protocol details.

The disjoining and nesting principles usually appear in the same hierarchical
architecture design in a composition. We first list the designs where the disjoining
principle prevails, then we consider the designs with the prevalence of the nesting
principle. Within each list the order is chronological, by the first publication of
design (according to the best of our knowledge).

7.3.1 Disjointed Hierarchical Architectures

Disjointed architecture differentiates the node responsibility by arranging heteroge-
neous nodes along the vertical dimension. Typically, a coarse granularity scale is
used, and the number of high responsible nodes is minor compared with the sum
number of nodes from lower responsibility groups. Groups of different layers are
separated—their node population, responsibility, or functional role are diverse. In
particular, a two-layer design assigns a small fraction of nodes to the top layer where
they act on behalf of their groups. The most of two-layer designs follow the basic
ordered two-layer architecture shown in Fig. 7.4 from Sect. 7.2.2.

7.3.1.1 Hierarchical Systems by Garcés-Erice et al. [10]

The design adopts the two-layer supernode model, which was originally developed
for unstructured P2P systems [27, 70]. Groups of the bottom layer consist of
proximity close nodes. Each group forms an independent overlay, applying the
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horizontal architecture approach. Any overlay can use its own protocol (structured
or unstructured) for intra-group routing, leading to a hybrid architecture design. On
the top layer, all groups form a single overlay (e.g., Chord-based) for global routing.

Overlays on the bottom layer operate autonomously on each other. Within each
group, one or more supernodes are selected to represent this group on the top layer.
Supernodes are most powerful nodes, hence they can meet more responsibilities.
In particular, a supernode maintains additional independent routing table for the
top-layer overlay. The top overlay aims at efficient global routing due to the small
overlay network size and good underlying network coverage.

When a node u joins the system, it must know ID of its group on the bottom layer.
Hence u can contact any node existing in the system to locate a supernode of the
group. If the group exists then u joins using the group overlay protocol. Otherwise,
a new group is created with the only (super)node u.

The essential point is that an entire group acts as a virtual node in the top overlay;
group’s supernodes are only representatives and can be reassigned. Although the
design allows most or even all nodes of a group to become supernodes, it leads
to the degeneration when the bottom layer overlays disappear moving all routing
functionality to the top layer.

This construction can be generalized to M > 2 layers. The higher layer the larger-
scale routing its overlays provide. The top layer i = M is a single global overlay.
Each lower layer consists of many groups, and a group is a “node” in the overlay
of the current layer. In a group of layer 1 ≤ i < M, nodes are classified into many
regular nodes and a few supernodes. Supernodes represent the group on layer i+ 1
maintaining the routing table for their group ID. Each regular node must know at
least one supernode of its group. On layer i+ 1, a supernode for a group of layer i
either becomes a regular node or acts as a supernode again to represent its higher-
level group on layer i+ 2.

Starting at a regular node on layer i = 1, a lookup for key k sequentially goes
to supernodes of groups on layer i = 2, . . . ,M and reaches eventually the top
layer. Then the lookup sequentially visits the groups responsible for k on layers
i = M, . . . ,1. Finally, on the bottom layer, the lookup is delivered to the destination
node.

The hierarchy reduces the length of lookup paths compared with flat DHT of
O(logN) routing complexity. For instance, in the M = 2 hierarchy with N2 nodes in
the top overlay, the reduction factor is logN/ logN2 if the top overlay and bottom-
layer overlays provide O(logN2) and O(1) routing, respectively. It reasons the
requirement N2� N.

The most routing and hierarchy maintenance load is pushed to supernodes. A
certain mechanism is required for selecting and maintaining supernodes. Since
several supernodes represent a single entity (group) in the higher-layer overlay,
the latter needs to modify appropriately a conventional flat DHT protocol for the
overlay.

The original M = 2 design was analyzed for the case of the Chord DHT on the top
layer. Similar two-layer design was exploited in [33] for a hierarchical small-world
system where the top layer is a single Symphony-based overlay and the bottom layer
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consists of group organized as independent Chord rings. Also this basic design was
used in mDHT [29] that further emphasized one of the key postulates: an entire
group forms a node in the top layer overlay, regardless which bottom-layer nodes of
the group are recently its supernodes.

7.3.1.2 Kelips by Gupta et al. [16]

As in the hierarchical systems of Garcés-Erice et al. the design employs two layers:
the bottom layer is for N1 = N nodes and the top layer is conceptual; it is for N2 ≤N
node groups. Groups use own ID space S2 = {0,1, . . . ,N2−1}, i.e., the total number
of groups should be fixed a priori. A node associates itself with a group by hashing
the node ID, yielding every group to be of size about N/N2 nodes.

The connectivity structure of a group is closer to unstructured P2P topology: a
node u knows most of nodes from its own group, leading O(N/N2) entries in u’s
routing table. For each other group, u stores additionally a constant-sized set of
group nodes: O(N2) entries. Let R be the total number of resources in the system.
Then u indexes R/N2 resources, storing for resource r a pair (kr, IPr) with resource
key and responsible node IP address.

On one hand, large values of N2 reduce the memory for entries of own group
nodes and the memory for resource indexes. On the other hand, the number of entries
for other groups grows with N2. The optimal tradeoff value is N2 = Θ(

√
N +R).

Assuming R = O(N), the optimal value leads to a routing table with O(
√

N) entries.
In a lookup, a querying node u hashes the resource name to the appropriate group

ID and sends the lookup to the topologically closest node v that u knows for that
group. Then v resolves the lookup by searching among its index and returns IP
address of the responsible node. When v fails in resolving the lookup, then multi-
hop (and multi-try) routing is enabled. Nevertheless, the probability of appearance
of long lookup paths is very low since the routing state at nodes is highly redundant.
As a result, the average number of hops is preserved within O(1) hops.

Kelips is loosely structured and closer to unstructured P2P designs. The high
routing efficiency requires the expensive maintenance (large routing tables and
resource index) that uses gossip protocols for information dissemination, similarly
to unstructured P2P overlays [22, 53]. It leads to O(

√
N · polylogN) cost, e.g., the

expected convergence time for an event is O(
√

N · log3 N). Nevertheless, the
√

N-
property of Kelips design can be used in more structured networks.

7.3.1.3 Structured Superpeers by Mizrak et al. [46]

Similarly to Kelips, each node maintains O(
√

N) local state to achieve O(1) routing.
The hierarchy is two-layer and follows the horizontal approach. Both layers use the
same circular ID space. All N nodes are placed on the outer ring. Among them N2 =
Θ(
√

N) high-capacity nodes are chosen to be supernodes; they create an additional
ring—the inner ring—to provide fast global routing.
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The outer ring is uniformly split into N2 arcs such that the nodes of each arc
form its own overlay on the bottom layer and assigns a supernode for the top layer.
A bottom-layer overlay has the star topology: the supernode knows all nodes in its
outer ring arc (O(

√
N) entries). In addition, any supernode maintains routing entries

for all other supernodes (Θ(
√

N) entries). As a result, the inner ring on the top layer
is a single overlay with the fully-connected topology. This connectivity structure is
close to unstructured P2P topology.

In a lookup for k, an initiator node sends the request directly to its supernode. If
its arc includes k then the supernode locates the successor of k in the local routing
table and returns the result (local routing). Otherwise, it forwards the lookup to
the supernode who is responsible for the enclosing arc for k (global routing). That
supernode locates the successor node in own routing table and returns the result.
Even in the worst case, routing has constant cost O(1).

In bootstrapping, first nodes of the system must provide an initial set of
supernodes When the system evolves, an extra mechanism is needed for selecting
new supernodes and keeping their amount equal Θ(

√
N). A topology change of the

inner ring is disseminated to all supernodes leading to Θ(
√

N) maintenance traffic.
This two-layer design can be thought as a hybrid of hierarchical systems [10] and

Kelips [16]. The architecture is disjointed since the difference between a regular
node and a supernode is essential. In particular, a bottom layer overlay cannot
function without its supernode.

7.3.1.4 OneHop by Gupta et al. [6, 15]

It is a three-layer hierarchy that supports one-hop routing with complete mem-
bership information at each node. Although memory cost allows a routing table
containing millions entries per node, the network bandwidth is too expensive for
straightforward dynamic membership maintenance algorithms. OneHop preserves
efficient dissemination of the membership information by partitioning the update
function among two additional layers.

OneHop ID space is circular, similarly to Chord. All N nodes form the fully-
connected topology overlay on layer i = 1, leading to one-hop routing complexity
by the cost of Θ(N) node state. Each node controls its immediate successor
and predecessor using the Chord algorithm with periodic keep-alive messages.
Additionally, a membership change can be detected with a lookup.

To maintain correct full routing tables, notifications of membership change
events must reach every node within reasonable time. If a node sends an update
notification to every other node, the bandwidth consumption becomes unacceptable.
OneHop achieves efficient update dissemination by imposing additional layers.

Similarly to Mizrak’s structured superpeers, the ID space is divided into N3� N
equal contiguous arcs (slices). A supernode (slice supernode) is assigned to each
arc deterministically as the node that immediately succeeds the mid-point of the
arc. Any regular node knows its slice supernode. When a new node has ID closer to
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the slice mid point then the node becomes the slice supernode. The slice supernode
overlay on the top layer i = 3 has fully-connected topology: each supernode knows
all other slice supernodes.

In turn, each slice is divided into N2� N/N3 equal-sized units. For each unit its
slice supernode assigns a unit supernode. The assignment is again deterministic:
the successor of the unit mid point. Since a slice supernode knows all its unit
supernodes, they form a star-topology cluster on layer i = 2. Any entry in a slice
supernode routing table is marked either “regular node”, “unit supernode”, or “slice
supernode”.

When a node detects a membership change, it notifies its slice supernode. The
latter collects all notification on a given time interval and then sends the message
to every other slice supernode. Any slice supernode aggregates the information
from other slice supernodes and periodically sends the aggregate message to its unit
supernodes. A unit supernode piggybacks this information in keep-alive messages
to its immediate successor and predecessor on the bottom ring.

A regular node u propagates the updates in one direction: if the update is
from the predecessor, then u sends the update to the successor, and vice versa.
This hierarchical approach imposes event dissemination trees with low redundancy;
duplications of an update message may occur but they are rare.

OneHop is primarily attractive in small or low-churn systems. The authors
recommended the OneHop design for systems with up to a few million nodes.
OneHop does not differentiate node capacity: any node should be ready to afford
additional responsibility if being occasionally assigned a supernode. Since the load
imbalance between slice supernodes and regular nodes is high [32, 47], the design
is inappropriate for a system with low-capacity nodes.

One-hop DHTs (in general, O(1)-hop DHT) are superior to multi-hop DHTs in
stable and high-capacity network environments because of more efficient lookup
bandwidth utilization. Risson et al. [55] proposed two hierarchical designs based
on one-hop DHTs. The 1HS design (One Hop Sites) uses independent one-hop
DHT overlays that can cooperate across protected sites and recover from network
partitions between those sites. This hierarchical architecture is appropriate for a
federation of large data centers. The 1HF design (One Hop Federation) arranges
one-hop DHT overlays into a tree-based federation of regional hierarchies. Regional
overlays have subtended organizational rings and organizational overlays have
subtended site overlays. This hierarchical architecture is appropriate for global
applications like name resolution or internet telephony.

7.3.1.5 Rings of Unstructured Clouds by Singh and Liu [57]

This two-layer hierarchy allows constructing hybrid P2P overlays that combine
structured and unstructured topologies. The two layers provide the distinction of
two desired properties: (1) structured P2P overlays (DHT rings) on the top layer are
for efficient routing and (2) unstructured P2P overlays (clouds) on the bottom layer
are for anonymity.
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Flat DHT space is used for the global ring, e.g., the n-bit circular Chord space
S = [0,2n). All N nodes participate in the global ring forming a flat DHT overlay. A
cloud is a small Gnutella-like network. To create a cloud, its name is hashed using
multiple hash functions to find several nodes in the global ring. They connect to
each other forming the cloud. Each becomes a rendezvous node, a kind of supernode
acting as a cloud stakeholder. When a rendezvous node leaves the system, a new one
that simply replaces the old one is found using the global ring DHT protocol.

Each node caches cloud names it sees in lookups. Hence a new node can always
get a list of active clouds. A new node first joins the global ring and gets the
list. Then the node hashes the cloud name to obtain a rendezvous node. The latter
bootstraps the node into the cloud. Nodes controls the cloud size using a distant
vector (distance from the rendezvous nodes); a cloud stops accepting new members
if its distance limit is reached. The number of rendezvous nodes per cloud is
small (system-wide parameter) compared with the typical cloud size, resulting in
disjointed architecture.

The dynamic relation between a cloud and the services that its nodes provide uses
rendezvous rings (R-Rings). An R-ring is an independent DHT overlay consisting
of one rendezvous node from each cloud. A rendezvous node uses its cloud ID in
the R-ring. Creating an R-ring follows the same DHT protocol as the global ring.
There are multiple R-rings, one for each rendezvous node of every cloud. The R-ring
structure introduces additional disjointed sub-hierarchy.

A lookup originates in a cloud and uses a random walk within the cloud. The
originator sets random TTL and the lookup is forwarded to random neighbors until
TTL = 0. The last node of the random walk becomes a crossover node. It preserves
anonymity since a random node communicates on behalf of the originator.

If the lookup is tagged with a cloud name then the global DHT ring is used
to locate a node of the target cloud. If the relation between clouds and services is
dynamic the crossover node finds a rendezvous node of its cloud. Then the lookup
runs over the R-ring to locate a rendezvous node of the target cloud. The rendezvous
node broadcasts the lookup in its cloud. Then a responsible node replies to the
crossover node, which forwards the reply back to the originator. Note that a random
walk can be applied also on the target cloud side for service provider anonymity.

Random walks decrease the routing performance. Each rendezvous node has
to maintain an additional routing table for the R-Ring. The load due to node
rendezvous and crossover responsibility is uniformly distributed among N nodes,
regardless of their heterogeneity.

The rendezvous mechanism is extremely important for hierarchical P2P archi-
tectures. It protects overlays in the hierarchy from object mobility when a node
or resource moves to another overlay. Risson et al. [54] proposed a rendezvous
abstraction for a wide class of hierarchical P2P architectures. Overlays of the
hierarchy stores additional records implementing a location information plane that
manages globally unique, persistent, semantic-free identifiers.
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7.3.1.6 Chordella by Zoels et al. [77, 79]

They analyzed the generic two-layer horizontal hierarchical architecture when every
bottom-layer overlay delegates exactly one supernode to the top layer. The top level
uses a flat DHT to form the global ring of supernodes; the analysis applies the Chord
DHT for the reference case. On the bottom layer each supernode manages its own
overlay of regular nodes, which exploit the supernode as a proxy.

A unique l-bit ID is associated with each node, either supernode or regular one.
The resource ID space reflects the two-layer hierarchy: a resource item has a 2l-bit
key with first l bits being independent on the second l bits. The first part of a key
identifies the responsible group and the second part determines the responsible node
within that group.

Routing is two-phase: global and local. First, a lookup for k resolves the
responsible group finding in the top-layer overlay the supernode by a DHT lookup
for the first l bits of k. Second, the lookup determines the responsible node within
that group using the second l bits of k.

There are three alternative connectivity structures for overlays of regular nodes:
fully-meshed (FuMe) when every node is connected to all other nodes of its overlay,
single-connection (SiCo) when every regular node is connected to its supernode
only (i.e., star topology), and DHT-based when a flat DHT forms each overlay. Note
that the analysis was limited with the pure case when all bottom-layer overlays
follows the same connectivity structure.

In the FuMe and SiCo structures, any group’s supernode knows all members of
its group, and local routing is one-hop. In the DHT-based structure, local routing
is O(logN/N2) if the Chord DHT is used. Note that a node always contacts its
supernode, even if the responsible node is within the same group.

The analysis considered the load efficiency that such hierarchical architectures
provide compared with flat DHTs. It is especially important for heterogeneous
environments when many nodes cannot provide much capacity to the system. They
focused on the optimal ratio between supernodes and the total number of nodes in
the system.

• The optimal supernode fraction 0 < α < 1 (i.e., N2 = αN) that minimizes the
total operation costs subject to bearable load on supernodes.

• Bottom-layer overlay connectivity structures that allow small α , reducing the
required number of supernodes, which have to take the most overhead of the
hierarchy.

The analysis concentrated on α ≤ 25% since for higher values the hierarchy
degenerates. The numerical evaluation showed that α ≥ 10% for typical network
settings. Note that small values of α reflect the characteristic tendency of disjointed
architecture.

The design is supported with a cost model that shows the average number of
sent and received messages for regular nodes and supernodes. The model leads to
a distributed algorithm that dynamically adjusts α to a cost-optimal value. If the
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network load is low, then a supernode can demote itself to a regular node. If the
experienced load is high, then a supernode promotes a regular node to a supernode.

The evaluation showed that the SiCo structure is superior to the FuMe and DHT
ones, in terms of the tradeoff between minimizing the total network traffic and
avoiding to overload the highest loaded supernodes.

The design was extended in [78] with a load balancing algorithm for supernodes.
It aims at assigning an appropriate number of regular nodes (or other types of the
load) to every supernode. Every supernode keeps information on the load level of
some O(logN) other supernodes. A new node is assigned to such a supernode that
currently has a low load level. When a supernode leaves, its regular nodes have to
rejoin the system. In summary, it is a step towards self-adoptable hierarchy with the
fixed number of layers.

SA-Chord [52] is an instantiation of the Cordella design. The goal is to move the
routing load entirely to a small set of the most capable nodes. These N2 supernodes
are “routing nodes”; only they may forward lookups. The N1 =N−N2 regular nodes
are “non-routing nodes”; they are lookup sources and destinations only. The top
layer (routing ring) is a modified Chord DHT and the bottom layer follows the SiCo
connectivity structure. A regular node always requests its supernode for a lookup.
Then the routing ring resolves the lookup to the responsible supernode. The latter
finally forwards the lookup to the destination regular node.

SA-Chord uses the flat circular Chord ID space. There is no need in hierarchical
IDs since regular nodes does not participate in routing. A supernode knows all
regular nodes on the arc clockwise from itself to the closest supernode. The routing
ring is a Chord extension. Instead of one finger per power-two interval, SA-Chord
allows k fingers, where k ≥ 1 is a system-level parameter. This routing table
redundancy improves the routing ring performance to O(log2k N2) hops per lookup
compared with O(log2 N2) of the basic Chord. Additionally, proximity neighbor
selection is applied to reduce routing latency.

7.3.1.7 HONet by Tian et al. [62]

The design uses the basic two-layer hierarchy and constructs on top of it a hybrid
P2P system (see another hybrid two-layer design in Sect. 7.3.1.5). The bottom layer
consists of many topologically-based clusters of small size, each maintains own
overlay with its supernode (cluster root node). All cluster roots form a single global
overlay (the core network) on the top layer.

Any overlay is DHT-based and has own independent ID space. De Bruijn network
is used for the reference case. A node (resp. resource) is identified by its cluster root
ID in the core network and its node ID (resp. resource key) in the local overlay.
Hence a full ID is a pair (c,k).

A cluster root is chosen as the most stable member of the cluster. HONet uses a
coordinate system with a group of well-known landmark nodes. Cluster coordinates
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are coordinates of its root; they are stored in the core network DHT. Space-filling
curves, which preserve locality, are used to map multidimensional coordinates to
the one-dimensional core network ID space (inspired by work [69]).

When a node joins, it searches in the core network a nearby cluster using its own
coordinates mapped to the core network ID space. If no cluster root is found within a
predefined cluster radius, then the node becomes a root of a new cluster. Otherwise,
the node joins the existing cluster.

Hierarchical routing is two-phase, similar to the previous designs. If a lookup for
(c,k) is started in a cluster c′ �= c then the global routing is performed in the core
network, and the lookup moves from one cluster to another. The lookup reaches a
root node of the target cluster using c. Then the lookup continues on the bottom
layer, i.e., in the local DHT overlay using the key k.

For better routing efficiency the design employs elements of unstructured P2P
topology. Each node, in addition to its DHT-based routing table, creates random
links to nodes of other clusters if the node capacity allows. The link construction
uses a random walk algorithm when a node initiates a message with a finite
TTL. A node u forwards random walk messages to a neighbor v with probability
proportional to fv, where fv is a generic fitness metric that characterizes v’s available
capacity and the performance of link u→ v. When a node receives a random walk
message with TTL = 0, it can provide the inter-cluster link.

A node publishes information about its inter-cluster links in its local cluster DHT
using cluster IDs as the keys. That is, if a node u is responsible for a key c in the
cluster c′ �= c then u knows all nodes in its cluster c′ that keep random links to
members of the cluster c. Hence u can serve as a local reflector to c to accelerate
global routing of lookups for (c,k). If a node v from c′ does not know a random link
to a node from c then v forwards the lookup to the local reflector u based on local
DHT routing. The reflector forwards the lookup either to a local node that knows
a random link to the cluster c or to the cluster root to perform hierarchical routing.
When the lookup enters another cluster using hierarchical routing, it can try fast
inter-cluster routing again.

Note that this solution applies the small-world principle when a routing table
consists of short-range and long range neighbors [23, 26]. The same global routing
acceleration method was proposed in Cyclone [1, 2] (see Sect. 7.3.2.10). Although
the design applies the same cluster-based model as the hierarchical systems of
Garcés-Erice et al., the architecture is closer to vertical one; all clusters tend to form
a global (unstructured) overlay on the bottom layer where clusters are connected
using random links.

7.3.1.8 Content-Based Hierarchy by Zoels et al. [76]

The design applies content-based hierarchy to support efficient topic-based search.
The hierarchy reflects a content category tree, thus following the tree-based
hierarchy model. The architecture is multi-layer ordered horizontal. It is set up by an
arbitrary number of independent Chord rings as topic-spaces(it can be generalized



7.3 Hierarchical DHT Taxonomy 199

ring

’Germany’
ring topic:

ring topic:

’Finland’
ring topic:

’Munich’

. . .

root

B

A. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

ring topic:
’Airport’

C

. . .

Fig. 7.7 Example of
content-based multi-ring
hierarchy [76]. Filled circles
correspond to supernodes;
each maintains its own ring
for a subtopic and acts as a
regular node (unfilled circle)
in the parent ring. Topic
content is distributed over all
ring nodes. Path A→ B→C
corresponds to qualified name
“/root/germany/munich/airport”

to any flat DHT). Each ring corresponds to a vertex in the tree and stands for an
individual topic, divided, if needed, onto subtopics with own rings on the lower
layer. The root ring is the only overlay on the top layer.

A ring is initiated and managed by its “ringmaster” (supernode). Initiating a new
ring, its supernode informs the parent ring supernode and remains a regular node
in the parent ring. A supernode is always aware of its parent ring and all own child
rings. Most of ring nodes are regular; they belong to that ring only. Recall that it is
characteristic tendency of disjointed architecture. Figure 7.7 depicts an example.

There are two types of resource names: qualified and unqualified. A
qualified name refers to the exact path in the content category tree (e.g.,
“/root/germany/munich/airport”) and identifies the corresponding rings. An
unqualified name is a keyword to lookup the resource in a Chord ring (keywords
are hashed to the ring ID space).

The design allows a dynamic structure adaptation when users can create and
remove their own topic spaces. It requires, however, some discipline among users;
they should work with the ring respective to a given topic. Alternatively, an extra
mechanism can be employed, e.g., a bootstrap server that is aware of the global
system structure.

The design is much inspired by multi-ring hierarchy [45] (see Sect. 7.3.2.8).
The latter, however, is closer to nested architecture; many nodes can participate
in multiple rings. Also [45] is oriented to administrative domain hierarchies.
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7.3.1.9 Hierarchy-Adaptive Topology by Zhang et al. [71]

The design is dynamically adaptable implementation of pure vertical architecture.
The number of layers M is not fixed and is changed self-adaptively according
to current value of N. The tree-based hierarchy model is applied for bottom-up
construction of the layers.

The ID space is d-dimensional torus with Cartesian coordinates, the same as in
CAN [50, 51]. Space operations are inherited from CAN. Node ID determines a
zone (hyper-rectangle) in the space, and the node is responsible for all keys that are
points in its zone. Neighbors are nodes whose zones overlap along d−1 dimensions
and abut along one dimension. Zones can be split and merged, which are the core
operations in this hierarchical design.

The layer construction uses bottom-up and top-down directions. The former is
cluster-based and takes into account the underlying network proximity. The latter
introduces tree-based partition of the ID space. The construction is dynamic and
depends on the current value of N. There are certain parameters and rules that
control the size of clusters, and hence the number of nodes on each layer and the
number of layers.

In the bottom-up direction, layer i nodes are grouped into clusters according to
proximity in the underlying IP network. Each cluster selects its supernode among
the most powerful nodes; it will represent the cluster on the layer i+ 1. Any node
(child node) has direct link to its supernode (parent node). Furthermore, the design
requires a node to keep links to all its ancestor nodes on upper layers (ancestor
routing table). Each supernode also maintains links to all its immediate children
(child routing table).

In the top-down direction, the entire ID space is partitioned among all the layer
i+1 nodes according to the CAN space partition operation. The common layer i+1
overlay is formed using neighbor connections (neighbor routing table). The zone
that a node u maintains on layer i+1 is further divided between u’s children, which
form a proximity cluster on layer i.

To join the system a new node u finds the proximity closest node and becomes
a member of the corresponding cluster on the bottom layer. If all other nodes are
far from u then u forms own cluster. Being a member of a cluster, u may become a
supernode by some election procedure. After that u joins clusters on upper layers.
When u leaves the system its role is delegated to another node.

If a lookup key k is within the current zone of a node u, then the lookup already
reaches the destination. Otherwise, u forwards the lookup to the ancestor node
whose zone is the smallest one that covers k (bottom-up routing first). Then the
lookup iterates through the child nodes whose zones cover k until the destination
node. Routing to neighbors on the same layer is used when ancestor nodes are failed
or busy.

Nodes on higher layers have more responsibilities since they handle more lookup
requests. A node can maintain fast inter-layer links (shortcuts) that reduce the load
of higher layer nodes and accelerate global routing. The idea is similar to HONet but
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instead of random walks the design applies the expressway method of eCAN [66,73]
(Sect. 7.3.2.2), which is based on the nesting principle. A node u creates a additional
shortcut to a grandchild of a neighbor of u’s ancestor on some layer.

The key points of this hierarchical design are (1) proximity neighbor selection
and (2) longer hops in the ID space on higher layers. The first one is due to clustering
when nearby nodes in the underlying network become neighbors in the overlay.
The second point is due to geometrical reduction of the number of nodes with i =
1,2, . . . ,M, and hops between neighbors become larger distance leaps.

7.3.1.10 Chord2 by Joung and Wang [19]

The design is a variation of the basic ordered two-layer architecture. The aim is at
reducing overlay maintenance overhead for regular nodes, which compose the major
population. A Chord ring of all N nodes is on the bottom layer (the regular ring) and
a Chord ring of N2�N supernodes is on the top layer (the conduct ring). The costly
part of the maintenance related to Chord fingers is pushed to the conduct ring, since
supernodes are assumed to be the most powerful and stable nodes.

A regular node knows at least one supernode. Regular nodes proactively (period-
ical checks) maintain their successor and predecessor links. When a node u detects
node joining or leaving, u reports to a supernode, and the conduct ring becomes
responsible for the notification of all affected nodes. Supernodes receive join/leave
information and reactively1 send the notifications. Receiving an update notification,
a regular node entirely updates its routing table (all finger links). Therefore, regular
nodes do not perform the costly proactive finger maintenance of the basic Chord.

The system starts from its regular ring. Nodes collect the uptime information
(or other metric for supernodes). Each node estimates uptimes of other node and
recommends the most stable nodes to be supernodes. (Various reputation-based
election mechanisms can be also introduced.) Once a node is promoted to be a
supernode, it constructs an additional ID for the conduct ring and joins this ring
following the basic Chord protocol. A variant when IDs in both rings concise is
possible.

The conduct ring DHT stores information about regular ring topology. Each
regular node u inserts to the conduct ring a link object (u,usucc) where u is used
as a key and usucc is u’s successor. Similarly, u inserts a finger object (v,u) for every
neighbor v∈ Tu. Now, whenever a node w leaves the regular ring, a supernode knows
which nodes have neighbor links to w and notifies these nodes to replace w with w’s
successor in their routing tables.

When a node joins the regular ring, its routing table of size O(logN) can be
constructed based data from the conduct ring, the total cost is O(logN2 · logN)
compared with O(log2 N) in the basic Chord. When a node leaves the regular ring,

1It is in contrast to Chord with its proactive routing table maintenance when every node periodically
calls the stabilization and fixfingers procedures.
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either it informs a supernode or its predecessor detects the departure. The cost takes
O(logN) messages to update routing tables in affected regular nodes. In the basic
Chord, the cost of node leaving is included to the maintenance cost.

A regular node periodically check only their successors and predecessors; each
round takes O(1) messages compared with O(logN) in the basic Chord, where a
round affects all neighbors. The conduct ring maintenance is the same as in the basic
Chord: the costs of node joining and maintenance are equal, each takes O(log2 N2)
messages per operation. Since supernodes are stable, the maintenance cost can
be reduced by increasing the interval of the periodical checks. Additionally, each
supernode stores O( N

N2
) link objects and O(N logN

N2
) finger objects.

Note that the Chordella design also allows Chord rings on both layers. It,
however, follows the horizontal architecture approach with many Chord rings on
the bottom layer. In contrast, Chord2 is a vertical architecture design with a single
Chord ring per layer. From this point of view, Chord2 is closer to HONet, but the
latter has less structured topology on the bottom layer.

Tanta-ngai and McAllister [61] applied the similar idea for separating the local
and global routing onto own layers (cf. Brocade and eCAN in Sect. 7.3.2). The
bottom layer is a flat Chord ring in S = [0,2n). On the top layer, an auxiliary
supernode ring (the expressway) uses finer arc-partition granularity than two-power
intervals of Chord. A supernode u has a link to the closest supernode in every arc

[
u+ api,u+(a+ 1)pi

)
, a = 1,2, . . . , p− 1,

i = 0,1, . . . , [logp 2n]− 1,

where p ≥ 2 is an integer parameter (expressway forwarding power). More capable
nodes become stronger connected via the expressway ring, aiming at better global
routing. Instead of periodic updates of the Chord protocol, a reactive event-
based notification mechanism is used for maintaining the expressway ring. The
maintenance is cheaper assuming that supernodes are relatively stable.

7.3.1.11 Hierarchical DHT-Based Overlay Networks by Martinez-Yelmo
et al. [39–41]

It is a variant of the basic ordered two-layer hierarchical architecture with the focus
on global multimedia applications where many inter-operating domains exist for
users or content. The particular reference case is P2PSIP, where SIP service is based
on P2P manner and P2P signaling traffic is carried by SIP messages.

The two-layer hierarchy directly reflects the application domain division, fol-
lowing horizontal architecture. A domain corresponds to an exclusive group of
nodes (multimedia participants); they form an independent overlay network (domain
overlay) using any flat DHT. Each group is represented by at least one supernode
on the top layer. The basic design uses one supernode per domain. Supernodes are
dedicated entities allowing regular nodes (e.g., devices like a mobile phone) to be
of lower load. These N2 � N supernodes form the global interconnection overlay
using a flat DHT.
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The interconnection overlay acts like a directory service among the different
domains, and each supernode publishes there its location information and infor-
mation about its domain overlay. There is a common packet format to assure
interoperability between different domains. The supernode selection and update
mechanisms must be integrated in the maintenance protocol of each DHT; they can
be based on the strategy from [44].

Similarly to many hierarchical designs, ID prefixes and suffixes are used for
identifying objects on different layers. A hierarchical node ID is composed by a
suffix ID (ls bits hashed from its domain name, e.g., “example.com”) for intra-
domain communication and a prefix ID (lp bits hashed from its full name, e.g.,
“user@example.com”) for identifying the domain. For each resource, a node stores
a resource tuple containing the resource hierarchical ID, the resource full name, and
the resource itself.

In a lookup for a hierarchical resource key k, a node u compares its own prefix
with k’s prefix. If they are different then u forwards the lookup to its supernode.
Otherwise, intra-domain routing happens. As in Chordella and the hierarchical
systems of Garcés-Erice et al., the reduction factor of a regular node routing state is
logN/ logN2 if DHTs with O(logN) state are used in domain overlays. Supernodes
have to support N/N2 times more bandwidth and queries. In contrast the mentioned
designs, where all the work is delegated to supernodes, a regular node forwards a
lookup to its supernode only when inter-domain communication is needed.

Another hierarchical design for P2PSIP was introduced by Le and Kuo [28]; it
does not use domain-based classification and is primarily oriented to node physical
capacity, which varies essentially in heterogeneous environments. There are M ≥ 2
layers, where M is fixed in advance assuming that N does not vary significantly
(it does not prevent some nodes to be temporarily inactive). Each layer forms
own Chord-based overlay, following vertical architecture. The design clusters N
heterogeneous nodes according with their capacity and forms the population of each
layer such that the number of nodes is geometrically reduced with i = 1,2, . . . ,M.

An analytical model of M-layer hierarchical P2P architecture for Internet
telephony systems was introduced in [17]. The horizontal approach with disjointed
architecture is applied with the system-level parameters C > 1 and K > 1. On layer i
its nodes organize into non-overlapped groups of size C using an arbitrary clustering
mechanism. A group is an overlay network based on any P2P protocol. Each group
delegates one supernode for the upper layer i+ 1 and controls at most K groups
from the lower layer i− 1. Notably that such a group can include nodes that do not
belong to any lower layer—an additional sign of disjointed architecture. Although
each group can be a DHT-based overlay with O(logC) intra-group routing, the inter-
group routing algorithm is closer to unstructured P2P networks when a lookup
is duplicated up to K + 1 directions: K or less groups on the lower layer and
supernode’s group on the upper layer.

The model hierarchy varies with the number of active nodes N. Nodes join the
system according to a non-stationary Poisson process with arrival rate λ (t) and stay
active for i.i.d. random time, hence the problem is reduced an Mt/G/∞ queue. Then
the average population size is estimated for sinusoidal arrival rate and exponential
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sojourn time (both assumptions are typical for telephony systems). In the steady
state it yields periodic behavior of N = N(t) as well as of the lookup performance.
Although the model can be applied for the two-layer design of Martinez-Yelmo et
al. and the M-layer design of Le and Kuo, the assumption on immediate hierarchy
reorganization with varying N and the flooding-like routing algorithm make the
model less realistic.

7.3.1.12 HSN by Guisheng et al. [13]

It is a two-layer hierarchy with the small-world ring of supernodes on the top and
many clusters on the bottom, hence following the horizontal architecture approach.
The basic idea is close to structured superpeers of Mizrak et al. All N nodes
participate in the global ring on the bottom layer. It is partitioned into several
clusters, each one is an independent overlay. A cluster assigns a supernode (cluster
head), and the N2 supernodes form own overlay on the top layer.

In the global circular ID space, a cluster covers an arc in between two consecutive
supernode IDs. The start (clockwise) node u is the cluster supernode; other
consequent nodes on the arc are regular, forming the set Cu. Note that the supernode
is a predecessor for all its cluster nodes. The final node does not belong to this
cluster; it is a supernode of the next one. Every node in a cluster knows its cluster arc.
Consequently, a node always can determine whether inter- or intra-cluster routing is
needed.

Short links connect regular nodes within a cluster. Each regular node keeps short
bidirectional links to its nshort consecutive successors. That is, any regular node also
knows nshort its consecutive predecessors. In addition, a short link connects a regular
node with its supernode. Intra-cluster communication uses greedy routing, which is
similar to the basic Chord algorithm. Since the arc size is kept small a mechanism
like Chord fingers is not very essential in the local routing and the simple use
of consecutive successors is adequate. Moreover, the bidirectional property allows
anti-clockwise forwarding, thus improving the greedy routing performance.

When a regular node determines that inter-cluster routing is needed, the node
forwards the lookup to the supernode. The latter decides and fixes the routing
direction (clockwise or anticlockwise) for subsequent intra-cluster routing. After
that the intermediate supernodes on the path do not change the routing direction.

Long links connect supernodes in a ring for inter-cluster routing. Each supernode
u keeps nlong long bidirectional links (in addition to its |Cu| short links). The
neighbor selection algorithm follows the small-world principle: neighbors should
appear on all distance scales; the probability of closer neighbors is higher. Actually,
the design uses the algorithm similar to Chord fingers: the ring is partitioned
onto power-two intervals and one long link is selected from each interval. For
nlong =Θ(logN2) or higher it leads to O(logN2) routing in the supernode ring. For
lower nlong the estimate of O(polylogN2) hops is valid [5, 24].

A mechanism for cluster split and merge is needed to keep every cluster within
the given bounds to the number of nodes. The protocol preserves the inequality
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Gmin ≤ |Cu| ≤Gmax for system-level constants Gmin and Gmax. The reactive routing
maintenance is on the top layer; when a message passes through a supernode,
it piggybacks its node ID and IP address to the message. The proactive routing
maintenance is on the bottom layer; every regular node periodically sends heartbeat
messages to its neighbors.

The connectivity structure of the supernode ring is close to the Chord protocol:
a discrete implementation of the small-world principle that leads to logarithmic
routing [26]. From this point of view, the use of any DHT with logarithmic
routing leads to comparable performance values. The shown experiment routing
outperformance over the flat Chord DHT is achieved partially because of the
bidirectional routing. Note that there exist several bidirectional modifications of
Chord with the similar outperformance over the basic Chord, e.g., see [8, 42].

7.3.1.13 GTPP by Ou et al. [48]

GTPP (general truncated pyramid P2P) architecture is a generic design scheme
for tree-based P2P hierarchies. On layers i = 1,2, . . . ,M− 1, nodes are grouped
into several disjointed overlays with own P2P protocols.2 Each overlay assigns one
supernode to be a gateway to the next layer. Finally, a single overlay appears on the
top layer i = M.

From the vertical perspective, the overlay structure consists of multiple trees
rooted by the nodes of the top overlay, which make the hierarchy looking like
a truncated pyramid (see also Fig. 7.5d in Sect. 7.2.3). The number of nodes on
each layer decreases exponentially with i = 1,2, . . . ,M, assuming that the majority
of nodes have relatively weak capability and the much powerful nodes are in the
minority.

A lookup is sequentially forwarded bottom-up until it reaches the top overlay.
The latter delivers the lookup to the closest supernode. Then the lookup sequentially
goes top-down until the responsible node is found.

The analysis showed that GTTP decreases the expected routing latency though
the path hop length can be higher than in a flat DHT. The GTPP layering provides
certain rules for load allocation to heterogeneous nodes: the higher the layer the
more load its nodes have. GTPP architectures with M = 2,3 layers are most
reasonable in practical settings.

7.3.2 Nested Hierarchical Architectures

Nested architecture arranges the overlay functionality along the vertical dimension.
Each layer performs the same function using different mechanisms. Typically, the

2For the reference case, GTPP utilizes Chord for all overlays.
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arrangement is incremental, and a node selects its “function stack” with the basic
function on the bottom and subsequent enhancements on upper layers. Processing
an operation a node decides which layer suits best and applies that layer mechanisms
for the operation. In particular, a two-layer design often employs the top and bottom
layers for global and local routing, respectively.

7.3.2.1 Brocade by Zhao et al. [74]

To the best of our knowledge, Brocade is the earliest HDHT design. The hierarchy
is two-layer, constructed according with vertical architecture. The primary overlay
of all N = N1 nodes is on the bottom layer and the secondary overlay of N2 ≤ N
supernodes is on the top layer. Tapestry is a flat DHT to implement both overlays.
The design, however, does not prevent the use of other flat DHTs. Although the
overlays use the same ID space, they are constructed independently, and a supernode
has two independent IDs.

On the bottom layer, proximity close nodes are grouped together and get assigned
a supernode for the secondary overlay. A supernode provides shortcuts across distant
domains in the underlying IP network. The key evidence of nested architecture
is that shortcuts form an additional mechanism for better global routing. The
secondary overlay is optional, and global routing, although less efficient, is possible
my means of the primary overlay only.

If N2 ≈ 0 then the overlay degenerates to a flat DHT network. If N2 ≈ N then
almost all nodes diversify routing: local links in the primary overlay and long-range
links in the secondary one. Both overlay can be mixed in a lookup path depending
on which routing criterion, local or global, suits for the next hop.

A supernode must have significant processing power and high-bandwidth outgo-
ing links. Preferably, it is a network access point such as gateway or router. The final
choice is resolved by an election algorithm or by the responsible ISP. As a result,
supernodes are distributed over the underlying network such that each domain is
represented by its supernode. Consequently, supernodes become landmarks for IP
network domains.

In the naive solution, each supernode maintains a list of all nodes in its group.
When a lookup reaches a supernode, the latter determines whether the lookup is
destined to a node in a local group or global routing is needed. Ideally, supernodes
are endpoints of a tunnel through the secondary overlay that allows transferring
a message directly from its current domain to the destination domain. Hence a
supernode can forward inter-domain lookups using the secondary overlay for more
efficient routing. Also, a regular node can directly forward lookups to its supernode
to activate efficient global routing. In any case, a lookup path can mix supernodes
and regular nodes, jumping between the overlays.

In contrast to a regular node, a supernode has to maintain additional routing table.
Although the location and capacity of supernodes improve the performance, routing
in both overlays is still proximity-unaware in the original proposal. An overlay hop
can incur many hops in the underlying IP network.
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7.3.2.2 eCAN by Xu et al. [66, 73]

eCAN is a hierarchical extension of flat CAN [50, 51]. The design primarily aims
at improving the routing performance from O(

√
N) overlay hops to O(logN). The

basic CAN design uses only local neighbors: d nodes, one per dimension in the
CAN d-torus. To improve routing, eCAN augments routing tables with long-range
links.

The same idea is utilized in many flat DHT designs, leading to pre-hierarchical
schemes when each node locally selects additional long-range neighbors [26]. In
contrast, eCAN constructs a global overlay (expressway) for each distance scale.
An expressway overlay forms own layer i ≥ 2. Its topology is formed with links of
the corresponding span; the higher i the longer span. The bottom layer is a flat CAN
DHT overlay, it performs the basic routing function, all upper overlays are auxiliary,
and the routing function is incrementally arranged along the vertical dimension.

The eCAN expressway mechanism can be considered as evolution of the Brocade
shortcut mechanism to arbitrary number of layers. Instead of the coarse-grained
routing scale “local (i = 1) vs. global (i = 2)”, the range i = 1,2, . . . ,M is used for
finer distance granularity. The span scale grows exponentially with i, which agrees
with the small-world principle. It leads to paths where the closer the destination the
shorter the hop span, see Fig. 7.8, which is analogical to geometrically progressive
routing paths of flat DHTs.

As in Brocade, an expressway link preferably has high bandwidth, and more
capable nodes take more load being active expressway nodes. In contrast to Brocade,
this node responsibility differentiation is implicit; it does not require specific
registration in expressways.

Recall that a Brocade shortcut spans long distance in the underlying IP network.
In contrast, an eCAN expressway is primarily for long leaps in the overlay ID
space. Nevertheless, eCAN employs proximity neighbor selection for long-range
links, reducing the routing stretch. Additionally, topology-aware CAN overlay
construction [51] allows adopting the node distribution in the ID space to the node
location distribution in the underlying IP network.
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In the sequel work Xu et al. [68, 69] develop the expressway method further.
They diminished strict DHT protocol rules in expressway construction; the distance
directly reflects the underlying network topology, leading to better adaptation
and lower routing stretch. Registration of high-responsible nodes and publishing
proximity-related information in expressways are mandatory.

7.3.2.3 Super-Peer Based Lookup by Zhu et al. [75]

The design is close to the Brocade two-layer ordered vertical architecture. The
primary overlay and secondary overlay are for local and global routing, respectively.
They are constructed using any flat DHT protocol. Supernodes are elected or
selected based on the node capability: network bandwidth, storage capacity, and
processing power. The secondary overlay uses its own ID space, and a supernode
has two independent routing tables.

Additionally, a supernode acts a centralized server to a set of regular nodes.
It maintains an index over the resources available at any regular node of this
supernode. Hence, centralized clusters with the star topology appear on the bottom
layer, introducing elements of horizontal architecture. When v joins the system, it
associates itself with a nearby supernode u and becomes a regular member of the
centralized cluster. Also v constructs its routing table for the bottom layer overlay
and behaves according to the flat DHT protocol. Participating in the system, v
notifies u about all local resources (for any insertion and removal). When v leaves
the system, u updates the index appropriately.

In contrast to Brocade, where routing can mix paths from both overlays, this
design states that lookup always first tries global routing using the secondary
overlay. A regular node forwards a lookup to its supernode. Then the lookup runs
in the secondary overlay until the responsible supernode is found. This supernode
forwards the lookup to the destination regular node (local one-hop routing based
on the local index). If a lookup cannot continue in the secondary overlay then the
lookup takes the primary overlay.

The design has no clear prevalence of nested vs. disjointed architectures. The
nested architecture property becomes apparent when the secondary overlay topology
is formed with long-range inter-domain links in the IP network. The partition onto
centralized clusters makes the architecture closer to disjointed. The design balances
these two approaches in between two points of view on the routing mechanics: either
the top DHT is auxiliary and boosts the global routing performance, or the bottom
DHT is auxiliary and preserves the local routing dependability when the top DHT
and centralized clusters cannot resolve a lookup.

Note that resource update notifications within each centralized cluster lead to
overhead for regular nodes, not only for supernodes. It can be inappropriate for
environments with very low-performance nodes and frequent update rates, e.g.,
mobile and embedded network environments.
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7.3.2.4 Coral by Freedman et al. [7]

The designs supports any number M > 1 of layers and applies pure horizontal
architecture. Each layer consists of clusters of nodes with similar RTTs. The node
ID space is the same for all layers. A node belongs to one cluster at each layer—the
extreme property of nested architecture. Chord, Kademlia, or another flat DHT can
be used to implement this cluster-based hierarchy.

The recommended value M = 3 has the following reason. There are many fast
clusters with regional coverage (low-level overlays for i = 3, a reasonable RTT
threshold is 30 ms), a few clusters with continental coverage (middle-level overlays
for i = 2, RTT is up to 100 ms), and one planet-wide cluster (the global overlay for
i = 1, RTT is unlimited). A node joins an acceptable cluster, e.g., one in which the
latency to 90 % of nodes is within the cluster diameter. If a node cannot find such a
cluster, it forms its own.

A lookup for k first starts in the cluster on layer i = 1, trying to take advantage
of network locality. If the current cluster on layer i does not contain a responsible
node for k, the lookup reaches the closest node u to k in this cluster. Then the lookup
continues on the next layer i+ 1 in the higher-level cluster that u belongs to. The
process continues until a responsible node is found.

Coral routing guarantees that lookups at the beginning are fast (see Fig. 7.9) since
(a) the small cluster size leads to few overlay hops and (b) proximity-awareness
leads to low routing latency. An additional replication mechanism complements this
routing strategy. Resources (pointers or indexes) are replicated to nodes along paths
to the destination node, and it is likely to resolve many lookups locally.

When a lookup reaches layer i, it first continues on this layer, i.e., within the
cluster. Thus a node needs information which layers incoming lookups must use.
Coral uses cluster IDs and implements a cluster management mechanism: joining
a cluster, merging and splitting clusters. It increases the maintenance overhead
compared to flat DHTs.
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The Coral design does not take the heterogeneity of individual node
responsibility into account. The hierarchy specifically arranges the routing
functionality along vertical layers to achieve higher performance than in flat DHTs.
In this case, deploying a few high-responsible nodes is not a radical change; all
nodes must afford their capacity non-exclusively. Moreover, if a node becomes an
active participant then its nearby nodes also have to be active due to the locality
property of Coral. Therefore, the design might be appropriate in environments with
domain heterogeneity.

7.3.2.5 HIERAS by Xu et al. [67]

The design is similar to Coral. The key difference in a clustering mechanism: Coral
uses ping-pong probes for RTT estimation and Hieras uses distributed binning. Each
of M layers consists of several overlays (rings), following the horizontal architecture
approach. A ring contains a subset of nearby nodes of the underlying IP network;
they take equal responsibilities for the workload within the ring. Values M = 2,3 are
recommended for a tradeoff between the routing performance and ring maintenance
overhead. The hierarchy can be built on top of a flat DHT; Chord was used for a
reference case.

All N nodes are partitioned into several rings on layer i = 1,2, . . . ,M. The top
layer i = M has one ring only. A node belongs to exactly one ring on every layer.
The lower is the layer, the smaller is the latency between nodes in the ring. Nodes
partition themselves into disjointed rings using the distributed binning scheme [51].
It requires landmark nodes, a well-known set of machines spread across the Internet.

A lookup is first performed on the bottom-layer ring where the lookup originator
is located. It moves up and eventually reaches the top-layer ring.

Since each node belongs to M rings in sum, it has to maintain M routing tables.
There are also ring tables that used to maintain information of different rings. A ring
table is stored at the node whose ID is numerically closest to the ring ID as well as
duplicated to several other nodes for fault-tolerance. Additional operations at a node
are needed, e.g. calculating ring information and requesting ring table when a new
node joins the system.

Park et al. [49] proposed P3ON (Proximity based P2P Overlay Network), a two-
layer design that is conceptually close to HIERAS and Coral. The global overlay
of all nodes is on the top and many local overlays are on the bottom. A local
overlay is a Chord ring that connects all nodes in a single AS. Dividing IDs onto the
prefix and suffix parts allows node IDs of the same AS to be close in the node ID
space (proximity-based ID assignment). Resources are initially stored in the global
overlay, then popular resources are replicated in local overlays. As a result, routing
first in a local overlay reduces the latency.

Xu and Jin [65] proposed Uinta and SW-Uinta (small-world), designs based
on the same two-layer cluster-based nested architecture as in Coral, HIERAS and
P3ON.The Uinta design considers underlying network proximity and data semantics



7.3 Hierarchical DHT Taxonomy 211

in cluster formation on the bottom layer. SW-Uinta changes the deterministic
Chord-like neighbor selection strategy of Uinta to the stochastic small-world strat-
egy, which results in reduced maintenance cost and improved routing performance.

7.3.2.6 TOPLUS by Garces-Erice et al. [11]

It is an extreme variant to proximity-aware overlay construction. Underlying
network topology is the key factor that influence the overlay hierarchy. A TOPLUS
overlay straightforwardly simulates IPv4 subnetwork hierarchy. As a result, a
lookup path follows the router-level shortest-distance path, and the routing stretch
becomes close to 1.

The node ID space S is the set of all IP addresses. Groups are virtual entities
identified with IP network prefixes. The latter are obtained from BGP tables. An
IP subnetwork maps to a group in the TOPLUS hierarchy. Proximity close nodes
are organized into groups (subnets in ASes). Groups are organized into supergroups
(ASes). Supergroups merge to hypergroups (aggregations of ASes). Therefore, a
typical case is M = 3 layers, similarly to Coral and HIERAS.

The XOR metric, a refinement of longest-prefix matching, supports the above
group construction. Assuming close nodes in the IP network have similar IP address
prefixes, the XOR distance is small for proximity close nodes.

This hierarchy follows the tree-based model with tree T . Its root corresponds
to S. Overlay nodes are leaves of T . A group is a non-leaf vertex and contains
all nodes from the descendant groups. For any pair of groups, they are either node-
disjointed, or one group is proper nested into the other. The tree is typically irregular
and imbalanced: groups on the same layer (even siblings) can be heterogeneous in
size and in number of subgroups.

Let mu be the length of the path in T from the root to a node u. Then u belongs
to mu groups nested along the path:

Cu1 ⊂ Cu2 ⊂ . . .⊂ Cumu = S.

That is, u is contained in an assembly of the telescoping groups. Local links of u
is for all v ∈ Cu1, i.e., u knows all participants of the inner-most IP network (closest
neighbors). Any Cui, except the root (i = mu), has one or more siblings in T . Node
u keeps at least one neighbor from every sibling group of Cui for i < mu. Therefore,
u knows long-range neighbors on all distance scales. Routing is greedy: forwarding
a lookup to the neighbor closest to the key.

When u joins the system, u takes the routing table of the closest node to u. First,
u notifies all its local neighbors to update their routing tables. Second, u asks each
long-range neighbor v for a random node w in v’s group and then w replaces v in u’s
routing table. It provides the diversity property when nodes of the same group likely
know different nodes from other groups. Formally, if u1,u2 ∈ C , u1 �= u2, u1 has a
long-range link to v1 ∈ C ′ and u2 has a long-range link to v2 ∈ C ′ then v1 �= v2 with
high probability.
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IP network prefixes can reflect proximity inaccurately: nodes with contiguous
prefixes might not be adjacent in the IP network. Node capacity does not influence
the overlay load balance, and the load of a node directly depends on position of the
inner-most IP network in the hierarchy.

7.3.2.7 Canon by Ganesan et al. [9]

Canon provides a generic method for accurate reflection in the overlay topology
the real-world hierarchical organization of nodes in the underlying network. Such
node organization is due to a global hierarchy of network domains, which can
be described with a tree-based model. An example was shown in Fig. 7.3 in
Sect. 7.2.1.2. The hierarchy reflection in overlay is primarily targeted to reducing the
routing latency because of lower routing stretch. The overlay path length remains
the same as in flat DHTs.

The Canon method requires each node to know its own position in the global
hierarchy, and any two nodes are able to compute their lowest common ancestor.
Note that the Coral and HIERAS designs simulate the global hierarchy using
clustering mechanisms with a proximity metric. The TOPLUS design assumes that
the global hierarchy is accurately reflected in the IPv4 address space.

Let T be the tree of global hierarchy with M layers. Overlay nodes are its leaves.
Let mu be the height of node u in T . Non-leaf vertexes are domains consisting of
all nodes from lower-level domains. The Canon method ensures that the nodes in
any domain form own DHT-based overlay by themselves; it is the case of horizontal
architecture. Since a node u belongs exactly to one domain on each of mu layers, u
participate in mu overlays in total.

The Canon hierarchy construction is bottom up. Given a flat DHT, each set
of nodes at a leaf domain forms a DHT-based overlay. At each internal domain,
the overlay, containing all nodes in that domain, is constructed by merging all its
children overlays. At each merging step, some links are added to routing tables. The
top-level (global) overlay is eventually produced; it contains all N nodes.

The key point that links from a lower-level overlay are inherited in higher-level
overlays, following the telescoping scheme of (7.6). The number of additional links
is moderate. The link addition rules depend on the underlying flat DHT. Some nodes
may not form any additional links at all. As a result, the total number of links per
node remains comparable with the flat DHT design.

Importantly that the higher layer the longer spans its domain overlays have.
Routing tries short-range links first, see Fig. 7.9 above. On each layer, a lookup for k
reaches the closest node u in the current domain. Then u is responsible for switching
to the next higher layer where the lookup continues. It leads to (a) the path locality
property when a path between two nodes of the same domain does not leave this
domain and (b) the path convergence property when paths from different nodes of a
domain to the same outside destination exit the domain through a common node.

When a new node u joins the system, it must know at least one other existing node
in its lowest-level domain (i = 1). This knowledge requires an extra mechanism.
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Then u joins sequentially the nested overlays on layers i = 1,2, . . . ,mu using the
DHT protocol.

The Canon method can be applied to transform many flat DHT designs into their
hierarchical versions. In particular, [9] describes such transformations for Chord
(Crescendo), Symphony (Cacophony), Pastry/Kademlia (Kandy), and CAN (Can-
Can).

7.3.2.8 Multi-Ring Hierarchy by Mislove and Druschel [45]

Similarly to Canon, it is a generic method for constructing a hierarchy of DHT
overlays (rings). It reflects real-world administrative organization with a tree of
rings. The top layer (root in the tree) consists of the only global ring. All nodes
participate in the global ring, unless they are connected behind a firewall or a NAT.
In contrast to Canon, each overlay may follow own flat DHT protocol, leading to
high organizational autonomy.

A node is not required to participate in each of the nested rings on path from the
leaf to the root in the tree. The reason is connectivity constraints of the underlying
network. Lower-layer rings are connected to their parent ring using gateway nodes,
a kind of supernodes. Although the latter feature is from disjointed architecture, the
design is still closer to nested architecture (see also Sect. 7.3.1.8 and Fig. 7.7 there).
If a node has low capacity or its connectivity in the underlying network is limited
then the node participates only in rings on lower layers. Nevertheless, in the extreme
case all nodes can become gateways.

Consider the case M = 2. The bottom layer consists of independent organiza-
tional rings. Each ring has a globally unique ring ID known to all members of the
ring. The global ring has ID of all zeros. Any node must know in advance its position
in the global hierarchy to join a ring of the given organization. Some nodes become
members of more than one ring; they are gateway nodes. A gateway node acts as
multiple virtual overlay nodes, one in each ring, but uses the same node ID in each
ring. Gateway nodes announce themselves to other members of their rings (which
they participate in) by subscribing to an anycast group in each of the rings. A group
ID is equal to the associated ring ID.

A lookup carries (in addition) ID of the ring r where a responsible node is located.
If a current node u belongs to r then the lookup continues in accordance with the
overlay protocol of r. Otherwise, u locates a gateway node to forward the lookup to
r. If u is a member of the global ring then u forwards to the anycast group identified
with r. Hence, the lookup will be delivered to a gateway node to r, and routing
proceeds in r. Otherwise, u anycasts the lookup into the global ring group.

Consider the extension to M > 2. A ring ID is a sequence of digits in a
configurable base b. Each layer appends an extra digit onto the parent ring ID. Thus,
an organization with a given ring ID can dynamically create new rings. In a lookup,
if a node u does not belong to the target ring r, then u, as a member of multiple
rings, selects the ring with the longest shared prefix. In case of multiple rings with
the longest prefix, u uses the ring with shortest ID.
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Routing is two phase. First, bottom-up routing is performed until a ring is found
whose ID is a prefix of the destination ring. Second, top-down routing continues the
lookup towards the destination ring. Similarly to Canon, it provides the path locality
property.

The principal maintenance overhead is due to the requirement that nodes must
join multiple rings, and thus require additional control traffic for maintaining the
routing state in each ring. The design relies on a group anycast mechanism. It
requires maintenance of spanning trees consisting of the overlay nodes from group
member nodes towards the overlay node that is responsible for the group ID.

7.3.2.9 Diminished Chord by Karger and Ruhl [20]

The nested hierarchical architecture designs above account the global domain
hierarchy. Overlay paths become close to underlying network paths, improving the
routing properties. However, the designs do not directly allow an individual node
to efficiently adopt its participation to its needs. Position of a node in the hierarchy
is predetermined, and the node has to provide the responsibility level in accordance
with the position.

In service-oriented applications, a group corresponds to a service that collectively
provided by the participating nodes. For instance, a group of nodes can be respon-
sible for content for a given topic. A node may individually select which groups it
wants to belongs to. In contrast to domain hierarchies, such a group structure can
be dynamic when groups frequently appear and disappear. A straightforward way is
to implement own DHT overlay for each group, e.g., see content-based hierarchies
in Sect. 7.3.1.8. In dynamic environments, it becomes too expensive because of the
maintenance overhead.

Diminished Chord applies the group-based model on top of the Chord DHT
for grouping any subset of nodes. Nodes of the same group jointly offer a service
without forming its own overlay. Instead of additional sum state O(|C | log |C |) for
a group C with own Chord ring, Diminished Chord introduces additional O(|C |)
state uniformly distributed among DHT nodes that are not in C themselves.

The architecture is two-layer. The bottom layer is the primary Chord ring where
all N nodes participate. It provides the basic lookup operation: lookup(k) returns
the node d that minimizes ρ(d,k) over all nodes. The top layer is for organizing
arbitrary groups. A group C has a group ID in the Chord space. A node participates
in none or many groups according to its individual interests. The possibility of group
overlapping makes the design closer to nested architecture.

An additional group lookup service is provided to locate the node responsible
for the key in a specified group C . In particular, the group operation lookup(k,C )
returns

d = argmin
u∈C

ρ(u,k),

which is a group-restricted version of (1.1) from Sect. 1.3.
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It works by embedding in the primary Chord ring a directory tree for each
group C . Vertexes are points in the Chord space, each maps to the closest DHT
node, and vertex and node can be used interchangeably. The root corresponds to the
group ID. The tree is binary of height O(logN). All nodes are ordered such that a
left descendant precedes a right descendant in terms of the Chord space distance.
Edges are links from a child to its parent. An edge u→ v is either a standard Chord
finger (v immediately succeeds u+ 2i for some i = 0,1, . . . ,n− 1) or an additional
link—a prefinger (v immediately precedes u+ 2i for some i = 0,1, . . . ,n− 1).

The key property is that for any node u its right subtree includes the node v ∈ C
closest to u. The node u either keeps link to v itself or delegate it to the parent w if
v is also the closest node to w. The property ensures that a path from a leaf to the
root goes through a node that knows the closest node from C for this leaf node. This
scheme requires storing one additional link at some overlay node for every group
node, leading to the O(log |C |) state overhead.

To resolve lookup(k,C ) the responsible node d′ ∈ N is found in the primary
ring (Chord lookup, O(logN) hops). Then the responsible node d ∈ C is located
by traversing a path in the directory tree from d′ towards the root. The traversal
takes O(logN) hops. Therefore, the group lookup has the same routing complexity
as basic Chord.

For a given group, the design employs “special” nodes to keep additional
information about the group. They have to serve additional group lookups even
though the nodes are not members of the group. The number of groups a node
participates in is not an accurate metric for the node responsibility, and individual
adaptation of the desired participation level becomes complicated. When the number
of groups increases the overhead expenses are distributed uniformly among all N
nodes, regardless of their heterogeneity.

7.3.2.10 Cyclone by Artigas et al. [1, 2]

It evolves the Canon method (Sect. 7.3.2.7). Similarly, it reflects real-world hierar-
chical organization of nodes in the underlying network. The Cyclone method aims
at better load balancing and scalability in partitioning the system onto autonomous
domains when complete knowledge about the global hierarchy is not available at
individual nodes. The reference case is Whirl, the Cyclone version of Chord. In
general, the method allows different P2P protocols for overlays (clusters) in the
hierarchy, including hybrid P2P systems.

The n-bit circular node ID space S = [0,2n) with the XOR distance metric
is common for all nodes. The partition scheme follows the tree-based model
employing suffixes for cluster identification. A node ID consists of two parts: a
prefix of m− p bits and suffix of p bits. In a node ID, the suffix identifies the cluster
of the node residence, whereas the prefix is an intra-cluster identity. In particular,
a p-bit suffix is a hash of a full name of the domain that the cluster represents.
Domains may continue subsequent partition taking the next leftwards 1≤ li ≤ p bits
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to construct up to 2li branches. Such li-bit strings label subsequently subdomains at
each layer and identify their clusters.

In accordance with the tree-based model, lower-layer clusters are merged to form
a network on the next layer, leading to nested cluster structure as in TOPLUS
and Canon and telescoping scheme (7.6) for routing tables. The ID prefix–suffix
structure makes the process more reusable since any two nodes u and v of a cluster
have the same l-bit suffix, hence u = v mod 2l . In particular in Whirl, if a cluster C
with an l-bit ID contains a node u then u’s immediate successor v is at least 2l away
in the ID space, thus the link u→ v is reused in any higher-level cluster of C . As
a result, the total number of links per node remains comparable with the flat Chord
DHT.

Similar to Canon, Cyclone uses bottom-up routing to take advantage of the
network locality. Similarly to HONet and TOPLUS (Sects. 7.3.1.7 and 7.3.2.6),
faster inter-cluster routing is possible with link augmentation. A node maintains
additional links to nodes from its sibling clusters at different layers. Many of these
links are already in its routing table due to the Cyclone link reusability. If a lookup
cannot be resolved in the current cluster, the lookup is forwarded directly to the
cluster closest to the key.

Inter-cluster links are optional and only a node with enough capacity can
additionally maintain them. Such nodes act as supernodes, turning heterogeneity
into an advantage for global routing. This optional feature, in fact, is closer
to disjointed architecture, when a supernode is a representative of the cluster.
Inter-cluster links can be also used to construct link-disjointed Hamilton cycles
connecting sibling clusters on each layer. This ability supports multipath routing
with improved security and reliability [1].

The Cyclone architecture has the same typical disadvantages as Canon. First, the
assumption that a node can participate in overlays on all layer, especially on higher
layers, is often violated because of connectivity restrictions of the underlying IP
network. Second, there is no clear distinction of the load that different-capacity
nodes should take.

7.3.2.11 GTap by Zhang et al. [72]

GTap (Grouped Tapestry) supports organizing various group structures of nodes,
similarly to diminished Chord (Sect. 7.3.2.9). A node may belong to several
groups simultaneously. The key feature is group-aware routing when (a) a lookup
terminates at the node most responsible in a specified group (as in diminished
Chord), and (b) a lookup path is constrained within a specified group. Group-aware
routing complements basic Tapestry routing.

The Tapestry space is n-digit integers of base b. On the top layer, the global
Tapestry overlay consists of all N nodes. If a node u is a member of a group C then
u maintains additional neighbors from C to form a group Tapestry overlay.
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In the global overlay, any node u = un−1 · · ·ui · · ·u0 for every i = 0,1, . . . ,n−
1 selects b− 1 long-range neighbors v( j) ∈ N such that v( j) resolves the ith
digit to j in prefix-matching Tapestry routing, j = 0, . . . ,ui − 1,ui + 1, . . . ,b− 1.
GTap additionally requires that a primary neighbor v( j) is numerically closest to
un−1 · · ·ui+1 jui−1 · · ·u0. Without this requirement, there are many other candidates
for v( j).

The diversity of candidates for v( j) is utilized for constructing group overlays on
the bottom layer. In a group-C overlay, any its node u stores a neighbor vC ( j)∈C in
addition to its primary neighbor v( j). Similarly, for the Tapestry leaf set, u maintains
up to 2m0 primary leaves from N (global overlay) and up to 2m0 leaves from C
(group overlay).

When a lookup is group-unaware, nodes call basic Tapestry routing to find to
the closest responsible node. When a lookup is constrained within a group C
(path-constrained routing), only group-C neighbors are used. When a lookup is
constrained with a destination group C (destination specified routing), then the
lookup (a) is routed to a node v ∈ C (group discovering) and (b) path-constrained
routing within C completes the lookup.

For the group discovery, GTap uses group rendezvous. A group name C is hashed
to its key cn−1 · · ·c0 in the Tapestry space. The node c responsible for this key in the
global overlay is C ’s rendezvous, and any node may query c for a node from C . To
find a rendezvous, u simply initiates a lookup for the group key in the global overlay.

A rendezvous can be found faster if a group-C node is nearby. GTap hi-
erarchically distributes the rendezvous load using a group-C group member-
ship rendezvous (GRM) tree. The tree has bi nodes at levels i = 0,1, . . . ,n− 1,
namely the nodes responsible for keys xn−1 · · ·xn−icn−i−1 · · ·c0. If i < n− 1 such
a node has b children at level i + 1, namely the nodes responsible for keys
xn−1 · · ·xn−i jcn−i−2 · · ·c0 with 0 ≤ j < b. A path in the group-C tree from a leaf
to the root follows suffix-matching routing in resolving a lookup for the group key.

A GTap node u maintains a finger set of nodes that belong to other groups. When
u is queried for a node v ∈ C , then either u resolves the query if u knows v ∈
C , or u forwards (a tree hop) the query to its parent in the group-C tree. In the
former case, u is involved in the group-C tree. In the latter case, routing in the
global overlay can be used effectively as follows. Node u finds the largest i such
that u is responsible for the key un−1 · · ·un−icn−i−1 · · ·c0. If i = 0 then u is the root
of the tree. Otherwise u lookups for the key un−1 · · ·un−i+1cn−i · · ·c0 to find the
responsible node—the parent. Since the primary neighbors are closest to u among
all available prefix-matching nodes, the number of hops in the last lookup is small.

When a new node joins, it first joins the global overlay following the Tapestry
protocol. Then it joins any existing groups or creates a new one. To join a group C ,
a node u finds a node v ∈ C using the group discovery procedure as above. Then u
can find a node w, the current root of the group-C GRM tree, and complete joining
to C .

If u belongs to several groups, then u maintains multiple Tapestry routing
tables, and the routing state and maintenance increase proportionally. In addition,
u maintains its finger set. Since group names are hashed, the probability that u
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is involved in many GRM trees is small and the expected size of the finger set
is negligible compared with other routing information. GTap provides O(logN)
routing in the global overlay and O(logN2) routing within a group of N2 nodes.
The group discovery takes O(log(N) hops in the worst case, since the height of a
GRM tree is O(logN).

7.4 Performance Models

Hierarchical architecture allows differentiating nodes and their roles, specifically
important for heterogeneous environments. The basic problem is determination of
the number of layers and the population size on each layer. On one hand, the more
layers the more differentiation. On the other hand, a high hierarchy degree leads can
be expensive for maintenance in dynamic environments. In this section we consider
basic models for this tradeoff in two-layer architectures. The target problem is the
optimal number of supernodes for a given total population of N nodes.

7.4.1 Local State Cost

Consider a disjointed two-layer hierarchical architecture with N1 = N nodes,
forming a flat DHT overlay at the bottom layer. Among them N2 nodes are selected
as supernodes, forming a supernodes overlay at the top layer. The same ID space
is used on both layers. Each supernode belongs to two overlays, one for each layer.
Since a supernode maintains two routing tables, the total state cost becomes higher
compared with the flat DHT case.

Under these assumptions, the basic model for optimal value of N2 (the optimal
number of supernodes for N-nodes network) was introduced in [46]. A supernode
keeps routing records of size c2 bytes for each supernode (fully-connected topology
in the worst case). Also a supernode hosts N/N2 regular nodes on the bottom layer
(star topology) and a corresponding record consumes c1 bytes per node. Then the
total storage at each supernode is upper bounded with

StateCost = c2N2 + c1
N
N2

. (7.7)

This cost function is convex with the only minimum 2
√

c1c2N for N2 =
√

c1
c2 N,

where N is a free parameter of the total population size. It leads to the requirement
N2 =Θ(

√
N) in the structured superpeers design, see Sect. 7.3.1.3.

The similar state cost model for a loosely structured two-layer hierarchy appeared
in [16] with the aim at the optimal value for N2, the number of node groups, in
dependence on the total population size N and the total resource amount R kept in
the system. The cost function is

StateCost =
N
N2

+
R
N2

+ c(N2− 1),
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where R is the total number of resources and c is the number of contacts per foreign
group at the bottom layer. Note that this model skips the size coefficients like c1 and
c2 in (7.7), since they do not affect resultant estimates written in the big-O notation.
The cost is minimized at N2 = c−1

√
N +R. The Kelips design uses fixed c with the

optimal tradeoff N2 =Θ(
√

N +R). Assuming that R = O(N) (i.e., the total number
of resources is proportional to N in the worst case), the design requires N2 =Θ(N)
groups on the top layer.

When a conventional flat DHT with O(logN) local state is used, the state cost at
a supernode is

StateCost = logN2 + log(N/N2) = logN.

Hence, the supernode state cost is the same for hierarchical and flat designs.
However, the regular node state cost is reduced from logN in the flat case
to log(N/N2) in the hierarchical architecture case.

7.4.2 Routing Cost

A routing cost model for the optimal value of N2 is considered in [40, 41] for the
disjointed two-layer CAN-based hierarchy. Let d be the CAN ID space dimension.
Starting from a regular node, the number of hops needed to find the destination

cluster supernode on the top layer (a CAN overlay of N2 nodes) is 1+ dN1/d
2 on

average. Then d(N/N2)
1/d hops are needed on average to find the responsible node

on the bottom layer (a CAN overlay of N/N2 nodes). In total, the routing cost in
overlay hops is

RoutingCost = f (N2) = 1+ dN1/d
2 + d

(
N
N2

)1/d

.

The first derivate respect to N2 is

f ′(N2) =− 1
N2

(
N
N2

)1/d

+N1/d−1
2 .

It is equal to 0 when N2 =
√

N. This point is a minimum if the second derivate is
positive. It is easy to prove that f ′′(

√
N)> 0 for all d ∈ (1,+∞).

The optimal value of N2 is independent on d. When N2 =
√

N the routing cost is
minimal for d = lnN2. It is twice lower than the optimal d′ = lnN = lnN2

2 = 2lnN2

in the basic flat CAN. That is, a regular node has twice lower state. A supernode
has the same state as in a flat CAN (d′ = d + d) due to maintenance of two routing
tables, each has d entries.

The hierarchical CAN has the optimal routing cost

RoutingCostopt = 1+N1/ lnN lnN,
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which is one hop greater then the optimal routing cost in the flat CAN network
with N nodes and d′ = lnN.

Applying the same technique for a conventional flat DHT with O(logN) routing,
we yield the routing cost (in overlay hops)

RoutingCost = 1+ logN2 + log
N
N2

= 1+ logN,

and the routing performance again is almost equal for hierarchical and flat designs.
In the Crescendo hierarchical architectures [9] the similar result holds irrespective
of the number of layers.

7.4.3 Network Traffic Cost

Consider the model of two-tier hierarchy for optimizing the number of supernodes
proposed in [77,79]. The model describes traffic sent/received by nodes on average;
it is similar to the workload model of [25] for Hi3 scalability analysis, see also
Chap. 12. Three alternative intra-group connectivity structures are studied: fully-
meshed (FuMe), single-connection (SiCo), and DHT, see Sect. 7.3.1.6.

The key model parameter is α = N2/N, the fraction of supernodes in the system.
The case α = 100% corresponds to a flat overlay. Traffic cost is evaluated in terms
of the number of transmitted messages and is a function of α . The model focuses
on α ≤ 25%, i.e., groups on the bottom layer consist of four or more nodes.

The network cost is formed by lookup traffic (λ ), maintenance traffic (μ),
and republish traffic (ρ). Traffic generation for supernodes and regular nodes is
differentiated. The total traffic cost is a sum of all traffic costs over all nodes.
Obviously, in the SiCo topology, a centralized overlay network with only one
supernode generates the lowest network traffic, because only lookup and ping/pong
maintenance messages are exchanged between the supernode and its regular nodes.
The network traffic cost typically increases when α grows, mostly caused by
maintenance traffic in the top overlay o supernodes. In the FuMe topology, low
values of α correspond to high total traffic because of large groups on the bottom
layer. In the DHT topology, the extreme cases α→ 0 and α = 100% corresponds to
the highest traffic cost, and there exists a tradeoff value for α in between. The exact
analytical expressions is not important for our discussion and an interested reader
can find them in Table 1 of [79].

On the other hand, the load a supernode can be high for some α . The optimal
operation point is achieved for α such that the total network traffic is minimized
subject to a non-overload constraint for every supernode. To find the minimal
necessary α , a load factor is defined for every supernode s as the ratio between
the traffic bs for s at a specific time, and the bandwidth limit Bs, i.e., Ls(α) = bs/Bs.
A supernode is overloaded if its load factor exceeds 100 %.
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The model of [15] also accounts the traffic costs in three-layer hierarchy with
N1 regular nodes, N2 unit leaders (level 2), and N3 slice leaders (layer 3), see the
OneHop design in Sect. 7.3.1.4. The most bandwidth consuming nodes are slice
leaders and the model aims at minimization of bandwidth utilization for them.
The optimum is N2 = O(

√
N) and N3 = O(

√
N) with the constants dependent on

membership rates and messages sizes.

7.5 Summary

This chapter discussed hierarchical architectures applicable in structured P2P
designs. Based on the basic arrangement models the nodes can be structured onto
groups. Recursive application allows further structuring within groups. It is a crucial
step in constructing the global network hierarchy.

We considered Kleinberg’s models of decentralized network hierarchy and
showed that for a P2P system its global group structure is arranged along the vertical
and horizontal dimensions. We derived three conceptual models of hierarchy to
cover cluster-based, tree-based, and group-based constructions. All they frequently
appear in various forms in existing hierarchical P2P designs.

A hierarchical architecture defines how node groups are formed in the P2P
system and then inter-connected along the vertical and horizontal dimensions. We
described and clarified the existing classification of hierarchical P2P architectures:
vertical, horizontal, and their subclasses. Based on the conceptual models we
analyzed these architectures and formulated certain design principles that affect
design choices in a hierarchical P2P architecture. The principles concretize the
means of hierarchical decomposition of P2P nodes onto inter-connected groups.

Finally, we overviewed particular hierarchical P2P designs. We selected from the
existing literature the most representative designs based on their popularity and on
our personal point of view. Most of the designs are for HDHTs, since they represent
“pure structured” P2P systems. The overview shows various design solutions to
hierarchical architectures. It can be considered as state-of-the-art summarized using
the general framework.
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Chapter 8
Cyclic Routing

Abstract Distributed Hash Tables (DHT) provide a lookup service in peer-to-peer
overlay networks. The known problem is that lookups function poorly when no
direct IP connectivity is available to some nodes (e.g., located behind a NAT or
firewall) or in the presence of overloaded or malicious nodes. In this chapter, we
describe a method for DHT-based routing called Cyclic Routing (CR). It generalizes
existing single-hop look-ahead approach (also known as “Know thy neighbor’s
neighbor”) and supports multipath routing. The method provides a systematic
way for collecting stable and efficient overlay paths. Cyclic routing has the same
theoretical dependability and efficiency upper bounds as basic DHT routing but it
is more resilient when IP connectivity is limited or when the overlay suffers from
overloaded nodes. The CR method was implemented in the CR-Chord protocol and
its experimental evaluation showed improvement in the lookup availability.

8.1 Introduction

A Distributed Hash Table (DHT) provides a lookup of identifiers and routing to
the node storing a corresponding value.1 Each node keeps contacts (node IDs and
IP addresses in the local routing table) to some other nodes (neighbors), forming an
overlay on the underlying network. For routing a packet, nodes sequentially forward
it using communication primitives of the underlying network.

The IP-level reachability applies certain restrictions on DHT functioning. First, a
pure DHT assumes a node may access an IP address of another node.In an untrusted

1 c©2009 IEEE. Reprinted, with permission, from D. Korzun, B. Nechaev, A. Gurtov, Cyclic
Routing: Generalizing Look-ahead in Peer-to-Peer Networks, in Proceedings of the 7th IEEE
International Conference on Computer Systems and Applications, May 2009. Some material is
also adapted in Chaps. 3 and 11.

D. Korzun and A. Gurtov, Structured Peer-to-Peer Systems: Fundamentals of Hierarchical
Organization, Routing, Scaling, and Security, DOI 10.1007/978-1-4614-5483-0 8,
© Springer Science+Business Media New York 2013
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environment, however, a node can prefer not to give its IP address to untrusted
nodes to avoid direct attacks. Only trustworthy nodes may contact it directly via
IP; communication with other nodes uses overlay node IDs.

Second, IP addresses are less stable than node IDs. For instance, when a node
is mobile it can change its IP address frequently. Consequently, many routing table
entries can become invalid, and high maintenance cost is required to provide routing
tables up to date. In contrast, IP address changes should not necessarily lead to
changes in P2P overlay paths.

Third, some nodes have no global IP addresses or a network can exhibit non-
transitivity [4]. A node u cannot communicate directly with a node v, and an
intermediate node w is needed, e.g., when u and v are separated by a NAT.

For a DHT it means that a node cannot add neighbors freely. Consequently,
some routing improvements based on enhancing node knowledge about the overlay
become less attractive (e.g., proximity neighbor selection [1] or routing tables of
variable size [10]). Iterative routing becomes troublesome since a source node
cannot always contact directly each node in a route. As a result, DHT routing suffers
from IP-level reachability restrictions.

In this chapter, we propose a new method for overlay routing on top of a
DHT. We call the method cyclic routing (CR) since it uses cyclic paths (cycles).
It generalizes existing ideas of single-hop lookahead also known as “Know thy
neighbor’s neighbor” [11] and of redundant multipath routing [18].

Each node maintains a collection of cycles additionally to its routing table. A
cycle is a path that starts from the source node to its neighbor, then runs through
the overlay and returns to the source. Only node IDs are stored to identify a cycle.
Cycles present global knowledge about paths in the overlay. In routing, a node can
alternatively use either cycles or the underlying DHT. If there is a cycle with a node
close to the destination, the packet is sent along the cycle. Otherwise, the underlying
DHT selects the next hop. For illustration, we use the Chord DHT [15].

In fact, cyclic routing provides a systematic way for collecting stable and efficient
overlay paths. It does not require knowledge of additional IP addresses nor conflict
with routing improvements that enhance node knowledge about the overlay using
IP addresses. In contrast, our method complements these proposals when they
fail because of the IP-level reachability restrictions. When IP-level reachability is
restricted, CR is more resilient but preserves provable dependability and efficiency
upper bounds of basic DHT routing. CR also intends to provide more resilient
routing in the presence of malicious nodes.

The rest of the chapter is organized as follows. Section 8.2 summarizes P2P
routing and discusses existing proposals that allow nodes to learn more about the
global network. Section 8.3 introduces the cyclic routing method. We analyze its
properties and discuss the key design principles. Section 8.4 presents evaluation
of lookup success rate of basic Chord and CR-Chord under churn (more detailed
analysis of CR-Chord can be found in Chap. 11). In Sect. 8.5, we discuss additional
capabilities provided by cyclic routing, including multi-path and secure routing.
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8.2 Problem Domain

Consider a DHT-based overlay of N nodes. Let node IDs be assigned from an
identifier space with a distance metric ρ . In a pure DHT, distance metric calculation
is based on node IDs only. If ρ(u,d)> ρ(v,d) then v is closer to d or v is in between
u and d. Let nud be the number of nodes in between u and d.

Each node s maintains a local routing table Ts of entries (u, IPu), where u is a
neighbor and IPu is its IP address. In a dynamic environment, nodes collaborate and
adopt their routing tables to an up-to-date state. The number of neighbors |Ts| is the
node degree. Typically |Ts| � N, meaning that routing uses local knowledge about
the overlay network.

In basic DHT routing, s forwards packets to u via the underlying IP network.
A packet to a destination d goes sequentially through nodes whose IDs are
progressively closer to d according to the distance metric. If v ∈ Ts then s can
forward a packet to v forming the one-hop path s→ v. Consequently, a multi-hop
P2P path s→+ d is constructed.

In the ideal case, DHT routing is dependable (a packet eventually reaches
its destination) and efficient (a typical upper bound is O(logN) hops). In real
environments, however, P2P paths can be long, inefficient for the underlying IP
network, faulty, and insecure. Recently, a few methods have been proposed to
improve efficiency and security of DHT routing.

Lookahead. Many DHTs use greedy routing when nodes forward a packet to the
neighbor closest to d. More efficient DHT routing techniques (e.g. [6]) do exist.
Nevertheless, in previous proposals a node has little idea on the remaining route.
An alternate approach exploits knowledge of neighbor’s neighbor (one level of
lookahead) [11] producing shorter paths compared to greedy routing [12].

Flexible routing table maintenance. To reduce the route latency, s selects neighbors
using knowledge of the underlying IP network. In particular, neighbors are chosen
based on a proximity metric (proximity neighbor selection); selection of next
hops depends not only on the ID distance but also on the geographical closeness
(proximity route selection) [1, 5]. Moreover, nodes can increase the number of
routing table entries. In this case, s varies |Ts| independently on other nodes. When
there is enough local resources, s inserts a new neighbor. When a neighbor is likely
to have failed or to be malicious, it is removed. Proximity information, random
sampling, and behavioral statistics are actively used [9, 10, 17].

Multipath routing. Having many neighbors, s forwards a packet via several al-
ternate paths (using several neighbors), either in parallel or sequentially. This
redundancy allows routing around failed or malicious nodes [2, 9, 18].

These methods use additional knowledge about the network. Nevertheless, in the
first method, only a small step is done to analyze the remaining route; the last two
require IP addresses, facing the problems of IP reachability restrictions.
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Below we propose a routing method that generalizes lookahead, supports flexible
routing tables and multipath routing, but works with node IDs only. It complements
the above IP-based proposals when they fail or become inefficient.

8.3 The Cyclic Routing Algorithm

Cycles are natural for bidirectional P2P communications. Let a node s send a packet
to d; the path is s→+ d. Then d replies to s; the path is d→+ s. These paths form the
cycle s→+ d→+ s. Taking intermediate nodes, c=

(
s→ v1→+ · · ·→+ vl−1→+ s

)
,

where (v1, IPv1) ∈ Ts (direct IP contact). Nodes v2, . . . , vl−1 may represent some but
not all the nodes visited. It leads to the notation “→+” instead of “→” in c.

Such cycles present possible routes in the overlay, generalizing the one-level
lookahead [11, 12]. Given a cycle c, a node s may assume that a packet sent to v1

would go through v2, . . . , vl−1. That is, s looks ahead of its neighbors.
A cycle uses only node IDs, except v1 whose IP address is already in the routing

table. Therefore, even if a node u cannot use IPv, the node v can serve as an
intermediate node being presented in a cycle stored at u. This is a key to deal with
IP-level reachability restrictions.

Let a node u maintain (additionally to Tu) a collection of q cycles, Cu = {c j}q
j=1,

where c j =(u→ v j1→+ · · ·→+ v j,l−1→+ u). We call Cu a network cyclic structure
known to u. It represents additional knowledge about the network.

The idea of cyclic routing (CR) is to find the next hop analyzing the remaining
route. The latter is constructed at a current node using the cyclic structure. When no
appropriate cycle exists, the underlying DHT is used, see Algorithm 1.

8.3.1 Cycle Transitions

Let a source node s select a cycle c =
(
s→+ u→+ d→+ s

)
. In Fig. 8.1a, every

intermediate node u uses the same cycle. The nodes, however, may be less

Algorithm 1 Cyclic Routing (CR)
Require: Packet p (traveling from s to d) arrives to u �= d.

The node u maintains Tu and Cu.

Find c ∈ Cu such that
c =
(
u→v1→+ · · · →+ vi=d′ →+ · · · →+ vl−1→+ u

)
where d′ is close to d;

if c is found then
Let v1 be the next-hop node v;

else
Find the next-hop node v ∈ Tu according
to the underlying DHT;

end if
Forward p to v;
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Fig. 8.1 Cyclic routing s→+ d: (a) one-cycle routing; (b) two-cycle routing

coordinated. In Fig. 8.1b, u selects a cycle c′ =
(
u→ v→+ w→+ d →+ u

)
such

that its path u→+ d does not coincide with the path u→+ d of c.
In fact, the remaining route in CR is approximate. A packet follows a cycle, then

transits to another, later it changes the cycle again and so forth. One cycle is enough
to route a packet, but there are transitions due to lack of coordination between nodes,
absence of an appropriate cycle, or failures when a cycle does not reflect correctly
the current network topology.

A node can fix a cycle when sending a packet. In this case, cycle node IDs are
piggybacked to the data packet. The next-hop node tries to follow this cycle when
possible.

8.3.2 Dependable Routing and Path Length Upper Bounds

In this section we consider two problems, (1) the CR dependability since cycle
transitions make it questionable and (2) the CR path length compared with basic
DHT routing.

We follow Castro et al. [3] in definition of the routing dependability. P2P routing
is dependable if a packet sent from s to d is always delivered to d in a stable and
correct network. In general, Algorithm 1 is not dependable. In Fig. 8.1b, if w selects
a cycle to reach d via u, then looping happens.

A dependable variant of the CR method exploits the same idea as in many
DHTs—progressive routing. Any node forwards a packet progressively closer to
the destination according to a distance metric ρ .

Theorem 8.1. Algorithm 1 is dependable if any next-hop node v satisfies

ρ(v,d)< ρ(u,d). (8.1)

The number of hops is at most ρ(s,d)/δ where δ = min
u,v

(ρ(u,d)−ρ(v,d)).
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Proof. In (8.1) states that v is closer to the destination, regardless of whether a cycle
or the underlying DHT is used. Therefore, the distance to the destination decreases
monotonically, and after a finite number of hops (not more ρ(s,d)/δ ) the packet
arrives to d. ��

Some DHTs provide more efficient paths of length O(logN) using geometrical
progressive routing when at every hop the distance is reduced by a constant k > 1.
For instance it happens in greedy routing when a node selects the next hop as close
as possible to the destination.

Theorem 8.2. Algorithm 1 is dependable if for some constant k > 1 any next-hop
node v satisfies

ρ(v,d)≤ ρ(u,d)
k

. (8.2)

There are O(logk N) hops if nuv is proportional to ρ(u,v).

Proof. Inequality (8.2) is a particular instance of (8.1), thus the dependability is due
to Theorem 8.1.

Let the route be s→ v1 → v2 → ··· → vl−1 → d, where l is the hop number.
Initially nsd <N. Then ρ(v1,d)≤ ρ(s,d)/k, and the proportional reduction is nv1d <
N/k. At the next hop, ρ(v2,d)≤ ρ(v1,d)/k≤ ρ(s,d)/k2, and nv2d < N/k2. Finally,
it yields N/kl−1 = 1, and l = O(logk N). ��

As an example consider the Chord DHT. The distance ρ(u,w) is length (the
number of all possible IDs) of the ring arc between u and w clockwise. A neighbor of
u is a finger or successor. The ith finger is the closest node v such that ρ(u,v)> 2i−1

(i = 1,2, . . . ,n; 2n is the ID space size). A successor is one of the closest nodes to u.
When v is a successor, then ρ(u,d)− ρ(u,v) ≥ 1 (case of local routing, δ ≥ 1 in
Theorem 8.1). When the next-hop node v is a finger, then ρ(u,v)≥ ρ(u,d)/2 (case
of global routing, k = 2 in Theorem 8.2).

According to Theorems 8.1 and 8.2, CR may follow the same rules of progressive
routing as the underlying DHT. To satisfy these rules, only the next-hop nodes
are used. It is enough to provide the same dependability and not to degrade the
performance upper bounds. We discuss more efficient routing in Sect. 8.3.4.

8.3.3 Constructing Cycles

In (8.1) and (8.2) do not provide a direct way for constructing appropriate cycles.
The dependence on d means that there should be a cycle at a node u for any
destination d. In this section, we consider the problem of constructing a cycle
appropriate for many destinations.

DHT Lookups: A consequence of bidirectional P2P communications. The method
caches paths discovered in lookups.
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Let a lookup packet follow the path s→+ d collecting some visited node IDs (v1,
. . . , vi−1). They are included into the acknowledgment that d sends to s. Similarly,
some node IDs (vi, . . . , vl−1) are collected in the backward trip d→+ s. According
to the theorems above, the cycle

s→ v1→+ . . .→+ vi−1→+ vi→+ . . .→+ vl−1→+ s

can be used later for dependable routing to any d′ such that ρ(v1,d′)< ρ(s,d′).

Lookahead: Let u maintain Cu such that for any c ∈ Cu

c =
(
u→ v1→ v2→ ··· → vl−1→+ u

)
. (8.3)

Nodes u, v1, . . . vl−1 are consecutive neighbors (v1 ∈ Tu, v2 ∈ Tv1 , . . . ) and l− 2 is
the level of lookahead (different for different nodes). NoN-greedy routing [11,12] is
a particular case of (8.3) when l = 3 and u maintains all cycles u→ v1→ v2→+ u
(for all neighbor’s neighbors).

To construct a cycle in form (8.3) u asks its neighbor v. It replies with some
neighbors w. Then u constructs cycles u→ v→ w→+ u. Also v can reply with
cycles v→ w1→ w2→ . . .→ wl−1→+ v. In this case, u constructs cycles u→ v→
w1→ w2→ . . .→ wl−1→+ u.

The lookahead construction can be easily combined with DHT lookups; a lookup
packet collects only the first n nodes of the route s→+ d→+ s.

These methods have the following properties.

Using existing overlay paths: This property preserves the routing dependability (in
terms of Theorems 8.1 and 8.2). Moreover, it provides a kind of synchronization
among nodes, since the nodes of the route are likely to use the same path that has
been already in use.

Incrementality: CR can start from an overlay without any knowledge of cycles.
Either passive or proactive cycle construction is possible. The former piggybacks on
existing lookup packets running in the overlay. The latter introduces extra packets
for cycle construction.

No substitution of local routing tables: A direct IP contact is more efficient than
a multi-hop path. If v provides its IP to u, then u puts (v, IPv) into Tu. However,
when node IPs are not accessible the routing table cannot be updated, and the cyclic
structure is a way to keep the additional information.

Overhead control: Cycle nodes are collected in lookup packets; it causes some
overhead in terms of packet size. As we discuss in Sect. 8.3.5, CR needs only
short cycles bounded with O(logN) hops. Moreover, it is not required to keep all
intermediate nodes; some of them may be skipped. For instance, in the lookahead
method only the first l− 1 nodes are collected and a node can vary l.
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8.3.4 Finding the Most Efficient Cycle

According to Theorems 8.1 and 8.2, the selection of an appropriate cycle depends
only on the distance between the current node, next-hop node and destination.
Algorithm 1, however, supports more efficient routing. It relates to the definition
of “d′ is close to d” and depends on routing criteria, e.g., within few hops, with low
latency or with high success probability.

The simplest case is exact matching d′ = d when an efficient cycle contains the
destination. Another way defines a neighborhood with H > 0; in an efficient cycle,
d′ is a nearby node, i.e., ρ(d′,d)≤ H.

Let u find such a cycle that

c = (u→ v1→+ · · · →+ vl−1→ u) and
ρ(d′,d)is minimum among all c ∈ Cu,d′ = vi ∈ c.

(8.4)

The same is in NoN-greedy routing [11] for l = 3 in (8.3), improving the efficiency
from O(logN) to O(logN/ loglogN) hops in skip-graphs and small-world graphs.

Then u has to decide either using c or the underlying DHT. Basically, c is
preferable when ρ(d′,d)� ρ(v,d). Some other parameters can also be important.

Assume that the underlying DHT provides geometrically progressive routing. If u
forwards to v, the number of hops is estimated as LDHT = logk nud + 1 (similarly to
the proof of Theorem 8.2). If u uses c then routing takes either LCR = i hops when
ρ(d′,d) ≤ H (i.e., i− 1 hops to reach d′ = vi and then one hop to d), or LCR =
i+ logk nd′d hops when ρ(d′,d)> H. Accordingly, c is preferable if LCR < LDHT.

Some DHTs estimate the round-trip time, RTT(u,v) and RTT(u,v1). Taking the
latency into account, c is preferable if LCR ·RTT(u,v1) < LDHT ·RTT(u,v). It is
similar to the proximity route selection [5].

Some P2P systems rank nodes according to their behavior, 0 ≤ rv(u) ≤ 1. For
instance, rv(u) is the probability that v successfully serves lookups sent from u.
Then a cycle rank is rc = ∏i

j=1 rv j , and c is preferable if rc > rvrLDHT−2
min , where rmin

is the default rank for unknown nodes.
Applying the criteria above, we can modify (8.4) in different ways. For instance,

minimize i or i ·RTT(u,v1) (or maximize ∏i
j=1 rv j (u)) subject to ρ(vi,d)≤ H.

8.3.5 Maintaining Cycles

Each node u maintains the cyclic structure Cu as a cache, inserting new cycles and
removing invalid cycles.

New cycles: Constructing methods are described in Sect. 8.3.3. According to
Sect. 8.3.4 a node inserts only efficient cycles. The same efficiency criteria can



8.4 Simulation Results 235

be applied except that there is no destination d fixed. An efficient cycle is short
(O(logN) hops) and its first node is IP-close (RTT(u,v1) is small, as in the proximity
neighbor selection [5]). Path-specific metrics can also be used, e.g., the round trip
time along the cycle.

Memory cost: Given the typical bound |Tu| = O(logN). Preferably, each neighbor
should be first in several cycles since finding a good cycle needs a comprehensive
set of candidates. We assume that the number of such cycles is O(logN) because
of the same reason as in geometrically progressive routing. An efficient cycle is
short and consists of O(logN) nodes. As a result, a reasonable bound for IDs a node
maintains is O(log3 N).

Note, however, that a node may vary the cyclic structure size according to
available resources and independently on other nodes. CR works even if there are
nodes that do not maintain any cyclic structure.

Cycle rank: A node ranks cycles according to the routing history. Low-ranked
cycles are removed or replaced. It takes into account the cycle usage rate, cycle
success probability, cycle round trip time, and cycle stability. Note that these metrics
can be estimated passively using regular lookups.

Invalid cycles: In a DHT, nodes ping neighbors for availability and stability.
Similarly, cycle checking uses lookups, either passively or proactively. As was
shown above, a node maintains O(log2 N) cycles compared to O(logN) neighbors.
Nevertheless, when a node checks a cycle then the neighbor is tested too. While
pinging a node does not provide a new neighbor, checking a cycle can produce a
new one.

In dynamic environments, a cycle is less stable than a node. Let p be the
probability that a node is alive. A cycle of n > 1 nodes is alive with the lower
probability pn. However, cyclic structures gradually accumulate stable cycles since
most of the nodes in real P2P systems are long-lived [16].

8.4 Simulation Results

CR-Chord was implemented as an extension of the MIT Chord simulator and
simulation experiments were performed to compare Chord vs. CR-Chord in the
presence of malicious DHT nodes and under churn. The results showed that CR-
Chord has better lookup availability. In this section, we use a part of the data
produced with the Chord and CR-Chord simulation in [7] and described further
in Chap. 11 in detail. Compared to it, we provide further analysis of the basic
CR properties. Note that [7] does not take into account the IP-level reachability
restrictions; and produces more pessimistic estimates for the CR method.
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8.4.1 Chord and CR-Chord Implementations

Both Chord and CR-Chord use flexible routing table maintenance when a node
keeps n mandatory fingers and also naf additional fingers to know more about the
network.

CR-Chord implements cyclic routing when an appropriate cycle (if any) is
piggybacked into the packet. Only short cycles are stored for reuse; the number
of hops is at most 2 log2 N, where a node approximates log2 N as min( f ,n), f is the
number of fingers and n is the number of ID bits.

CR-Chord supports a kind of multipath routing when md duplicate packets are
sent using fingers closest to the destination. This mechanism is used for constructing
cycles (see the DHT lookups method in Sect. 8.3.3).

8.4.2 Simulation Setup

Chord DHT of size N = 1,000 nodes is simulated. The Chord ID space is of n =
24 (224 node IDs). Other parameters are naf = 12 and md = 3. Each simulation
experiment is executed ten times for averaging.

We assume that malicious nodes ignore all data lookups for which they are
responsible. That is, data at such nodes are lost. They process correctly all other
requests trying to hide the malicious activity.

Network construction consists of three steps. First, a Chord DHT of G good
nodes is constructed; nodes are joining randomly. Second, D = 100N = 105

documents are distributed uniformly. Third, M = f N malicious nodes join the
network at the same time, where G+M = N and f is the fraction of malicious
nodes (varied from 5 % up to 50 %).

There are 100 documents per a node on the average but about 100M documents
are lost. Good nodes initiate randomly L = 0.01N2 = 104 requests in total with
rate 1.0 s−1 (requests per second). The standard Chord stabilization procedure is
executed every 30 s.

Churn consists of node joins and leaves. To preserve the ratio of good and
malicious nodes, any node join is accompanied with a node leave and vice versa;
those happen with rates R = 0,0.02,0.2 s−1. When the lookup rate is 1.0 s−1 as
above, a churn join/leave pair happens every 5 lookups for R = 0.2 s−1 and every 50
lookups for R = 0.2 s−1.

8.4.3 CR-Chord vs. Chord

Let Schord( f ,R) and Fchord( f ,R) = L− Schord( f ,R) be counters of successful and
failed lookups for Chord. Similarly, Scr( f ,R) and Fcr( f ,R) = L− Scr( f ,R) are for
CR-Chord. Table 8.1 presents the estimates of S and F when varying the fraction
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Fig. 8.2 Lookup failure rates
for different churn rates.
CR-Chord always
outperforms Chord. The CR
efficiency is lower for larger
f and R

of malicious nodes. The relative lookup success improvement and relative lookup
failure reduction,

Δ(S) =
Scr− Schord

Schord
and Δ(F) =

Fchord−Fcr

Fchord
,

are also given. In these relative estimates, Chord is a base.
Two cases—with churn (R = 0.2) and without churn (R = 0)—are considered.

The effect of churn is estimated with the relative variation

Δc(x) =
x( f ,0)− x( f ,0.2)

x( f ,0)
for x = S,F,

where R = 0 is a basement.
Both in Chord and CR-Chord, the lookup success (failure) rate decreases

(increases) with more malicious nodes and churn. CR-Chord always has better val-
ues for these rates. Interestingly that CR-Chord under churn (R = 0.2) outperforms
Chord in stable networks (R = 0). Figure 8.2 is from [7] and graphically shows the
estimates of lookup failure rate.

When the fraction of malicious nodes is small (5–10 %) the CR-Chord lookup
failure rate is almost twice lower. When the fraction of malicious nodes is large
(40–50 %) the CR-Chord lookup success rate is about twice higher.

Churn affects the CR-Chord lookup availability less. In particular, Δc(Schord) >
Δc(Scr) for all fractions of malicious nodes, and Δc(Schord)/Δc(Scr) ≈ 2 on the
average. In terms of the lookup failure rate, Δc(Fchord) becomes slightly lower than
Δc(Fcr) only for large f . On average, Δc(Fchord)/Δc(Fcr)≈ 1.5.

In fact, CR accelerates the routing mechanism of underlying DHT. The effect is
achieved with a small set of cycles per node (Fig. 8.3). The length of cycles is short
(Fig. 8.4).
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The CR efficiency is reduced for large f and R. The reason is that underlying
DHT lookups do not allow constructing good cycles (although good paths do exist).
As a result, there is a lack of cycles constructed at a node (see Fig. 8.3), they are
too short and hence less global (see Fig. 8.4), and the difference between Chord and
CR-Chord becomes small.

As was shown in [7], known methods like flexible routing table maintenance
(parameter naf) multipath routing (parameter md) become inefficient for finding
good paths when f or R are large. From this point of view, the lookahead method
seems more promising for constructing cycles.

8.5 Discussion on Advanced Capabilities

The basic CR design is an additional routing mechanism to deal primarily with the
IP-level reachability restrictions. It can be combined with known methods such as
flexible routing table maintenance and multipath routing. The simulation showed
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Fig. 8.5 In a lookup path
s→+ d, CR acts primarily as
global routing s→+ d′; local
routing d′ →+ d takes
typically one hop

that this combination also works efficiently in networks with malicious nodes
and churn. This section briefly discusses some advanced capabilities that CR can
provide.

8.5.1 Global and Local Routing

In many DHTs, routing to a destination neighborhood is an important point. Let us
mention two reasons.

First, DHT routing is usually key-based, not nodeID-based, performing routing
to a node responsible for a given key. Since a node is responsible for all keys close
to its ID, let a message arrive to a node close to the key. Moreover, DHT replication
techniques distribute data among nearby nodes.

Second, a node typically knows its neighborhood well since many nearby nodes
are in the routing table. As an example, the Chord DHT keeps several successors
and predecessors. Consequently, one hop is needed when a message is at a nearby
node.

Therefore, we distinguish two parts of P2P routing, global and local. In global
routing, a message is delivered close to the destination. In local routing, the
destination is at a nearby node. By design, CR aims at global routing (Fig. 8.5).
When an appropriate cycle is found, then global routing happens, crossing a large
part of the overlay and arriving to a nearby node d′.

Cyclic routing can also act as local when gaps appear in routing tables because
of IP-level reachability restrictions, e.g., a nearby node is located behind a NAT.
Moreover, cycles provide some information to prioritize routing. For instance, a
neighbor is good if cycle success rate is high for those cycles that this neighbor
starts.

8.5.2 Cyclic vs. Acyclic Paths

In principle, a node may maintain paths to a set of destinations instead of cycles, as
in link-state routing protocols [8] or MPLS networks [13]. In link-state routing, a
node keeps a graph of the whole network. Global graph analysis calculates entries
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(d, IPv), where v is the-next hop node of the best path to d. In MPLS networks,
communication between s and d is preceded with construction of a path s→+ d,
where all nodes know to which node to forward a message. These approaches are
essentially global and do not scale well.

On the other hand, basic DHT routing uses a local view of the network when a
node knows a limited set of neighbors. This approach scales well but in some cases
more knowledge about the network is needed.

The CR design allows a tradeoff between the local and global cases. When a node
does not use cyclic structure, only the local view is presented. With cyclic structure
a node knows more, up to the extreme case when all cycles are known.

A cycle s→+ d→+ s contains more information than a non-cyclic path since
both forward and backward paths are presented. First, it introduces explicit support
for bidirectional communication. Second, there is no fixed destination in a cycle
compared with a source-destination path, and the same cycle can be used for routing
to many destinations.

8.5.3 Multi-Path Routing

Multi-path routing is a way to deal with problems such as path congestion, node
failures, high path latency, and the presence of malicious nodes [2, 14, 18].

In DHTs, when s experiences a problem with the best next-hop, another one
is used. This mechanism is enhanced in CR. In fact, CR provides a way to route
messages around overloaded, failed or malicious nodes.

First, a node can duplicate a message using both the most efficient cycle and DHT
next-hop node (see Sect. 8.3.4). Basically, only a source node makes this duplication
(for example, in CR-Chord [7]). However, other strategies are possible.

Second, there can be several appropriate cycles in Cs for a given destination d.
They provide a precomputed pool of alternate paths s →+ d. That is, s sends
duplicates through several cycles like in the neighbor-set anycast [2] or the
constrained multicast [18]). Moreover, s can sort alternate cycles according to their
efficiency, as in the sorted backup paths technique [18].

The CR method also supports disjointed paths [14]. A node s treats alternate
cycles to d as semi-disjointed if their subpaths s →+ d do not share common
intermediate nodes. The prefix “semi” appears since s does not necessarily know
all nodes of these cycles. To date, although disjointed paths are very valuable for
multi-path and secure routing, most of P2P systems do not support them.

In multicast communication, a node s sends a message to a set D of destinations.
In the CR method, s forms a pool Ms(D) ⊆ Cs of appropriate cycles that covers
all destinations. The message is sent using these cycles. Although in the worst case
the size of Ms(D) can be equal to |D|, several destinations can be reached with one
cycle. Hence, the duplication is reduced.
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8.5.4 Security

The CR efficiency for networks with malicious nodes is shown in Sect. 8.4 and in
our simulations described in Chap. 11 and [7].

Recall that the CR method reduces the use of IP addresses. Even if a node restricts
access to its IP address, other nodes still can gain knowing that the node appears as
an intermediary in some lookups. Consequently, a DHT equipped with CR is less
exposed to IP-level attacks, such as Denial-of-Service (DoS).

The CR-method supports bidirectional communications. The security level is
higher when both directions are independent, and traffic goes through disjoint paths.
Similarly to semi-disjointed cycles, a source node selects a cycle with independent
forward and backward directions.

In CR method, a node has more possibilities to detect incorrect or suspicious
routes. For instance, let a node u appear at s in a large fraction of cycles. This fact
signals that u becomes dangerous for s. At least, u is a bottleneck; in a worse case,
u can disrupt communications of s with other nodes. Therefore, the cyclic structure
helps s to detect such a risky situation in advance.

Assume a node s detects that a node u is malicious. In a basic DHT, s can
only remove u from its routing table. In the CR method, s also removes all cycles
containing u as well as s can decrease the priority of those neighbors that routed
messages to u (they are first-hop nodes in the cycles with u).

8.6 Summary

Recent progress in DHT routing made possible many practical P2P-based applica-
tions in the Internet. However, they work poorly when no direct IP connectivity is
available to some nodes (e.g., located behind a NAT or firewall) and in the presence
of malicious or overloaded nodes.

This chapter introduced the design of Cyclic Routing (CR), a method that
improves routing over basic DHT algorithms. Experimental analysis is provided
using data from simulations [7] for the Chord DHT enhanced with CR.

In simulations, malicious nodes dropped lookup packets but there were no
restrictions on IP addressing. The results suggest that CR improves the Chord
lookup availability. For instance, when the number of malicious nodes is small
(5–10 %) CR-Chord has almost twice lower lookup failure rate. When the number
of malicious nodes is large (40–50 %) CR-Chord has about twice higher lookup
success rate.

The CR method does not substitute known methods of flexible routing table
maintenance and multipath routing but complements them when the IP-level
reachability fails. The CR method allows a node to have a broader view on the
global network. Since CR only uses node IDs, it is applicable even when a routing
table entry insertion is not possible, e.g., when the node’s IP address is not globally
routable or frequently changes.
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Cyclic routing generalizes the idea of lookahead approach to DHT routing,
maintaining a trade-off between the lookahead level and available resources.
Therefore, CR takes a place between two extreme cases: (1) DHT routing using
only neighbors (local) and (2) shortest-path routing (global).

Using additional knowledge of the global network, cycles enable multiple-path
packet delivery and routing around malicious or overloaded nodes. Instead of
selecting a path based on neighbors only, CR exploits paths already discovered in
the overlay. From this point of view, cyclic structures at nodes accumulate stable
efficient paths in the overlay improving its routing.

References

1. Castro, M., Drushel, P., Hu, Y., Rowstron, A.: Exploiting network proximity in peer-to-peer
networks. Technical Report MSR-TR-2002-82, Microsoft Research (2002)

2. Castro, M., Drushel, P., Ganesh, A., Rowstron, A., Wallach, D.S.: Secure routing for structured
peer-to-peer overlay networks. In: Proceedings of 5th USENIX Symposium on Operating
System Design and Implementation (OSDI 2002), pp. 299–314. ACM, Boston (2002)

3. Castro, M., Costa, M., Rowstron, A.: Performance and dependability of structured peer-to-peer
overlays. Technical Report MSR-TR-2003-94, Microsoft Research (2003)

4. Freedman, M.J., Lakshminarayanan, K., Rhea, S., Stoica, I.: Non-transitive connectivity and
DHTs. In: Proceedings of the 2nd USENIX Workshop on Real, Large Distributed Systems
(WORLDS’05), pp. 55–60, USENIX Association San Francisco (2005)

5. Gummadi, K., Gummadi, R., Gribble, S., Ratnasamy, S., Shenker, S., Stoica, I.: The impact of
DHT routing geometry on resilience and proximity. In: Proceedings of ACM SIGCOMM’03,
pp. 381–394. ACM, New York (2003). doi: http://doi.acm.org/10.1145/863955.863998

6. Kaashoek, M.F., Karger, D.R.: Koorde: A simple degree-optimal distributed hash table. In:
IPTPS ’03: Proceedings of 2nd International Workshop on Peer-to-Peer Systems. Lecture
Notes in Computer Science, vol. 2735, pp. 98–107. Springer, Berlin (2003)

7. Korzun, D., Nechaev, B., Gurtov, A.: CR-Chord: Improving lookup availability in the presence
of malicious DHT nodes. HIIT Technical Report 2008-2, Helsinki Institute for Information
Technology HIIT (2008). URL: http://www.hiit.fi/nrg-publications

8. Kurose, J.F., Ross, K.: Computer Networking: A Top-Down Approach Featuring the Internet.
Addison-Wesley Longman Publishing Co. Inc., Boston (2002)

9. Leong, B., Liskov, B., Demaine, E.: Epichord: parallelizing the Chord lookup algorithm
with reactive routing state management. In: ICON 2004: Proceedings of 12th International
Conference on Networks, IEEE, USA pp. 270–276 (2004)

10. Li, J., Stribling, J., Morris, R., Kaashoek, M.F.: Bandwidth-efficient management of DHT
routing tables. In: Proceedings of the 2nd Symposium on Networked Systems Design and
Implementation (NSDI ’05), USENIX Association. USA pp. 99–114 (2005)

11. Manku, G.S., Naor, M., Wieder, U.: Know thy neighbor’s neighbor: the power of lookahead in
randomized P2P networks. In: STOC ’04: Proceedings of 36th Annual ACM Symposium on
Theory of Computing, pp. 54–63. ACM, New York (2004). doi: http://doi.acm.org/10.1145/
1007352.1007368

12. Naor, M., Wieder, U.: Know thy neighbor’s neighbor: better routing for skip-graphs and small
worlds. In: IPTPS ’04: Proceedings of 3rd International Workshop on Peer-to-Peer Systems.
Lecture Notes in Computer Science, vol. 3279. Springer, Berlin (2004)

13. Sharma, V., Hellstrand, F.: Framework for multi-protocol label switching (MPLS)-based
recovery. RFC 3469, IETF (2003). URL: http://www.ietf.org/rfc/rfc3469.txt

http://doi.acm.org/10.1145/863955.863998
http://www.hiit.fi/nrg-publications
http://doi.acm.org/10.1145/1007352.1007368
http://doi.acm.org/10.1145/1007352.1007368
http://www.ietf.org/rfc/rfc3469.txt


244 8 Cyclic Routing

14. Srivatsa, M., Liu, L.: Vulnerabilities and security threats in structured overlay networks:
a quantitative analysis. In: ACSAC ’04: Proceedings of 20th Annual Computer Security
Applications Conference, pp. 252–261. IEEE Computer Society, USA (2004). doi: http://dx.
doi.org/10.1109/CSAC.2004.50

15. Stoica, I., Morris, R., Liben-Nowell, D., Karger, D., Kaashoek, M.F., Dabek, F., Balakrishnan,
H.: Chord: a scalable peer-to-peer lookup service for internet applications. IEEE/ACM Trans.
Netw. 11(1), 17–32 (2003)

16. Stutzbach, D., Rejaie, R.: Understanding churn in peer-to-peer networks. In: IMC ’06:
Proceedings of 6th ACM SIGCOMM Conference on Internet Measurement, pp. 189–202.
ACM, New York (2006). doi: http://doi.acm.org/10.1145/1177080.1177105

17. Zhang, H., Goel, A., Govindan, R.: Incrementally improving lookup latency in distributed
hash table systems. In: Proceedings of 2003 ACM SIGMETRICS International Conference
Measurement and Modeling of Computer Systems, pp. 114–125. ACM, New York (2003).
doi: http://doi.acm.org/10.1145/781027.781042

18. Zhao, B.Y., Huang, L., Stribling, J., Joseph, A.D., Kubiatowicz, J.D.: Exploiting routing
redundancy via structured peer-to-peer overlays. In: ICNP ’03: Proceedings of 11th IEEE
International Conference on Network Protocols, pp. 246–257 (2003)

http://dx.doi.org/10.1109/CSAC.2004.50
http://dx.doi.org/10.1109/CSAC.2004.50
http://doi.acm.org/10.1145/1177080.1177105
http://doi.acm.org/10.1145/781027.781042


Chapter 9
Diophantine Routing

Abstract An important problem in any structured P2P overlay network is what
routes are available between nodes. Understanding the structure of routes helps to
solve problems related to routing performance, security, and scalability. In this chap-
ter, we propose a theoretical approach for describing routes and their structures. It is
based on recent results in the linear Diophantine analysis. A route aggregates several
P2P paths that packets follow. A commutative context-free grammar describes the
forwarding behavior of P2P nodes. Derivations in the grammar correspond to P2P
routes. Initial and final strings of a derivation define packet sources and destinations,
respectively. Based on that we construct a linear Diophantine equation system,
where any solution counts forwarding actions in a route representing certain integral
properties. Therefore, P2P paths and their composition into routes are described by
a linear Diophantine system—a Diophantine model of P2P routes. Its finite basis of
the solution set defines the structure of available routes.

9.1 Introduction

In computer networks, a classical problem is routing a packet from the source to the
destination host. Among multiple available routes, the routing algorithm selects an
optimal one according to some metric such as a hop count, the delay or bandwidth.
The algorithm is executed independently by network nodes based on a limited view
of the network, often only based on neighbor links. This is exactly the P2P network
case and the corresponding problem of local knowledge. Such algorithms require
moderate memory and computational resources but produce suboptimal routes.
Traditional algorithms do not support routing among multiple parallel paths for
reliability and load balancing.

Although a lot of routing algorithms for P2P networks have been proposed, we
agree with Gummadi et al. [7] that the P2P routing literature very seldom provides
general insight across algorithms. We believe that such an analysis of routing
mechanics can be based on an appropriate theory, general for a wide variety of P2P

D. Korzun and A. Gurtov, Structured Peer-to-Peer Systems: Fundamentals of Hierarchical
Organization, Routing, Scaling, and Security, DOI 10.1007/978-1-4614-5483-0 9,
© Springer Science+Business Media New York 2013
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networks. In this chapter, we focus on the concept of a route, a key element in P2P
routing problem. We propose a generic approach for describing routes; it uses recent
progress in the linear Diophantine analysis. Although we also discuss some possible
applications, our primary intention is to introduce the theoretical background for
P2P routing in general. This chapter extends our previous work [10].

We consider a mathematical Diophantine model of P2P routes, where a route
aggregates several P2P paths that packets follow. Such aggregation is due to
multipath routing (packet duplications and retransmissions) as well as multiple
sources and destinations. The model is based on abstract parallel process algebra [6],
and we use a commutative context-free grammar to describe forwarding behavior
of P2P nodes. A derivation in the grammar corresponds to a P2P route such
that derivation initial and final strings define packet sources and destinations,
respectively.

Given a grammar, we construct a linear Diophantine equation system [11, 13].
Any of its solutions counts forwarding actions in a route. The basis of a linear Dio-
phantine system (Hilbert basis) describes all solutions in a finite way [4, 17, 20, 21];
we use this fact to define a routing structure. Manipulation with parameters of packet
sources and destinations specifies which routes the model targets.

The model extends well-known models based on network topology graphs and
discrete network flows [3,8,20]. Since the latter are very popular in routing models,
we believe that our model has potential for various applications. We also hope that
the complexity problem, typical for large-scale discrete models, can be overcome
in our approach. There are efficient algorithms for solving such linear Diophantine
systems as appear in our model [12, 13].

The rest of the chapter is organized as follows. Section 9.2 formulates the
mathematical background for commutative context-free grammars and non-negative
linear Diophantine equations. In Sect. 9.3, we show how a grammar can be used to
describe routes in a P2P overlay network. A routing model combining a grammar
and a Diophantine equation system are developed in Sect. 9.4. Section 9.5 presents
a discussion of possible model applications to optimize routing. It also compares
our approach to related work. Details in Sects. 9.3–9.5 are explained using a
simple network common for all examples. All examples take only cyclic routes
since they relate to the primary class of linear Diophantine equations that can be
solved efficiently with the syntactic algorithm available via the Web-SynDic system
(http://websyndic.cs.karelia.ru).

9.2 Mathematical Background

In this section we summarize our mathematical background developed in [4, 10, 11,
13]. Later in Sects. 9.3 and 9.4 the model of P2P routes will be formulated in terms
of string transformations, which follow a commutative context-free grammar and
represent grammar derivations. The grammar assigns a linear Diophantine equation
system, where non-negative integer solutions correspond to grammar derivations.

http://websyndic.cs.karelia.ru
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9.2.1 Commutative Context-Free Grammars

Let Z+ be the set of non-negative integers. Given a finite alphabet Π, a commutative
string over Π is {πaπ}π∈Π, where aπ ∈ Z+ is the number of occurrences of π ∈Π in
the string. In other words, the order of symbols is ignored and a string is a multiset
of symbols. For a string α , denote its exponents

#π [α] = aπ ∈ Z+ for π ∈Π and #[α] = a ∈ Z
|Π|
+ .

The reversion is �[a] = {πaπ}π∈Π.
All strings over Π (including the empty string ε) form the free commutative

monoid Π∗ in respect to concatenation. Given α ′,α ′′ ∈Π∗, both α ′α ′′ and α ′+α ′′
denote the concatenation of α ′ and α ′′, which corresponds to the sum of exponents.
The reverse operation α ′ −α ′′ is defined if the exponents remain non-negative. If so
we write α ′′ ≤ α ′.

A commutative context-free grammar (CCF-grammar) without a start symbol
is a 3-tuple G = (N,Σ,P), where N and Σ are finite disjointed sets, called the
nonterminal and terminal alphabets, respectively, P is a finite subset of N×Σ∗N∗,
called the set of rules. A rule is written u→ τρ , where u ∈ N, τ ∈ Σ∗, ρ ∈ N∗.

A CCF-grammar provides a mechanism to transform strings κα ∈ Σ∗N∗. Let

κ
′,κ′′ ∈ Σ∗, α = �[(b−v )v∈N ], β = �[(b+v )v∈N ].

We say that κ′α directly derives κ′′β , written κ
′α ⇒ κ

′′β , if b−u > 0, κ′′ = κ
′τ ,

and β = α− u+ρ for some (u→ τρ) ∈ P. In other words, one instance of u in α
is substituted with τρ . A finite sequence of direct derivations κ′α ⇒ ··· ⇒ κ

′′β is
called a derivation and denoted

κ
′α ⇒∗ κ′′β .

The derivation length k is the number of direct derivations; k may be written in
the exponent, κ′α ⇒k

κ
′′β . By definition, κ′α ⇒0

κ
′′β iff κ′α = κ

′′β . If k > 0
we write κ

′α ⇒+
κ
′′β . Let #r[κ

′α⇒∗κ′′β ] denote the number of applications of
the rule r in the derivation. Then #[κ′α⇒∗κ′′β ] is a non-negative integer vector of
rule applications.

Let κ′,κ′′ ∈ Σ∗ and α,β ∈ ϒ∗. A derivation κ
′α⇒+

κ
′′β is (1) cyclic if α ≤ β ,

(2) a cycle if α = β and κ
′ = κ

′′, (3) simple if it does not contain proper cycles.
Clearly, κ′ ≤ κ

′′ holds always since terminals do not disappear in a derivation.

9.2.2 Nonnegative Linear Diophantine Equations

Let Z be the set of integers. A nonnegative linear Diophantine equation (NLDE)
system consists of n equations in m unknowns,

Ax = b, where A ∈ Z
n×m, b ∈ Z

n, x ∈ Z
m
+, (9.1)
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where A is called the coefficient matrix, b is called the constant term, and x is the
column of unknowns. An NLDE system is homogeneous (a homNLDE system)
when b =O.

A solution to (9.1) is irreducible if it is not a sum of two non-zero solutions to
the same system. For a homNLDE system, the set H of all its irreducible solutions
is called the Hilbert basis. For (9.1), a pair (N ,H ) is a basis if N is the set of all
irreducible solutions to (9.1) and H is the Hilbert basis of the homNLDE system.
Such a basis is unique and finite. Given the basis (N ,H ) of (9.1), the general
solution is

x = x′+ ∑
h∈H

chh for some x′ ∈N , ch ∈ Z+.

For further reading on basic facts about NLDE and NLDE systems please refer
to [1, 8, 17, 20, 21].

Moving terms with negative coefficients in each equation to another side, we
rewrite (9.1) as

A′x+ b− = A′′x+ b+.

The subclass of NLDE systems associated with CCF-grammars (ANLDE systems)
was introduced in [4, 11]. It restricts A′′ to a special form. In particular, a
homANLDE system associates with a CCF-grammar G = (N,Σ,P) as follows.
Non-terminals (N) and terminals (Σ) correspond to equations, grammar rules (P)
correspond to unknowns. Let

Pu = {r ∈ P | r = (u→ τrρr), τr = �[(aσr)σ∈Σ], ρr = �[(avr)v∈N ]} .
A homANLDE system consists of n = |N|+ |Σ| equations,

⎧
⎪⎪⎨

⎪⎪⎩

∑
r∈P

aurxr = ∑
r∈Pu

xr, u ∈ N,

∑
r∈P

aσrxr = 0, σ ∈ Σ.
(9.2)

Let t = |Σ| and m = |P|. Unknowns are interpreted as the number of grammar
rule applications in cycles, i.e., x = #[α⇒+ α]. Note that only the first N equations
in (9.2) are essential; the last t equations can be eliminated with setting xr = 0 for
all r such that aσr > 0 for some σ ∈ Σ. Rules assigned with eliminated unknowns
are not applied in the cycle derivation.

Let b−,b+ ∈ Z
n−t
+ and b ∈ Z

t
+. In addition to G, consider non-terminal strings

α = �[b−] and β = �[b+] and a terminal string κ = �[b], where α,β ∈ N∗ and
κ ∈ Σ∗. An ANLDE system associates with the triple (G;α,κβ ) as

⎧
⎪⎪⎨

⎪⎪⎩

∑
r∈P

aurxr + b−u = ∑
r∈Pu

xr + b+u , u ∈ N,

∑
r∈P

aσrxr = bσ , σ ∈ Σ,
(9.3)

Unknowns are interpreted similarly to the homANLDE case, i.e., x = #[α⇒∗ κβ ].
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Assume min(b+u ,b
−
u ) = 0 ∀u ∈ N; otherwise take du = min(b+u ,b

−
u ) and reassign

b+u := b+u − du, b−u := b−u − du. The following theorem relates grammar derivations
and ANLDE system solutions [13].

Theorem 9.1 (Solution to an ANLDE system). Let (H ,N ) be the basis
of (9.3).

1. (ANLDE system): x is a solution to (9.3) if and only if

x = xα ,κ′β ′+ xκ
′′β ′′+ xε , where (9.4)

• κ
′
κ
′′ = κ and β ′β ′′ = β ;

• xα ,κ′β ′ = #[α⇒∗ κ′β ′], a simple non-cyclic derivation;
• xκ

′′β ′′ = #[α ′ ⇒∗ κ′′α ′β ′′] for a some α ′ ∈ N∗, a simple cyclic derivation but
not a cycle;

• xε = #[α ′′ ⇒+ α ′′] for a some α ′′ ∈ N∗, a cycle.

2. (Basis): x ∈N if and only if xε =O in (9.4).
3. (homANLDE system): x is a solution to (9.2) if and only if x = xε .
4. (Hilbert basis): x∈H if and only if x= xε , where xε is defined by a simple cycle.

The idea behind Theorem 9.1 is that any derivation α ⇒∗ κβ corresponds to a
solution to (9.3). We satisfy (9.4) by taking1

κβ = κ
′β ′, α ′ = κ

′′ = β ′′ = ε, xκ
′′β ′′ = xε =O

Nevertheless, there can be solutions that correspond to a collection of derivations:

α⇒∗κ′β ′, α ′⇒∗κ′′α ′β ′′, α ′′⇒+ α ′′.

They can be combined into the derivation

αα ′α ′′ ⇒∗ κα ′α ′′β .

It is the same as the initial derivation α ⇒∗ κβ except that a cyclic part α ′α ′′
appears on both sides. Note that (9.3) associates with the triple (G;αα ′α ′′,
κα ′α ′′β ).

This relation between solutions and derivations leads to efficient (polynomial and
pseudo-polynomial) algorithms for solving homANLDE systems and for solving
some classes of inhomogeneous ANLDE systems [12].

1For brevity we ignore the case when α ⇒∗ κβ is not simple. It also satisfies (9.4) but requires
extracting all simple cycles and moving them to xε , so leading to xε �= 0.
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9.3 Routing Grammar

In this section we introduce basic model assumptions on routing in P2P overlay
networks and define forwarding options that a node implements. At each step
the current node selects candidates for the next hop. Then, having observed that
candidates can be represented as a string over N, we construct a CCF-grammar,
where each rule models a forwarding option.

9.3.1 Routing and Forwarding

An overlay topology can be represented with a digraph GT = (N,E), where the arc
set E consists of all outgoing links for all nodes; any entry (v, IPv) ∈ Tu corresponds
to the arc (u,v) ∈ E . Such a graph model for the routing problem is well-known,
e.g., see [3, 8], as well as actively applied for structured P2P networks, e.g., see
[7, 9, 15, 16, 19].

Let a node s (source) send a packet to a node d (destination). The packet follows
in GT either a path s⇒∗ d (the destination is reached by the only path), or a path
s⇒∗ v (the destination is not reached since the packet completed the path at v �= d),
or a collection of paths as above (the packet is duplicated; its copies follow by their
own paths).

Based on this observation, we call an atomic route the collection of all paths that
a packet and its copies have followed starting from a given source node s. Such a
route is denoted

s⇒∗ d
b+1
1 · · ·d

b+k
k ,

where di are all nodes at which the packets completed paths, and nonnegative
integer b+i shows2 how many packets completed their paths at di.

Let source nodes s1, . . . ,sl send b−1 , . . . ,b
−
l packets,3 respectively. Combining

their atomic routes yields the aggregated route:

s
b−1
1 · · ·s

b−l
l ⇒∗ d

b+1
1 · · ·d

b+k
k . (9.5)

The left- and right-hand sides in (9.5) can be interpreted as commutative strings
{ub−u }u∈N and {ub+u }u∈N over N, when the order of symbols is ignored.

The definition of a P2P route is at the overlay scale. Now consider the routing
process at the node scale. Let a packet targeted to a node d be received at a node u.
When u �= d then u selects one or more next-hop nodes among all nodes in Tu then
several options are available for u.

2The sign “+” in b+i means that packets arrive to di.
3The sign “−” in b−i means that packets leave si.
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Base forwarding: Exactly one node v in Tu is selected for the next hop.

Retransmissions: The node u having sent the packet to v waits for an
acknowledgment. If it has not been received in a predefined time, then u retransmits
the packet. A positive integer parameter av defines the number of attempts.

Sequential forwarding: Multiple alternative directions are used in
retransmissions. There are several candidates v1, v2, . . . , vk in Tu for the next
hop. Initially, u forwards the packet to v1. If no success is achieved in the predefined
time, then u tries sequentially through v2, v3, and so on up to vk. For each next
hop vi, the number of attempts is ai = a(vi), i = 1,2, . . . ,k.

Parallel forwarding: Similar to the previous case, but u forwards the packet
simultaneously to v1, v2, . . . , and vk as in multicast communication.

Path completion: A packet has reached a node u and is not forwarded further.
In Sparticular, this happens when (1) u is a destination node (u = d), (2) u discards
the packet, e.g., because of overload, or (3) some alternative directions are not used.

9.3.2 Forwarding Options as Grammar Rules

Taking an arbitrary node u ∈ N, consider the following formal representation of a
forwarding option:

u→ va1
1 va2

2 · · ·vak
k (9.6)

Let us call (9.6) a forwarding rule of u.
A particular case is when k = 1 in (9.6); the rule is reduced to

u→ va,

which models the base forwarding option. That is, u selects only one next-hop v and
forwards to it up to a = av times.

When k = 0 in (9.6), the rule is reduced to

u→ ε,

modeling a path completion at u.
When k > 1, rule (9.6) can be interpreted as sequential or parallel forwarding.

Nodes v1, v2, . . . ,vk are candidates for the next hop, and there are ai = avi

transmission attempts for each. To distinguish between sequential and parallel
forwarding, we introduce terminals σ in (9.6):

u→ σva1
1 va2

2 · · ·vak
k (9.7)

Let us take the alphabet Σ = {σpar,σseq}, where σpar is designated for parallel
forwarding and σseq is for sequential forwarding. Depending on σ ∈ Σ, rule (9.7)
represents either parallel or sequential forwarding. When no preceding σ , then the
difference between the options is ignored.
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In general, terminals are used to classify rules according to a given finite set of
behavioral forwarding types. The same idea is applicable for the path completion.
Another role of terminals is for modeling communication cost c between u and
its next-hop nodes. Let the cost be measured in discrete units of {0,1, . . . ,c}, where
c= 0 and c= c are the cheapest and most expensive cases, respectively. For instance,
c reflects the latency in the ternary scale: “small,” “medium,” and “big.”

The following extensions of (9.7) include the cost into the grammar. One way is
to introduce a terminal σcst, designated for cost counting on the right-hand side:

u→ σ c
cstv

a1
1 va2

2 · · ·vak
k (9.8)

for an appropriate c ∈ {0,1, . . . ,c}.
An alternative is employing a separate terminal σc for each value of the discrete

cost c:

u→ σcva1
1 va2

2 · · ·vak
k . (9.9)

Generalizing (9.6)–(9.9), routing at a node u to a destination d is modeled with
the forwarding rule r = ru(d):

u→ τrva1r
1r va2r

2r · · ·vakr
kr , (9.10)

where nodes v1r,v2r, . . . ,vkr are candidates for the next hop, k = k(r), positive
integers a1r,a2r, . . . ,akr define the number of transmission attempts, string τr ∈ Σ∗
represents behavioral and cost attributes.

Let Pu be the set of all forwarding rules at u. Note that for the same destination,
there may be several different forwarding rules. If the difference is essential, one
can use extra terminals to classify the rules in Pu. On the other hand, many different
destinations are often produced on the same right-hand side because of the P2P
locality property: the same neighbor is used for many destinations. Hence the size
of Pu is typically less than the overlay size N.

Consider the right-hand side of (9.10). Extend its exponents (air)
k
i=1 to a vector

ar ∈Zn−t
+ by adding zero entries. Using a string τr �[ar] = τrρr ∈Σ∗N∗ rewrite (9.10)

u→ τr �[ar]. (9.11)

Ignoring the order of symbols requires a discussion on appropriateness of (9.11)
in modeling sequential forwarding. Obviously, the order of next hops that u ad-
vances in forwarding is ignored. Instead, the model reflects only that u implements
sequential forwarding. Section 9.4 will show that this simplification leads to analysis
of all possible paths a route consists of, regardless of whether a parallel or sequential
forwarding option is used. Nevertheless, the difference is still preserved in integral
metrics, such as how many times each option was used in a route.

Summarizing what was stated above, we assign with a P2P overlay network the
CCF-grammar G = (N,Σ,P), called the routing grammar. It models how nodes
forward messages to the next hop.
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s2

s5

r1

r3

r4

r5

r7

r6

s4

r2

s3

s1

Fig. 9.1 An example network of five nodes. Clockwise links r1, r3, r4, r5, r7 form a ring; r2
represents parallel forwarding (dashed arcs), when s1 sends a message simultaneously to s3 and
s5; r6 represents sequential forwarding (dotted arcs), when s4 first tries to forward to s2, then to s5.
Parameters of transmission attempts are equal to one

Example 9.1. Consider the network illustrated in Fig. 9.1. It is an instance of a
basic Chord ring (successors only) with an addition of parallel forwarding at s1 and
sequential forwarding at s4. The routing grammar is defined with N = {s1, . . . ,s5},
Σ = {σpar,σseq}, and P = {r1, . . . ,r7},

r1,r2 : s1→ s2 | σpars3s5 r3 : s2→ s3

r5,r6 : s4→ s5 | σseqs2s5 r4 : s3→ s4

r7 : s5→ s1

9.4 A Diophantine Model of Routes

From (9.5) we see that routing in a P2P overlay can be treated as a transformation
of a source string into a destination string. In this section, the transformation is
implemented as a derivation in the routing grammar. A model of a given set of
routes is formulated in terms of an ANLDE system; its solutions map to routes and
vice versa. Routes can be finitely generated by basic ones, which correspond to
basis solutions to the ANLDE system. Consequently, the basis solutions represent a
structure of routes.

9.4.1 Routes and Grammar Derivations

Let each node u ∈ N initiate b−u ∈ Z+ packets, α = �[b−]. They are routed through
the overlay. The forwarding process at nodes is modeled with a routing grammar G
as described in Sect. 9.3. In the issue, each node v ∈ N receives b+v ∈ Z+ packets,



254 9 Diophantine Routing

β = �[b+]. A routing attribute marked with σ ∈ Σ has been applied bσ ∈ Z+ times,4

κ = �[b]. The resultant route corresponds directly to a derivation α⇒∗ κβ in G.
The terms cyclic, cycle, and simple for derivations are directly applied for routes.

To include b−, b+, b explicitly in the notation, we will denote such a route

b− b−→ b+ (9.12)

Therefore, we can conclude that derivations in a routing grammar describe all
routes (9.12) in a P2P overlay for various b−,b,b+.

Example 9.2. Consider the network in Example 9.1. Let b− = (1,0,0,0,0), where
for simplicity we omit using transpose notation and treat row and column vectors
interchangeably since the context eliminates the confusion. Starting from s1,
a packet can run clockwise through every node and finally returns back. The
derivation is a simple cycle:

s1⇒ s2⇒ s3⇒ s4⇒ s5⇒ s1.

The route is (1,0,0,0,0)
(0,0)−−→ (1,0,0,0,0). For the same source, another route

(1,0,0,0,0)
(1,0)−−→ (2,0,0,0,0) is possible. It consists of two simple cyclic paths

and corresponds to the derivation

s1⇒ σpars3s5 =

(

σpar
s3⇒ s4⇒ s5⇒ s1

s5⇒ s1

)

= σpars
2
1,

where the duplication at s1 is due to parallel forwarding.

9.4.2 Routes and ANLDE System Solutions

Considering routes as derivations we partially fix the order of grammar rule
applications. However, integral properties of routing do not depend on this order.
Treating routes with the same number of grammar rule applications as equivalent,
we can formulate the model of routes in terms of an ANLDE system and its
solutions.

Below we introduce several instances of our model; each defines certain restric-
tions to the route parameters b−, b+, and b in (9.12). We omit proofs from the
scenarios; they can be derived directly from Theorem 9.1, see page 249.

Instance 1: The model is ANLDE system (9.3) and describes all routes b− b−→ b+

for fixed b−, b+, and b.

4For instance, bσpar is the total number of parallel forwarding applications, see (9.7); bσcost is the
integral cost of a route, see (9.8).
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Theorem 9.2. Any solution to (9.3) maps to a P2P route

b−+ d
b−→ b++ d for some d ∈ Z

n−t such that b−+ d,b++ d ∈ Z
n−t
+

and vice versa. A solution is in the basis if and only if the route is simple.

Each u-equation in (9.3) states the balance between packet arrivals and departures
taking into account that u initiates b−u and finally receives b+u packets. Each σ -
equation in (9.3) states the exact equality for routing attribute σ .

Theorem 9.2 relates to Theorem 9.1 as follows. A route b− b−→ b+ corresponds
to a derivation α ⇒∗ κβ , where b− = #[α], b+ = #[β ], and b = #[κ]. Such a route
leads to a solution to (9.3) taking d = O (in Theorem 9.1, α ′′ = ε). Since only
the difference b−−b+ affects (9.3), there can be solutions that do not correspond to

b− b−→ b+ but to b−+d
b−→ b++d (in Theorem 9.1, to combined derivation αα ′α ′′ ⇒∗

κα ′α ′′β ).
The relation to Theorem 9.1 brings an interesting interpretation of a route b−+

d
b−→ b++ d. By changing the order of rule applications in the derivation this route

can be transformed into a composition of tree derivations:

α⇒∗ κ′β ′, α ′ ⇒∗ α ′κ′′β ′′, α ′′ ⇒+ α ′′,

where #[αα ′α ′′] = b−+ d, #[α ′α ′′β ′β ′′] = b++ d,
#[κ′κ′′] = b, and ∀u ∈ N min(#u[α],#u[β ′]) = 0.

The first part of sources, α , does not consist of destinations; it initiates packets and
feeds the destinations in β ′, α⇒∗κ′β ′. The second part, α ′, receives packets that
it initiated as well as feeds destinations in β ′′, α ′ ⇒∗ α ′κ′′β ′′. The last part, α ′′,
receives all packets that it initiated, α ′′ ⇒+ α ′′.

Example 9.3. In Example 9.1, let s1 send one and then receive two packets applying
parallel forwarding once, i.e., s1 ⇒∗ σpars2

1. All such routes are described by the
ANLDE system

x7 + 1 = x1 + x2 + 2, x1 + x6 = x3,

x2 + x3 = x4, x4 = x5 + x6,

x2 + x5 + x6 = x7, x2 = 1.

Here b− = (1,0,0,0,0), b+ = (2,0,0,0,0), and b = (1,0). The basis solution
x = (0,1,0,1,1,0,2) defines a simple route

s1⇒ σpars3s5⇒ σpars4s5⇒ σpars
2
5⇒ σpars1s5⇒ σpars

2
1.

It is in the form αα ′α ′′ ⇒∗ α ′α ′′κ′κ′′β ′β ′′, where α = α ′′ = κ
′ = β ′ = ε , α ′ =

β ′′ = s1, κ′′ = σpar.

Instance 2: The model of cycles. Any node receives as many packets as it has
initiated (b− = b+ = d).
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Case 2A: No routing attributes are applied (b = O). The model is homANLDE

system (9.2) and describes all possible cycles d
O−→ d for arbitrary d ∈ Z

N
+.

Theorem 9.3. Any solution of (9.2) maps to a cycle and vice versa. A solution is in
the Hilbert basis if and only if the cycle is simple.

Case 2B: No restrictions to routing attributes. The model describes all routes d
b−→ d

for arbitrary b ∈ Z
t
+ and d = b− = b+ ∈ Z

N
+.

This case is reduced to the previous one. Eliminate all terminals from the
grammar (Σ = ∅). Then the homANLDE system (9.2) contains only equations for
non-terminals, and Theorem 9.3 is still valid.

Case 2C: Routing attributes b are fixed. The model consists of all non-terminal
equations of (9.2) and all terminal equations of (9.3). The case is hence reduced to

Theorem 9.2. That is, any solution maps to a cyclic route d
b−→ d for some d ∈ Z

N
+

and vice versa.

Example 9.4. Consider the routing grammar of Example 9.1 but ignore the termi-
nals (in rules r2,r6). The homANLDE system is

x7 = x1 + x2, x4 = x5 + x6,

x1 + x6 = x3, x2 + x5 + x6 = x7.

x2 + x3 = x4,

It has the only basis solution x = (1,0,1,1,1,0,1), which maps to a cycle s1⇒ s2⇒
s3⇒ s4⇒ s5⇒ s1.

9.4.3 Path Structure

Any solution of an ANLDE system can be represented by the basis. Since in
the Diophantine model a route corresponds to a solution, the basis defines basic
routes; any route is a combination of basic ones. On the other hand, a route
composes several paths. Therefore, the model provides a finite structure of P2P
paths. The following example explains the idea.

Example 9.5. Consider a network in Example 9.1. Let all nodes except s1 use the
path completion option. The model reflects this by adding to the routing grammar
the rules si→ ε for i = 2, . . . ,5, which correspond to unknowns zi.

Any cyclic route up ⇒+
κup shows how p packets initiated at u run through

the network; all p packets return, but extra copies complete their paths at v �= u.
There is no restriction to routing attributes κ. Figure 9.2 shows schematically the
structure of a basic route when u = s1. Such routes are described with the following
homANLDE system.
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s1

ε

...

...

...

...

ε
ε

ε

Fig. 9.2 The path structure
of a basic route s1⇒+

κs1 in
Example 9.5. There is a cycle
that contains s1. Cycle nodes
can forward packet copies out
of the cycle

Table 9.1 Basis solutions for
routes α ⇒+

κα in
Example 9.5

G
ra

m
m

ar
ru

le
s

s 1
→

s 2
s 1
→

σ p
ar

s 3
s 5

s 2
→

s 3
s 3
→

s 4
s 4
→

s 5
s 4
→

σ s
eq

s 2
s 5

s 5
→

s 1
s 2
→

ε
s 3
→

ε
s 4
→

ε

s 5
→

ε

x1 x2 x3 x4 x5 x6 x7 z2 z3 z4 z5

I. No duplication
1 1 0 1 1 1 0 1 0 0 0 0

II. Parallel forwarding option
2 1 1 0 1 1 0 2 1 0 0 0
3 0 1 0 0 0 0 1 0 1 0 0
4 0 1 0 1 0 0 1 0 0 1 0
5 0 1 0 1 1 0 1 0 0 0 1

III. Sequential forwarding option
6 1 0 1 1 0 1 1 1 0 0 0
7 1 0 2 1 0 1 1 0 1 0 0
8 1 0 2 2 0 1 1 0 0 1 0
9 0 0 1 1 0 1 0 0 0 0 1

IV. Parallel and sequential forwarding options
10 1 1 0 1 0 1 2 2 0 0 0
11 0 1 0 1 0 1 1 1 0 0 1

x7 = x1 + x2, x4 = x5 + x6 + z4,

x1 + x6 = x3 + z2, x2 + x5 + x6 = x7 + z5.

x2 + x3 = x4 + z3,

Its Hilbert basis is shown in Table 9.1; all basic routes are listed in Table 9.2.
Routes are placed into groups I, . . . , IV depending on parallel and sequential

option usage. Group I consists simply of one route that reflects clockwise traversing
of all nodes.

Each route in group II uses the parallel forwarding option at s1 once. In route 2,
s1 uses both rules it has for forwarding. One packet reaches s2 and completes the
path. Another packet is duplicated at s4 and both copies returns to s1. In routes 3, 4,
and 5, s1 starts with the parallel forwarding option. One copy returns to s1, another
one completes the path at s3, s4, and s5, respectively.

Similarly, each route in group III duplicates a packet using the sequential
forwarding option at s4. One copy runs a cycle, another one completes its path at s2,
s3, s4, or s5.
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Table 9.2 Basic routes α ⇒+
κα in Example 9.5

# Route (derivation)

I. No duplication

1 s1
x1⇒ s2

x3⇒ s3
x4⇒ s4

x5⇒ s5
x7⇒ s1

II. Parallel forwarding option

2 s1
x1⇒ s2

z2⇒ ε ,

s1
x2⇒ σpars3s5

x4⇒ σpars4s5
x5⇒ σpars2

5
2×x7=⇒ σpars2

1

3 s1
x2⇒ σpars3s5

z3⇒ σpars5
x7⇒ σpars1

4 s1
x2⇒ σpars3s5

x4⇒ σpars4s5
z4⇒ σpars5

x7⇒ σpars1

5 s1
x2⇒ σpars3s5

x4⇒ σpars4s5
x5⇒ σpars2

5
z5⇒ σpars5

x7⇒ σpars1

III. Sequential forwarding option

6 s1
x1⇒ s2

x3⇒ s3
x4⇒ s4

x6⇒ σseqs2s5
z2⇒ σseqs5

x7⇒ σseqs1

7 s1
x1⇒ s2

x3⇒ s3
x4⇒ s4

x6⇒ σseqs2s5
x3⇒ σseqs3s5

z3⇒ σseqs5
x7⇒ σseqs1

8 s1
x1⇒ s2

x3⇒ s3
x4⇒ s4

x6⇒ σseqs2s5
x3⇒ σseqs3s5

x4⇒ σseqs4s5
z4⇒ σseqs5

x7⇒ σseqs1

9 s2
x3⇒ s3

x4⇒ s4
x6⇒ σseqs2s5

z5⇒ σseqs2

IV. Parallel and sequential forwarding options

10 s1
x1⇒ s2

z2⇒ ε ,

s1
x2⇒ σpars3s5

x4⇒ σpars4s5
x6⇒ σparσseqs2s2

5
z2⇒ σparσseqs2

5
2×x7⇒ σparσseqs2

1

11 s1
x2⇒ σpars3s5

x4⇒ σpars4s5
x6⇒ σparσseqs2s2

5
z2⇒ σparσseqs2

5
z5⇒ σparσseqs5

x7⇒ σparσseqs1

Group IV shows paths when both forwarding options are used. In route 10, two
packets complete their paths at s2, and the other two packets follow a cycle. In
route 11, two packets complete their paths at s2 and s5, respectively; one packet
follows a cycle.

9.5 Applications and Discussion

Understanding the structure of P2P routes helps to solve problems of routing
performance, security, and scalability. In this section, we discuss how some
problems in recent P2P research can be approached with the Diophantine model.

9.5.1 Workload and Utilization

According to Theorems 9.2 and 9.3, ANLDE systems (9.3) and (9.2) are formal
structural models [14]. They define dependence analytically between the initial
workload (packet sources), P2P overlay resources that routing consumes (nodes and
links), and the final distribution (packet destinations).

Let us focus on estimating P2P resource consumption, which is described
typically in relative terms like node and link utilization. A close characteristic
is congestion, which happens when the consumption exceeds a certain bound.
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Xu et al. addressed the issue of the P2P routing workload and congestion [22]. They
considered a uniform all-to-all communication load, when for each pair of nodes
u �= v, a unit of traffic is imposed. The idea behind is that such a workload leads
to uniform utilization and congestion in a uniform network. It gives a way to test a
network for uniformity.

In the Diophantine model, a unit of traffic is a packet. Let b−u = b−u = N−1 ∀u∈
N, i.e., each node initiates and then receives N− 1 packets. Clearly, when u sends a
packet to v and v sends a packet to u, these two paths form a cycle u⇒+ v⇒+ u.
Therefore, the case is reduced to Theorem 9.3, and the Hilbert basis describes
the structure of possible P2P routes for a uniform all-to-all communication load.
Note that (9.5) generalizes the notion of routing applied in [19]. Given an overlay
topology digraph GT = (N,E), they defined routing as the set of N(N − 1) paths
specified for every (ordered) pair of vertices of GT.

Example 9.6. Consider the network in Example 9.5. Assume all-to-all communica-
tions and cycles u⇒+ v⇒+ u for all u �= v without restrictions to routing attributes.
It leads to the same homANLDE system as in Example 9.5; the path structure is
defined by basis solutions shown in Table 9.1. To construct a uniform workload
model, one should define for all u �= v which cycle u⇒+ v⇒+ u is used when u
sends a packet to v and v sends a packet to u. These details depend on a given routing
protocol.

Compared to [19, 22] the Diophantine model allows more general workload
scenarios than the uniform all-to-all communication. For instance, given u ∈ N,
b−u = 1, and b−v = 0 ∀v �= u, one scenario is how the unit activity of u loads the P2P
overlay. Taking b− = (1,1, . . . ,1) provides a scenario when all nodes start activity
simultaneously.

Metrics of resource consumption are easily derived from the model. Given a
basis solution x, its component xr counts how many times the rule r = (u→ τrρr)
was applied in the route. That is, Lu = ∑r∈Pu xr is a usage metric of a node u;
Luv = ∑r∈Pu,v∈ρr xr is a usage metric of an outgoing link (u,v). Routing attributes τr

provide other useful metrics.

Example 9.7. As in Example 9.6 assume all-to-all communications but let each
basic route be used once. Since cycles u⇒+ v⇒+ u are not distributed uniformly
among pairs (u,v) this assumption does not necessarily satisfy the uniform commu-
nication but preserves the simplicity in this example. Table 9.3 shows the link and
node usage metrics. They are computed summing over all basis solutions. Node s5

is most utilized. It receives 15 packets; 3 of them complete paths; all others go to s1

making link (s5,s1) the most congested. Another congested link is (s3,s4), which is
used 11 times.
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Table 9.3 Link and node
usage in the network from
Example 9.5

Usage s1 s2 s3 s4 s5

s1 12/6/0/0 6 6 6
s2 12/0/0/5 7
s3 13/0/0/2 11
s4 6 11/0/6/2 9
s5 12 15/0/0/3

A non-diagonal element (u �= v) contains link usage Luv; when
a link is not used the element is empty. A diagonal element
is Lu/Lpar

u /Lseq
u /Lfin

u , where Lu is node usage, Lpar
u is parallel

option usage, Lseq
u is sequential option usage, and Lfin

u is
completion option usage

9.5.2 Connectivity

Loguinov et al. [16] and Gummadi et al. [7] studied the problem of P2P connectivity.
It relates to resilience against node or link failure, i.e., the number and location of
failures a P2P network can tolerate without becoming disconnected. Two routes are
node (link) disjointed if they consist of different nodes (links). For practical purpose
this definition can be weakened introducing a parameter k for the number of joint
nodes (links). Routes are disjointed when k = 0; they are almost disjointed when
k > 0 and small.

Consider a pair of nodes, u �= v. They are connected if there are paths u⇒+ v and
v⇒+ u. Again, Theorem 9.3 is applicable in this case, and the Hilbert basis defines
the connectivity structure. The number of disjointed cycles shows the resilience.
When a failure happens it breaks only those cycles that contain the failed node/link.
Cycles that disjointed with the broken ones are not affected, thus preserving the
connectivity. In terms of the Diophantine model, two basis solutions x and x′ define
disjointed cycles when either ∀u ∈ N and ∀r, p ∈ Pu xrx′p = 0 (node disjointed
cycles), or ∀r ∈P xrx′r = 0 (link disjointed cycles). That is, analysis of basis solutions
provides conclusions on resilience.

Similar cycle-based analysis can also focus on a given node u or link (u,v).
The more cycles use the node or link, the less resilient the network is. Note that
the importance of cycles for connectivity maintenance in structured P2P network
designs was emphasized in several works, see [15, 18] and references therein.

Example 9.8. Consider again the network and route structure of Example 9.5.
Let us now ignore routing attributes. Then there is a cycle u⇒+ v⇒+ u for any
u,v∈ {s1,s2,s3,s4,s5} concluding that the network is connected. For instance, when
u = s2 and v = s4 there exists cycle s2⇒+ s4⇒+ s2 (row 9 in Tables 9.1 and 9.2).
There are no node disjointed cycles. There are only two link disjointed cycles
(rows 3 and 9). It means that the network has low resilience to node/link removal.
The congestion metrics of Example 9.7 sort nodes and links in the order of their
importance to the resilience. More congested nodes/links are less resilient.

More sophisticated characterization of connectivity can be obtained based, for
instance, on cyclic routes u ⇒+

κuk, when several (up to k) alternate paths are
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used. It means that the Diophantine model defines a multipath routing structure
between nodes u and v. This multipath characterization correlates with work of
Gummadi et al. [7] and Artigas and Skarmeta [2]. They focused on the importance
of alternative paths between sources and destinations for routing dependability,
performance, and security. In contrast to the Diophantine model, their approach does
not define a generic way to model multipath routing.

9.5.3 Performance

Loguinov et al. [16] and Xu et al. [22] considered the problem of P2P routing
performance. They relate it to the routing diameter (maximum distance between
any two nodes), which gives the worst-case routing performance. Again, we can use
cycles to identify the longest paths.

For instance, consider one-to-all routes for a given u, where b−u =N − 1 and
b+u =0 while b−v = 0 and b+v = 1 ∀v �= u. The longest path u⇒+ v over all basic
routes defines the worst case. Considering all such u, we move to the case of
all-to-all communication with cycles u⇒+ v⇒+ u.

Recall that a route consists of several paths because of packet duplications and
drops, typical in practice. In contrast to [16,22], our approach allows more freedom
in selecting performance metrics other than the primary path length (counting only
links of u⇒+ v).

One option is additionally counting the secondary activity induced by packet
duplications and drops, that is, considering some other (secondary) paths of the
route. For instance, even if a primary path is short, it generates a lot of packet copies
that reduces the overall network performance.

Another case happens in request-response communications when u sends a
request packet to v and then receives the response. That is, both forward u⇒+ v
and backward path v⇒+ u are important. The optimality criterion here is not

|u⇒+ v| →min

but

|u⇒+ v|+ |v⇒+ u|= |u⇒+ u| →min .

Example 9.9. Consider Example 9.5 again. Ignore routing attributes and assume
for simplicity equal performance in all forwarding actions. It means that the
performance of a cycle can be computed summing all components of the basis
solution.

According to Table 9.1, the worst-case performance happens when cycles 8
and 10 are used, each taking 8 forwarding actions in all its paths. When the packet
completion option is not taken into account, the worst-case cycle is 8 consuming
six hops. Table 9.4 shows the performance of basic cycles. The high average values
show that the network performance is very much affected by packet duplication.
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Table 9.4 Performance of basic cycles si⇒+ si in Example 9.5

Cycle 1 2 3 4 5 6 7 8 9 10 11 Average

#Actions, in total 5 7 3 4 5 6 7 8 4 8 6 5.7
#Completions, si→ ε 4 6 2 3 4 5 6 7 3 6 4 4.5

9.5.4 Comparisons

Some comparison remarks were mentioned above when discussing applications
of the Diophantine model. Now let us compare the theoretical base of the linear
Diophantine approach to the other ones.

The description of routes using a CCF-grammar enhances traditional network
graph models. The latter use the topology graph; its analysis can be targeted
to path availability (connectivity and network diameter [9, 16]), to path overlap
and convergence (congestion [22] and fault resilience [16]), or to disjointed paths
(dependable and secure routing [2, 5]).

Such a graph model corresponds to a routing grammar consisting of rules u→ v
(u,v ∈ N) (only one path per packet is considered, no retransmissions and multicast
duplications). It produces a Diophantine system that is based on the graph incidence
matrix and describes network flow circulation [3, 8]:

∑
v : r=(v→u)

xr + b−u = ∑
v : r=(u→v)

xr + b+u , u ∈ N

Allowing a packet to be duplicated because of retransmission (rules u→ vauv

in a routing grammar) produces a Diophantine system that describes generalized
flows [3]:

∑
v : r=(v→u)

auvxr + b−u = ∑
v : r=(u→v)

xr + b+u , u ∈ N

At the same time, the Diophantine model allows more general rules that can
aggregate several next-hop candidates as well as take routing attributes into account,
see rules (9.10). It produces the enhanced class of Diophantine systems defined
by (9.3). Non-terminal equations is a generalization of the network flow balance at
nodes allowing hyper-arcs, when a packet is forwarded to several next-hop nodes.
Terminal equations constrain routing attributes.

Esparza [6] introduced a communication-free Petri net, an abstract model in
process algebras, which is conceptually similar to the Diophantine model. However,
Esparza’s model is not related to concrete application. The Diophantine model is
for the case of P2P routing, and we explicitly define how to use and interpret non-
terminals, terminals and grammar rules. For instance, terminals in the model allows
capturing sequential behavior, cost attributes, and some other routing details, while
Petri nets can target only pure parallel processes.

In contrast to [6], we ground on the notion of NLDE basis, the specific structure
of ANLDE system, and the relation between NLDE and CCF-grammars. It allows
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clear tracing from P2P routes to grammar derivations and then to ANLDE system
solutions. Esparza’s model says a little about solutions and nothing about their form
and finite structure.

Moreover, to be used in practice, any model needs efficient computational
support. In case of the Diophantine model, efficient algorithms for solving some
classes of ANLDE systems are available, see the discussion in the next section.

9.5.5 Computational Complexity

Solving Diophantine equations is computationally demanding [20]. It also concerns
ANLDE systems (9.3), a subclass of NLDE systems, since the uniform word
problem for CCF-grammars5 is NP-complete [6]. Finding the NLDE basis is an
overNP problem, since the number of basis solutions can depend exponentially on
NLDE system dimensions and values of coefficients.

On the other hand, according to [12], some ANLDE systems can be solved
efficiently by polynomial algorithms, when finding a non-zero solution, and by
pseudo-polynomial algorithms, when finding the basis. In the latter case, the
complexity is pseudo-polynomial because of using the number of basis solutions
as a parameter.

Obviously, if a model describes all possible routes, then the computation cost
may be subject to exponential growth, even if the pseudo-polynomial algorithms are
used. For instance such a case happens when the Diophantine model is equivalent to
the network topology graph. However, even in this case the computational cost may
be reduced based on the order in which the basis solutions are constructed.

For instance, the syntactic algorithm actually produces solutions with short
length first (|x| = ∑r xr). Due to practical interpretation of the length (e.g., a
performance metric), optimal routes are among short routes. Thus it is enough to
limit the model with a certain amount of short basic routes, and no more routes are
computed. A similar idea is applied in the theory of k-optimization when constraints
define all possible solutions but only k best solutions are under search.

In general, our model intends to describe not all routes but a small subset of them.
This follows the principle that there are a lot of bad routes but very few good ones.
Such a restriction can be done by carefully selecting coefficients in (9.2) and (9.3)
as well as adding extra constraints. For instance, inequation ∑r xr ≤ L explicitly
constraints the length of routes to search.

Another interesting feature relates to the case when routes have to be computed
frequently. When the network changes, it triggers a modification of the model, for
instance, adding and removing an equation or changing a coefficient value. Actually,
the syntactic algorithms are incremental in many cases. That is, solutions to the
initial system can be used in construction of solutions to the modified one.

5This problem is of deciding, given a CCF-grammar and strings α ,β , if α ⇒∗ β .
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We saw the importance of cycles when discussing possible applications of
the Diophantine model. In this particular case, the model requires solving a
homANLDE system, the primary class of ANLDE systems allowing efficient
computations. In [12], a polynomial algorithm is constructed for finding a non-zero
solution as well as a pseudo-polynomial algorithm for finding the Hilbert basis.6

These algorithms also work well in practice, and a reader can experiment with
them using the Web-SynDic system available at http://websyndic.cs.karelia.ru. Note
that homANLDE systems are not the only class with efficient solutions computation.
Moreover, the research for finding more classes of ANLDE systems is going on as
well as development of new algorithms for solving.

9.6 Summary

This chapter has considered the problem of modeling P2P routes and proposed a
generic discrete approach to describe them. We contribute a linear Diophantine
model that restricts the analysis to routes that have given properties. Particularly,
it supports various scenarios of message sending and receiving as well as of
forwarding behavior at nodes.

We defined a P2P route as all paths that given messages follow. The model is
formulated as a linear Diophantine equation system, solutions to which correspond
to routes. Since the basis of such a system is unique and finite, the model defines a
certain structure of P2P paths.

To construct the model we used a relation between NLDE systems and formal
grammars. A forwarding process at nodes can be described by a CCF-grammar,
a routing grammar for a P2P overlay, where any derivation simulates a P2P
route. Then an ANLDE system associates with the routing grammar forming the
Diophantine model of routes.

We discussed several possible applications of the model. Having a finite path
structure, one can compute metrics related for instance to utilization (load to nodes
and links), connectivity (availability of alternate paths), and performance (number
of hops). Detailed analysis of model applications is subject to our current research.
The model can be supported with efficient algorithms that allow polynomial and
pseudo-polynomial computations (not discribed in this chapter).

6Theory says that there is a polynomial algorithm for finding a non-zero solution of an arbitrary
homNLDE system, not necessarily a homANLDE system. Unfortunately, to the best of our
knowledge, we know no implementation appropriate for practical large-scale applications.

http://websyndic.cs.karelia.ru
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Chapter 10
Structural Ranking

Abstract Open P2P networks are subject for selfish and incorrect behavior of
nodes and even intentional attacks. A maintenance protocol must preserve topology
structure not only according with the rules of the efficient graph for routing, but
also accounting the cooperation level of nodes. Although the actions taken by
intermediate nodes in the P2P network are hidden from the source node, the latter
must have some guarantees on their correctness. This problem leads to incentive
mechanisms to encourage cooperation of nodes. Such mechanisms provide each
node with estimates of others behavior and the node makes own decisions when
it selects its actions. In Chap. 6 we consider local ranking models when a node u
decides its actions for node v based solely on directly observed past behavior of v.
In this chapter, we focus on structural ranking models when network topology
structure essentially information for computing ranks of nodes, as it is assumed in
such well-known graph-based algorithms as PageRank and EigenTrust. We study
models with partial knowledge and distributed computations when each node
maintains some knowledge about the global network topology. The knowledge
is a topology subgraph that aggregates, in form of cycles, direct and indirect
observations of past behavior of nodes.

10.1 Introduction

The efficiency of a structured P2P system is due to maintenance of rigorous network
topology, like it happens in conventional DHT designs with geometrically progres-
sive routing. There is, however, an inherent tension between system (collective)
welfare and individual rationality that threatens the viability of P2P systems. Such
a system can consist of rational participants with diverse and selfish interests. Each
node operates as an independent entity and does not always follows properly all
rules of the P2P protocol. For instance, a stingy or overloaded node ignores some
incoming requests, malicious node falsifies its responses and cheat others.

D. Korzun and A. Gurtov, Structured Peer-to-Peer Systems: Fundamentals of Hierarchical
Organization, Routing, Scaling, and Security, DOI 10.1007/978-1-4614-5483-0 10,
© Springer Science+Business Media New York 2013
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To preserve the efficiency, a P2P maintenance protocol must account the
cooperation level of nodes. A reputation system is often employed to detect
malicious nodes or reward well-behaving ones [10, 18, 20, 31]. It provides infor-
mation for local-level decision making when a node u selects proper neighbors
for its routing table among generally selfish nodes. The selection eliminates from
the cooperation overloaded or malicious nodes as well as free-riders that do not
contribute sufficiently in return. Consequently, the overall system performance is
preserved from the degradation. In terms of network topology, the presence of a
link u→ v reflects the cooperation quality between these two nodes.

If all nodes maintain their neighbors based on their past cooperation then a
source node has some guarantees on performance and security, though the actions
taken by intermediate nodes in the P2P network are hidden from the source
node [2, 11, 14, 15]. The problem is to impel nodes for this maintenance, leading
to an incentive mechanism that encourages the cooperation of nodes. In reciprocity-
based schemes [15, 18, 24, 32], nodes maintain histories of past behavior of other
nodes and use this information in their local decision making processes. When a
node v become low-contributing then other nodes u detect this behavior and reduce
their cooperation with v: links u→ v eventually disappear, so changing the global
network topology. Consequently, if v is still interested in participation in the system
then v has to increase its contribution to the system.

We discussed incentive mechanisms that are based local ranking models in
Chap. 6. This case corresponds to direct reciprocity: a node u decides its actions for
node v based solely on directly observed past behavior of v. Nevertheless, indirect
observation can provide useful extension of the local knowledge. For instance, if v
is a neighbor of u and v has many well-behaving neighbors then v is a good neighbor
for u for routing; similar idea is used in NoN-routing and CR-routing, see Chap. 8.
In P2P resource sharing systems, bilateral exchange u↔ v is not always possible,
since for two arbitrary nodes u and v the former may have no resources that the
latter needs. Thus exchange cycles [1, 4, 27, 29, 32, 36] like u→ w→ v→ u should
be formed, when u has resources interested for w, w has resources interested for v,
and finally v has resources interested for u.

In contrast to local ranking, structural ranking models assume that network
topology structure essentially determines ranks of nodes. PageRank [35] and
EigenTrust [21] are most known ranking algorithms [13, 17, 25] that follow this
assumption and computes node ranks by analyzing the graph. However, analysis of
the global graph is unrealistic in large-scale high-dynamic networks, and models
with partial knowledge is needed. Moreover, complex analysis is not always as
helpful as it was expected, and simple average aggregation algorithm performs
better [28]. In this chapter, we study models with partial knowledge and distributed
computation of this knowledge. They enhance local ranking models, where only
neighbors are observed, with additional knowledge about the connectivity beyond
the neighbors. The knowledge is a topology subgraph that aggregates direct and
indirect observations of past behavior of nodes.

Section 10.2 introduces important selection problems where structural ranking
can be used to arrange available candidates. It includes route and neighbor selection,



10.2 P2P Ranking 269

which we also considered in Chap. 3, as well as neighbor differentiation for
resource sharing, which we also considered in Chap. 6. Then we overview two
known structural ranking algorithms—PageRank and EigenTrust—both require the
knowledge of global network topology graph for computing rank values, though the
computations can be distributed.

Section 10.3 shows that the computational efficiency and robustness to churn of
structural ranking algorithms can be improved by letting nodes to maintain only
partial knowledge on the global topology. We apply the same idea as in CR-routing;
local cyclic structure is a cyclic subgraph, which in turn can be analyzed by a
structural ranking algorithm to compute ranks. Assuming that the cyclic structure
accounts the most important topology properties observed for the activity of a given
node, these ranks are adequate for differentiation of nodes, though the ranks can
differ from the globally computed ranks.

10.2 P2P Ranking

In this section we first introduce some important P2P design problems whose
solutions need P2P ranking. They belong to the class of selection problems
when ranks are used to arrange available candidates. As in the web information
retrieval [26], we assume that the P2P overlay link structure is an essential factor for
such rankings. Accordingly we then describe the known PageRank and EigenTrust
algorithms, which we modify later in this chapter for the needs of P2P selection
problems.

10.2.1 P2P Selection Problems

Consider a P2P overlay network of N nodes that shares R resources. (Recall that N
and R are the index sets of all nodes and resources in the system, respectively.) Let
Nu ⊂ N be the set of neighbors of a node u ∈ N and u consumes external resources
k ∈ R+

u and provides local resources k ∈ R−u ; let Ru = R+
u ∪R−u .

To implement the lookup operation, any P2P routing protocol has to solve the
route selection problem [5]. Given a lookup for resource k ∈ R, a node u should find
a next-hop node v ∈ Nu. As we discussed in Part II, the selection can be pure local.
For instance, in progressive routing a distance metric arranges neighbors based on
their closeness to the resource. In resource exchange systems, u computes its own
ranking to differentiate already known neighbors based on their exchange history.
Therefore, u arranges its neighborhood Nu in dependence on k.

Local strategies do not take into account more than one-hop relations between
nodes in the system. The local knowledge can be enhanced by looking ahead
the neighbors. Instead of enlarging the neighbor set Nu, the lookahead approach
allows u to know some paths beyond its neighbors. In l-lookahead, u knows
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up to l + 1 subsequent nodes on a path. For instance, NoN-routing [30, 33] is
progressive routing with 1-lookahead, see also Chap. 3. Cyclic routing (CR) [23,34]
provides a more flexible mechanism to collect and analyze observable cycles kept
in cyclic structure Cu; it allows estimating the rest of routing paths, see also Chap. 8.
Therefore, u arranges Cu in dependence on k.

In these non-local cases, the route selection problem needs arrangements of
available paths, though some of paths can go through the same neighbor. Clearly,
such paths capture the link structure of the overlay network. For instance, cyclic
structure Cu represents a locally known subgraph of the topology graph.

Further, to cope with dynamics, P2P nodes perform the maintenance control to
keep the overlay correctly connected. Some v ∈ Nu can be incorrect at current time
instance, which leads to another important problem—neighbor selection. A node
u has to detect incorrect neighbors in Nu and to find candidates to insert into Nu.
The first part (detection) of the problem can be based on arrangements in the
neighborhood Nu. The second part, however, needs arrangements in the potentially
unobservable set N \Nu. Non-local approaches like CR can be applied here: nodes
on the paths beyond the neighbors are candidates.

Resource exchange is a source of further complications for P2P selection
problems. A node u has to arrange local and external resources in Ru to control
its provision and consumption. Moreover, such prioritization also concerns transit
resources, which u additionally serves to earn good reputation in the system.

It is known that when a node interacts with small percentage of other nodes
the efficiency of bilateral exchange or direct reciprocity is low [4, 16]. Multilateral
exchange provides better efficiency, but the complexity is to find a valid exchange
path of indirect reciprocity [1, 9, 27]. This efficiency/complexity gap between
bilateral and multilateral P2P exchange has motivated the extensions to the bilateral
approach that with lower complexity achieve similar efficiency [27, 29, 32, 36].

Menasché et al. [32] formulated a model that reduces the multilateral case
to bilateral. The reduction is due to barter when nodes obtain replicate external
resources locally to serve other nodes. It is similar to the local ranking model from
Chap. 6 since transit resources form a kind of barter. In contrast, their model is not
local since there should be distributed brokers that dynamically search appropriate
exchange cycles and transform the multilateral network into bilateral one.

Liu et al. [29] presented a bilateral exchange model where node consumption
and provision are maintained asynchronously over time and nodes. In terms of the
local ranking model, its parameters avk(u) and bvk(u) become u’s long-term debt
and credit. They must be also updated indirectly, when v operates as a mediator for
resource k. The model is not local since a distributed credit transfer mechanism is
used for searching exchange paths in the network.

Piatek et al. [36] proposed a reputation protocol that allows at most one level
of indirection, i.e., node’s neighbors are the only providers of information beyond
node’s direct observations. In terms of the local ranking model, u maintains a(u)
and b(u) using in addition recommendations from all v ∈ Nu. Then the BitTorrent
TFT model is applied for differentiating the neighbors. A general mechanism for at
most l levels of indirection is analyzed in [27].
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10.2.2 PageRank Algorithm

PageRank [6, 35] is widely regarded as the best method for the static ranking of
web pages, see also [13, 17, 25]. The basic idea behind PageRank for any directed
graph is that a link from a node to another states an endorsement of the latter node,
indicating the quality. PageRank takes advantage of the global link structure to order
nodes according to their perceived quality.

Consider the following random walk in a graph of N nodes. At each step either
with probability α a node u selects a link u → v to follow uniformly among
available v ∈ Tu or with 1− α jumps to a random node among N− 1. Jumping
prevents permanent confinement in a strongly connected component of the graph.
The parameter α is the damping factor denoting the probability of following the
link structure (usually α = 0.85). The probability the random walk is in node u is

pu = α ∑
v:u∈Nv

pv

Nv
+

1−α
N− 1

. (10.1)

The sum is over all v such that u ∈ Nv. If the walk is at such a node v then 1/Nv

is the uniform probability of selecting v→ u and thus the walk returns to u. The
PageRank value for node u is defined as this probability. For example, if pu = 0.1
then the random walk visits u every tenth step on average.

The rank pu is divided among u’s forward links u → v for v ∈ Nu evenly to
contribute to the ranks pv of the nodes they point to. A node u has high pu if the sum
of the ranks of its ingoing links v→ u is high. Either u has many ingoing links or u
has a few highly ranked ingoing links.

Instead a random jump in (10.1), a personalization vector π of damping factors
can be used. Each πu ≥ 0 represents the likelihood of jumping to node u. This
non-uniform modification is called personalized PageRank. Another non-uniform
modification is weighted PageRank where forward links have probabilities relative
to the link weights. Let buv > 0 be the weight of a link u → v and puv be the
probability of selection of u→ v, then

puv = buv/ ∑
w∈Nu

buw.

PageRank with these two modifications can be computed iteratively starting from

some initial values p(0)u :

p(i+1)
u = α ∑

v:u∈Nv

pvu p(i)v +(1−α)πu. (10.2)

There is a close connection between pu and the number and length of closed
walks u →+ u, which correspond to cycles in the graph. Consider the nodes
and links of graph as the states and transitions of Markov chains, respectively.
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For Markov chains that are irreducible and have only positive recurrent states, the
expected time a walk first returns to u is 1/pu [38]. If α < 1 and πu > 0∀u, then any
transition between two states has non-zero probability, and the irreducibility follows
trivially. Since a PageRank random jump occurs at probability 1−α taking a node
u with probability πu, the probability to reach u at each step is at least (1−α)πu.
Consequently, the expected time to reach u from any node is finite and thus any state
u is positive recurrent.

Similarly to web pages, a link u → v of P2P topology can be considered as
indication of the quality of v for u. Computing PageRank in the global topology
graph, we yield the following interpretation. If pu is high then u is a neighbor of
many other nodes or a neighbor of a few highly ranked nodes. This interpretation
is useful for route and neighbor selection problems; each node u prefers those
neighbors that have high rank.

10.2.3 EigenTrust Algorithm

BitTorrent-like systems [8] provides local incentives, which are based on private his-
tory (direct reciprocity). Mechanisms with purely private history do not scale [16]:
coverage will be so small that cheaters are indistinguishable from good participants,
e.g., whitewashers among newcomers. Private history is suitable for symmetric
resource interest, i.e., any pair of nodes has resources to exchange which both nodes
are interested in. In the asymmetric case, it may happen that u has resources for v, v
has resources for w, w has resources for u, but exchange u↔ v fails because v has no
resource u is interested in. On the other hand, exchange cycle u→ v→ w→ u with
indirect reciprocity can solve the problem. Scaling to higher turnover and mitigating
asymmetry of interest requires shared history, which is, however, is prone to false
reports and collusion.

The EigenTrust algorithm [21] is designed for reputation management in P2P
resource sharing systems. It computes a trust score (rank pv) that indicates how
likely a node v ∈ N is to be malicious (or stingy). The system evolution is divided
into rounds i = 1,2, . . . in which nodes interact by making queries and consuming
resources. At the end of round i, the record of correct and incorrect consumptions is
used to calculate the trust values pu(i+ 1) for the next round.

A node u rates each transaction with its neighbor v ∈ Nu. In the original
EigenTrust, a transaction is rated as positive (1) or negative (−1). Then, based
on these rates, a local trust value duv is defined, e.g., as the sum of the ratings of
the individual transactions that node u has performed from node v. The original
EigenTrust computes duv as the difference between the sum of positive transactions
and the sum of negative transactions. Another example is the local ranking model
from Chap. 6, where this local value can be defined as surplus duv = av(u)− bv(u).
The local trust values are normalized; let D be the normalized matrix.

The idea behind EigenTrust is to aggregate the local trust values in a
distributed manner, as it happens in many reputation systems, e.g., see [3, 7].
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EigenTrust is based on the notion of transitive trust: a node u will have a high
opinion of those nodes who have provided it resources well. Moreover, node u is
likely to trust the opinions of those nodes, since nodes who are generous about
the resources they provide are also likely to be correct in reporting their local trust
values.

EigenTrust global trust value is defined iteratively,

p( j+1)
u = (1− ε) ∑

v∈N
Dvu p( j)

v + εtu, (10.3)

where 0 ≤ ε < 1 is a constant and t = (tv)v∈N is a probability distribution over
pre-trusted nodes. Pre-trusted nodes are essential, as they guarantee convergence
and break up malicious collectives. In the simplest case, tu = 1/N. The iterations

j = 0,1, . . . start with some initial vector p(0) and stop when |p( j+1)
u − p( j)

u | is made
small enough.

The definition is similar to PageRank iterations (10.2) with damping factor
α = 1− ε and personalized vector π = t. Consequently, the same interpretation and
theoretical analysis, based on Markov chains and random walks, is also applicable
for EigenTrust. If a random surfer was searching for reputable nodes it can crawl
the network using the following rule: at each node u, it will crawl to node v with
probability Duv . After crawling for a while in this manner, the surfer is more likely
to be at reputable nodes than unreputable ones. The stationary distribution of the
Markov chain is the global trust vector p = (pu)u∈N .

Now we can define the distributed EigenTrust algorithm.

1. For round i = 1, initialize the trust based on a priory trust distribution, pu(1) = tu
for all u.

2. Until the end of the current round i, each node u makes its queries q. From the
set of neighbors appropriate for serving q, a node v is selected with probability
proportional to pv(i).

3. At the end of round i, each node u sends its local estimates Duv pu(i) to all nodes v
from which u consumed resources. In parallel, u collects Dvu pv(i) from nodes v
to which u provides resources.

4. If dvu pv(i) has not been received then set Dvu = tv. Compute global trust value
p(i+ 1) for the next round using iterations (10.3).

EigenTrust is an uttermost form of shared history (indirect reciprocity), account-
ing all paths exited between participants and assigning each node a unique global
trust value, analogous to the PageRank measure for web pages. In fact, the structure
of indirect reciprocity cycles is analyzed and nodes that participate in many such
cycles become of high rank. Global knowledge is exploited: all nodes in the network
cooperate to compute and store the global trust vector. The original EigenTrust can
be combined with additional trust metrics to limit the effects that misbehaving nodes
can cause to the global network [11].

The distributed EigenTrust computation is questionable in open large-scale high-
dynamic systems. The correctness essentially depends on the assumption that there



274 10 Structural Ranking

are pre-trusted nodes in the network. Although EigenTrust has been proved very
effective against several natural attacks from malicious coalitions, it performs poorly
on some sophisticated attacks organized with different kinds of malicious peers [11].
Furthermore, EigenTrust is vulnerable to false negatives and false positives [27].

Lian et al. [27] provided a gradual solution to extend private history with shared
history, leading to EigenTrust in the extreme case. The solution requires accounting
all paths from a local node to other nodes up to a fixed length bound.

In contrast to the “all-paths” approach of EigenTrust, Anagnostakis and Green-
wald [1] suggested to intentionally construct dedicated cycles for appropriate
l-exchange transfers. The system gives them higher priority than for non-exchange
transfers. The construction and then cycle maintenance introduce essential over-
head.

Menasche et al. [32] proposed a decomposition of any indirect reciprocity cycle
into a set of direct reciprocity cycles, i.e., nodes intentionally obtain undemanded
content to use it for barter purposes. Similarly to [1], the overhead becomes an
issue since the decomposition requires knowledge about existing indirect reciprocity
cycle and employs a broker which provides nodes with recommendations on
decomposition.

10.3 Cyclic Ranking

In the previous section we observed that such graph-based ranking algorithms as
PageRank and EigenTrust actually exploit the cyclic structure of the global network
graph. The computed rank of a node depends on which cycles (in the Markov chain
terminology, closed random walks) the node belongs to. Based on this observation,
this section shows how structural ranking algorithms can be modified to achieve
better performance and scalability in P2P routing and resource sharing.

10.3.1 Local Cyclic Structure

Since a node does not know the whole network, direct application of PageRank or
EigenTrust for P2P ranking requires a distributed algorithm. The later immediately
meets with the following two difficulties. First, each node u relies on observations
from other nodes and u uses these indirect data for analyzing the unknown part of
the graph. For example in distributed PageRank algorithm [39], neighbors provide
data about rank values they are currently estimated. Such third-party information
certainly leads to security vulnerabilities in open environments, when some node
can provide false estimates. Second, analysis of the entire network is expensive in
dynamic large-scale P2P environments. The rank computation and corresponding
data dissemination are slower compared to the churn rate. Rank-related data from
other nodes become irrelevant when they have reached a node u.
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Consider a structural ranking algorithm, e.g., PageRank or EigenTrust for
concreteness. To overcome the difficulties of global graph knowledge let every
node u perform the given ranking algorithm only for a known part of the network.
That is, untrusted third-party information is not utilized directly. Note that a local
part of the network topology is constructed on past observations the node has made,
thus providing certain guarantees on the correctness based on the previous success
results.

Such a local part of the network topology must have a good connectivity
structure. Otherwise, the graph-based ranking algorithm is inapplicable. In this
case, a pure set Nu of neighbors is not adequate. A reasonable candidate is a
cycle collection that node u constructs locally as cyclic structure Cu, similarly as
it happens in CR algorithm [23].

Each cycle in Cu starts at u, goes through a neighbor w1 ∈ Nu, then runs over the
network and returns to u using a neighbor wl−1 ∈ Nu:

u→ w1→ w2→ . . .→ wi→ . . .→ wl−1→ u, (10.4)

Recall that in the CR algorithm, information about intermediate nodes in cycles is
third-party. Nevertheless, this information is verifiable since a cycle corresponds
to a successful lookup (then the cycle is tested in further lookups), see Chap. 8.
Therefore, Cu can be used as a trustable source of link structure known at u. In P2P
resource sharing systems, where the EigenTrust algorithm is applicable, cycles
correspond to exchange transfers (indirect reciprocity cycles), which also can be
locally collected [1, 27, 29, 32, 36].

Local cyclic structure Cu can be represented with a cyclic directed graph
consisting of all cycles known at u. This graph is a cyclic subgraph of the global
topology graph. Assume that for any neighbor v ∈ Nu there is at least one cycle that
uses v as the first hop. Otherwise we simply remove such nodes (terminal nodes or
leaves) from the cyclic graph. Even if the damping factor α = 1 in (10.2) or ε = 0
in (10.3), all nodes in Cu are reachable: from an arbitrary node v the walk goes via a
cycle to the host node u, then any node w is reachable from u via some other cycle.
The number of steps in v→+ u→+ w is finite. Hence the corresponding Markov
chain is irreducible and have only positive recurrent states. Nevertheless, factors α
and ε can useful for adopting rank algorithms to specific problem solutions.

Now we can summarize the key idea of cyclic ranking. Each node u maintains
locally its cyclic graph, which approximates the knowledge on the global network
topology. Then any graph-based ranking algorithm is applied on this subgraph,
producing local node ranks. Note that different nodes can use different protocols for
collecting cycles and different ranking algorithms for analysis of the cyclic graph.
Below we consider applications of cyclic ranking to selection problems that appear
in routing and resource sharing.
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Fig. 10.1 C-PageRank
values for unweighted
forward ranking

10.3.2 Relation of Routing and Ranking

The P2P routing efficiency is essentially depends on the topology structure. On
the other hand, such structure is captured by the PageRank algorithm. Consider a
modification of this algorithm to operate with the cyclic structure collected by CR
algorithm. We call this modification the Cyclic PageRank algorithm (C-PageRank).
Note that in general the cyclic structure can be constructed by another algorithm,
different from the CR algorithm.

A straightforward modification employs unweighted PageRank. Let a node u run
the PageRank algorithm on its local cyclic graph Cu, see (10.1). Assume that nodes
use an appropriate method for neighbor selection, thus Nu consists of good nodes
only. A high rank value is interpreted as indication of node’s high quality for the
same reason as with web pages; a link v→w means that v perceives w to be efficient
in forwarding. Those nodes are prioritized at u that participate in forwarding u’s
requests. Clearly, such nodes appear in cycles u→+ u.

This is the case of forward ranking when links in the graph and routing in the
network have the same direction. A simple example is shown in Fig. 10.1. The more
ingoing links from high-ranked nodes a node has the higher its rank is, i.e., many
nodes connect a high-ranked node. With the assumption that all nodes are good
it means that high-ranked nodes actively participate in routing. Their connectivity
makes them ready to serve lookups from many nodes.

Note that the rank also positively correlates with the load the node takes.
Consequently, it can be a useful metric for local decision making in load balancing.
In this case, u prefers low-ranked nodes since they are less loaded. It defines a
tradeoff between the routing performance and load balance.

A complementary modification is backward ranking. Let C u be the inversion
of Cu: every link v→ w is replaced with its reversion w→ v. A node u runs the
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Fig. 10.2 C-PageRank
values for unweighted
backward ranking

Table 10.1 C-PageRank variants in dependence on graph link direction

Direction Purpose

Forward ranking Perception of node quality. A high-ranked node is exploited by other
high-ranked nodes: ingoing links are from many nodes and/or links
are from high-ranked nodes.

Backward ranking Node capacity for routing. A high-ranked node connects to many other
nodes and/or to a few high-ranked nodes.

unweighted PageRank algorithm on Cu, and any link v→ w of the original graph
indicates v’s quality. This property is useful for route and neighbor selection, since
a high-ranked node connects to many other nodes. Such a node has more flexibility
for forwarding requests. In other words, a node would like to contact a node that
can provide as much resources for forwarding as possible. An example is shown in
Fig. 10.2.

The same idea of backward ranking was used for web pages in BadRank [22,37]
and in inverse PageRank [19]. BadRank aims at detecting spam web sites, based on
the premise that a page is spam if it points to another spam page. Inverse PageRank
gives preference to pages from which many other pages can be reached.

Table 10.1 summarizes the purpose of forward and backward ranking algorithms
for decision making in P2P routing . Note that forward and backward ranking has
certain similarities with HITS authority and hub score, respectively [26].

The algorithms can be augmented with weights for using the weighted
PageRank (10.2). For example, weights are numbers of transported messages or
amounts of transported data. It allows distinguishing between lot-used links and
mostly unused links, making the former more significant in computing ranks.
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10.3.3 Neighbor Selection and Malicious Nodes

Using both forward and backward ranking, let us consider how to apply cyclic
ranking for the neighbor selection problem. Backward rank is used for identifying
potentially contributing nodes. Forward rank is used for identifying malicious and
potentially overloaded nodes.

A node v of a high backward rank is potentially interested in routing related to
u, i.e., v declares to provide its resources for forwarding. However, as other nodes
use the same or similar methods of neighbor selection, the best nodes can easily
become overloaded. Moreover, a malicious node can also establish connections to
high-ranked nodes, and then it will seldom or never forward other nodes’ messages.
Therefore, straightforward establishment of a connection to a high-ranked node v
can be useless since high amount of messages from u will be probably dropped at v.

Forward ranking can help to identify both overloaded and malicious nodes before
connecting to them. The idea is to compare the forward rank to backward rank.
A normal node v will have mostly balanced ranks: v establishes connections to other
nodes in accordance to resources it has and other nodes establish connections to v
keeping them if they are useful. In contrast, a node v of essentially higher forward
rank than backward rank has already an imbalanced share of incoming connections
and thus v is unlikely to be able to process many more requests. On the other hand,
a node v with lower forward rank, though being connected to several good nodes,
has made quite few other nodes to consider it worthwhile to maintain outgoing
connections to v.

With these notions, the neighbor selection rule can be formulated as follows.
In the event of adding a node, u picks one that has high backward rank and the
ratio of backward and forward ranks is near one. In addition, u employs a message
drop detector for fast disconnecting from neighbors that have high rate of dropped
messages or incorrect responses.

The uniform PageRank suffers when malicious nodes strategically establish
connections to nodes that already have good connections with each other. As a
result, a malicious node can inflate its rank. To mitigate this problem, weighted
and personalized PageRank can be applied, where nodes contribution is taken into
account in addition to the topology structure.

Since bad nodes (e.g., free-riders) tend to provide as little resources as possible,
their ranks can be reduced by weighting links with amount of provided resources.
Links to bad nodes receive low weights and a random walk is unlikely to select such
link instead of a high-weight link. Consequently, PageRank value of a bad node is
lowering. Note that the same idea is implemented in EigenTrust, where weights are
current trust estimates.

For personalized PageRank its personalization vector π is defined such that
all random jumps are to the origin node u, i.e., πu = 1 and πv = 0∀v �= u. This
property prevents a random walk to be long time in a possible cluster of malicious
nodes. Such a cluster is formed when a coalition of malicious nodescooperates and
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Fig. 10.3 Good nodes (on the top) serve ten times more messages than malicious nodes (on the
bottom). The malicious coalition forms a tightly connected cluster. (a) The uniform C-PageRank
assigns high rank values for the malicious nodes. (b) Weighed personalized C-PageRank assigns
ten times lower rank values for the malicious nodes

establishes a lot of interconnections within the coalition, e.g., trying to increase each
others reputation for non-coalition nodes. Note that this is an instance of the well-
known Sybil attack [12].

In this case, we can consider the damping factor α as the probability of a message
being dropped. For any dropped message the process of routing that message
should start again at the origin. This model is very rough approximation of what
is happening in P2P routing. In particular, messages in P2P networks do not travel
by random paths. Nevertheless, the model provides the basic intuition. Better results
are received by using these two methods together. An example is shown in Fig. 10.3,
where a malicious coalition is easily differentiated by weighed personalized C-
PageRank.

10.3.4 Resource Exchange

In BitTorrent-like systems [8] the exchange is based on forming a swarm of N nodes,
which are interested in downloading the same file (file sharing), see also Chap. 6.
At any time instance, each node u knows a subset of file pieces to exchange. For
locally unavailable pieces u requests other nodes in the swarm. In turn, other nodes
request u for pieces that u already has. Eventually, every node in the swarm is fed
by all pieces.

The swarm notion implements bilateral incentives aiming in fair bandwidth
allocation. The basic rule is that u uploads to v similarly to u downloaded from v.
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Therefore, file download becomes slow or even impossible for stingy nodes since
they refuse requests from other nodes.

Each node u∈N forms a set of the n1 best neighbors v with the highest download
rates av (v’s provision history). Besides, u selects random n2 “optimistic” neighbors
(unchoking); the aim is at discovering new neighbors in the swarm that would offer
good download bandwidth. Let us call these n1+n2 neighbors active since u uploads
only to them (in a round-robin fashion) during the recent time slot. For downloading,
u exploits all nodes in N consuming from them as much as possible.

BitTorrent incentives are simple and easily can be described in terms of ranks,
as we discussed in Chap. 6: a node u arranges neighbors according to their direct
provision to u. BitTorrent incentives are bilateral, which is known to be less efficient
compared with multilateral case [4].

Typically, the following three types of nodes in a BitTorrent swarm are differen-
tiated, based on their contribution patterns.

• A good node restricts its download rate to its upload rate; Ngood.
• A bad node has prevalent download rate over its upload rate; Nbad.
• An altruistic node always keeps high upload rate; Nalt.

Note that in the BitTorrent terminology, a seed is a node who only provides file
pieces to others; it corresponds to an altruistic node. Leachers are interested in file
download; they correspond to good and bad nodes.

The basic performance metric is average file download completion time for good
nodes, Tgood. The basic fairness criteria are the following.

1. There are clear incentives to be a good node: Tbad� Tgood.
2. Bad nodes make their gain mostly due to presence of altruistic nodes: Tbad is low

if Nalt is small (or proportional to |Nalt|).
3. The more good nodes the more their gain from the rational cooperation: Tgood is

proportional to |Ngood|+ |Nalt|.
Consider a mechanism for a node to extend the local knowledge of BitTorrent

direct reciprocity with shared history. The extension aims at preventing cheating in
indirect observations. The mechanism is based on the existence of exchange cycles,
a characteristic property of multilateral resource exchange. A simple example is the
following provision cycle

u→ v→ w→ u,

where each link means “high” provision. If v provides low bandwidth to u, then
BitTorrent exchange leads to low provision from u to v. However, if v provides
generously to w and w in turn is a generous provider for u, then u prefers to provide
high bandwidth to v, indirectly preserving w’s generosity.

Collecting a set of provision cycles

u→ w1→ w2→ . . .→ wi→ . . .→ wl−1→ u,
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similarly to (10.4), the node u has an additional knowledge source about participants
and their provision. The more cycles where wi participates the more gain for u to
keep appropriate provision to wi. This kind of appropriateness can be quantified
based on the structural ranking algorithm applied to the cyclic graph.

An interesting problem is how to find provision cycles. It is one of most complex
problems in designs that deal with exchange cycles [1, 27, 29, 32, 36]. Typically, a
BitTorrent swarm has an almost fully-connected topology, i.e., each node knows
most of other nodes. Nevertheless, links are not equal. Each node selects n1 > 0
neighbors to upload. Thus there are active links, and a subgraph with active links
only can be constructed. This case is very similar to the CR algorithm.

Based on this observation, let a node construct a reasonable coverage of this
subgraph with a smaller subgraph—a cyclic graph consisting of provision cycles.
Each cycle is a file exchange chain in the swarm. Each link u→ v in the cycle is
“good” in terms of bilateral exchange (direct reciprocity), i.e., it is v is in the top of
n1 best neighbors of u and stable in time. Such cycles exist in such P2P economies;
they are short and have reasonable interpretation, see [1, 32].

If node u maintains a local collection of cycles Cu then u can use it to extend
simple direct reciprocity of BitTorrent and other TFT-like schemes to more powerful
indirect reciprocity (multilateral exchange). Computing PageRank (or EigenTrust)
on this cyclic graph leads to better ranks than simple download/upload ratio. Then u
applies rank-based upload bandwidth allocation. In the general case, it can be used
for single-resource exchange using the ranks in the weighted round-robin strategy,
as we discussed in Chap. 6.

The above ranking mechanism is gradual, similar to [27]. In the latter, u keeps
rank Mn

uw that characterizes all n-hop paths u→+ w known to u. For that any u’s
neighbor v periodically provides ranks Mn−1

vw for all (n−1)-paths v→+ w. A similar
idea can be found in [39].

However, cycles are better structure for aggregated topological information [23]
than a set of paths u→+ w. Each neighbor v provides u some of best neighbors
(u’s neighbors of neighbors) or best cycles v →+ v that v knows. Based on this
knowledge u maintains locally own cyclic graph and provides the knowledge
periodically to its neighbors. Based on the cyclic graph, u computes ranks and uses
them in its upload process.

The mechanism is illustrated in Fig. 10.4. A node u periodically receives from
its neighbors what cycles they know. If v is a good provider for u then u
includes them into its local cyclic graph. A good provider is a neighbor with
provision/consumption ratio γv(u)≥ 1− ε for small enough ε .

Let u receive from v a (n− 1)-cycle

v→ w1→ ··· → wn−1→ v = wn,

where wi �= u∀i and v expects that w1 is its good provider, see Fig. 10.4b. The
simplest case is n = 2 when v knows only its good neighbors, see Fig. 10.4a. Then
u constructs the following n-cycle

u→ w1→ ··· → wn−1→ v = wn→ u.
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Fig. 10.4 Cycle construction
at u based on
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good provider v.
(a) v recommends u to use
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The weight of the cycle is determined by v’s provision/consumption ratio γv(u)
relatively to u. Each link wi → wi+1 increments its weight awiwi+1 := awiwi+1 +
γv(u)/mv, where mv is the number of cycles that u takes into account based
recommendations from v, including the bilateral exchange v→ u→ v.

The previous cycles from v are either removed or their weight is exponentially
reduced (a decay function). The local cyclic graph consists of cycles collected from
all good neighbors. Also, the collection includes 2-cycles u→ v→ u. When a link
appears in several cycles its weight is a sum (or average, or maximum) over all
cycles it belongs to.

Each node has an upper bound on the length of cycles it collects, nmax. It is a
tradeoff parameter between node churn and cycle dissemination. The same node
w can participate in many cycles constructed at u. Recall that structural ranking
algorithms, such as PageRank or EigenTrust, reward nodes that participate in many
cycles.

Notably that for v there is no reason to cheat u. It is based on the cyclic property.
Let v recommend a bad wi to u. Then wi becomes a bad node in provision cycles
u→+ wi→+ v→+ u, and consequently u will reduce v’s rank.

10.4 Summary

This chapter has emphasized that network topology structure reflects the
participation behavior of nodes. We focused on two cases: routing and resource
exchange. When global topology graph is known then structural ranking algorithms
like PageRank or EigenTrust can be used to compute global node ranks. Each node
then uses these rank values to arrange nodes and solve selection problems: route
selection for a given lookup, neighbor selection to fill routing table, service rates
for resource requests from other node, and some others.
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The assumption of global knowledge does not allow applying effectively the
above structural ranking approach in open large-scale high-dynamic P2P systems.
In this case, even distributed rank computation over the whole network seems
unrealistic due to dynamics and security issues. We considered another approach
when a node keeps locally only a part of the network topology. This part can be
dynamically represented by a collection of cycles that the node has observed during
its actual participation in the system. Cyclic structure provides a cyclic subgraph
which allows applying known structural algorithms. This scale level reduction
preserves important rank properties and allows realistic computation with tradeoff
parameters between accuracy and efficiency.
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Summary of Part III

This part has discussed some models and methods that allow a node to collect
additional knowledge about the global network. The local knowledge scope can
be too limited for some problems, especially in a large-scale system. On the
other hand, the global knowledge approach is inappropriate since such information
typically requires Θ(N2) storage (representation of the topology graph) and subject
to frequent changes due to churn and other dynamic events.

The models and methods we considered provide tradeoffs between local and
global knowledge. The problem is often called the partial knowledge problem.
Typically, an effective solution to this problem requires that the local knowledge
extension is incremental and started from a base P2P protocol. The latter provides
default amount of local knowledge per node. If a node is interested it can append its
local knowledge with additional information. This extension, as previously, follows
some arrangement model to embed effective composition structure into the overall
system of many nodes.

As particular cases we considered the following extensions. HDHT architectures
is the evolution result of hierarchical routing schemes. Extended knowledge in
HDHT is structured with a layered topology structure, an excellent evidence of
the generic decomposition principle to prioritize potentially available knowledge.
The CR method supports a wide family of DHT routing protocols when nodes
can benefit from additional look-ahead information. Local cyclic structure is a
snapshot of what is happening beyond the neighbors. Diophantine routing provides
the theoretical framework for P2P routing in general. The framework allows
formulating particular models that compactly describe certain routes in the P2P
overlay, including routes that consists of multiple paths because of multipath
routing. Structural ranking is a generic method that a node can locally use for
ranking other nodes based on additional information about the network topology.
We considered cyclic ranking when this information is represented as a cyclic
structure, similarly to the CR method.



Part IV
Applications



Overview of Part IV

P2P algorithms are not just an academic exercise but found their use in many
Internet applications and enterprise-grade systems. In this book part, we describe
CR-Chord P2P protocol to address growing security concerns in the real-world.
We also introduce the Host Identity Indirection Infrastructure, a potential candidate
architecture for Future Internet that supports host mobility, multihoming, protection
against Denial-of-Service attacks and rendezvous service. Finally, we conclude this
part and the book with a chapter on P2P use in several real-world applications.

Chapter 11 presents extensions to Chord utilizing the Cyclic Routing approach
that enhances lookup routing in presence of malicious DHT nodes that drop packets.
Thanks to additional information collected from intermediate nodes, the sender node
is able to choose lookup paths that travel around suspicious DHT nodes.

Chapter 12 introduces an extension of Internet Indirection Infrastructure (i3) that
supports privacy-preserving host location and security association establishment. i3

is a distributed system that enables request routing using triggers and runs Chord
DHT internally. Hi3 adds a possibility for delegation of some processing from end
hosts to i3 servers that improves its scalability and attack resistance.

Chapter 13 describes several uses of P2P algorithms in popular Internet appli-
cations, such as BitTorrent and their proposed use in Future Internet architectures
such as host identifier and locator resolution with OpenDHT. We also introduce
several distributed systems that use P2P algorithms although are targeted for large-
scale commercial systems with higher reliability requirements and less dynamic
membership. These include Amazon’s Dynamo, Facebook’s Cassandra, Linked-in’s
Voldemort.



Chapter 11
CR-Chord

Abstract Without additional mechanisms conventional DHTs are vulnerable to
attacks. In particular, previous research showed that Chord is not well resistant to
malicious nodes that joined the DHT. This chapter describes the CR-Chord protocol,
our implementation of the cyclic routing algorithm. Using simulations we compare
the lookup availability of basic Chord and CR-Chord. The results suggest that
CR-Chord improves the lookup availability on the average by 1.4 times. When the
number of malicious nodes is small, such as 5%, CR-Chord has almost twice lower
lookup failure rate.

11.1 Introduction

The field1 of structured P2P systems has seen a fast growth and evolutions
upon introduction of first Distributed Hash Tables (DHTs) in the early 2000s.
The first proposals including Chord, Pastry, Tapestry were gradually improved
to cope with scalability, locality and security issues. Deployable as an overlay
on the application layer without the need to change the network infrastructure,
P2P approach has opened great opportunities for innovation for developers. By
utilizing the processing and bandwidth resources of end users, P2P approach enables
high performance of data distribution which is hard to achieve with traditional
client-server architectures. That enables commercial use of P2P systems such as
distributing updates to the World-of-Warcraft virtual world, where patches over
100 MB are applied simultaneously to all users using P2P technology. Many popular
social networks, such as Facebook, utilize the DHT internally to store tremendous
numbers of key-value pairs.

1Reprinted from Computer Networks, 55(13), B. Nechaev, D. Korzun, A. Gurtov, CR-Chord:
Improving Lookup Availability in the Presence of Malicious DHT Nodes, 2914–2928, Copyright
(2011), with permission from Elsevier. Some material is also applied in Chap. 8.

D. Korzun and A. Gurtov, Structured Peer-to-Peer Systems: Fundamentals of Hierarchical
Organization, Routing, Scaling, and Security, DOI 10.1007/978-1-4614-5483-0 11,
© Springer Science+Business Media New York 2013
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Now P2P computing is a fast research field with multiple conferences and
research groups in the area. The P2P computing is being actively utilized in
the Internet for software updates, P2PSIP VoIP, video-on-demand, and distributed
backups. Recent introduction of identifier-locator split proposal for Future Internet
architectures poses another important application for DHTs, namely mapping
between host permanent identity and changing IP address. The growing complexity
and scale of modern P2P systems requires introduction of hierarchy and intelligence
in routing of requests. Additionally, researchers proposed several anti-cheating
mechanisms to ensure fair resource distribution and avoid the “tragedy of com-
mons.” Popular P2P systems have been a subject of various attacks thus bringing
security and resilience issues to the front.

Nowadays Distributed Hash Tables (DHT) are a part of many peer-to-peer (P2P)
applications in the Internet. To mention a few examples, DHTs are used to track the
upload/download ratings in BitTorrent and resolve host identifiers to IP addresses
for Host Identity Protocol (HIP) [24]. Each DHT node maintains a routing table of
its neighbors containing node identifiers (IDs) and IP addresses. The main service
provided by DHTs is routing a lookup query for a certain key to a DHT node that
stores the value for that key.

As Internet applications increasingly depend on DHTs to operate, DHT should
be resilient to all kinds of attacks. One of the most dangerous scenarios is when
adversaries are able to become a part of DHT by joining as regular nodes. Then
attackers can corrupt, drop, or misroute lookup messages. In this study we limit
ourselves to dropped lookups only.

Let lookup failure rate be the probability that an arbitrary lookup is dropped.
Complementary, lookup availability is the probability that a lookup arrives at the
destination. Several techniques for improving lookup availability in the presence
of malicious nodes were proposed, including iterative routing and lookup progress
monitoring [28, 29], self-certifying data [3, 6, 26], routing failure tests and root
verification [3, 33]. In this chapter we apply cyclic routing (CR) [16] as a way to
enhance robustness of existing DHTs in the presence of malicious nodes. Our focus
is on integration of cyclic routing with Chord [30], one of the first and still most
popular DHTs. The resulting system is called CR-Chord. Note that [16] focuses on
generic CR properties, while this chapter advances [16] further by introducing and
evaluating a concrete design and its implementation.

In CR-Chord, a node maintains a collection of cycles additionally to its routing
(finger) table. A cycle is a path that starts from the node to its finger, then runs
through the network and returns to the node. Only IDs of cycle nodes, but not IP
addresses, are stored. Cycles present global knowledge about good paths in a DHT.
If there is a cycle containing a node close to the destination, the message is sent
along this cycle. Otherwise, Chord is used to select the next hop. We implemented
CR-Chord as an extension of the MIT Chord simulator. With extensive simulations,
we analyzed and compared the Chord and CR-Chord lookup availability. The results
suggest that CR-Chord improves the lookup availability by 1.4 times on the average.

The rest of the chapter is organized as follows. Section 11.2 provides background
on DHT security and defines the problem of dropped lookups. Section 11.3
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describes the CR-Chord protocol and estimates the load increase that CR-Chord
introduces. In Sect. 11.4, we define our simulation methodology. Section 11.5
explains the simulation results of CR-Chord vs. Chord. Section 11.6 compares
CR-Chord to existing work and discusses the most important findings.

11.2 Background and Motivation

Many DHTs and in particular the Chord DHT are not well resistant to dropped
lookups in the presence of malicious and faulty nodes. In this section, we consider
this problem and introduce the basics of the cyclic routing concept as a promising
remedy.

11.2.1 DHT Routing

Consider a DHT consisting of N nodes. Node IDs are assigned from an identifier
space with a distance metric. Each node s maintains a routing table Ts of entries
(u, IPu), where u is a neighbor and IPu is its IP address. Hence, s forwards
messages to u via the underlying IP network. A message to a destination node d
goes sequentially to nodes whose IDs are progressively closer to d according to the
distance metric. If v∈ Ts then s can forward a message to v forming the one-hop path
s→ v. Routing from s to d takes several hops forming a multi-hop path s→+ d.

DHT routing is divided onto global and local parts. In global routing, a message
is delivered close to the destination. In local routing, the destination is at a nearby
node. The reasons for division are as follows. (a) Since a node is responsible for
the keys closest to its ID, let a lookup message arrive to a node close to the key.
(b) Various replication techniques support routing into an area of neighboring nodes.
(c) A DHT node knows its neighborhood well, keeping close nodes to its routing
table when possible. Obviously, global routing is more vulnerable to attacks.

DHT routing is either iterative or recursive. With iterative routing each node
on the lookup path returns the next-hop node v to the querying node. The latter
then contacts v to get iteratively closer to the destination. With recursive routing,
each node forwards lookups directly to the next hop nodes, and the querying node
receives a response from the destination. Iterative routing is more secure since
a querying node can control the routing progress. Nevertheless, more network
resources are consumed, and iterative routing is not possible when a querying node
cannot directly contact some nodes on the path, e.g., due to NATs. In this study, we
consider recursive routing only.

The lookup availability depends on the number of alternative paths between a
source and destination [21, 27, 29]. The more paths, the more chances to go around
malicious nodes. However, a mechanism for finding paths consisting of good nodes
is needed. The straightforward approach exploits multi-path routing when nodes
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multicast messages to several neighbors [3, 14, 19, 37]. It has two disadvantages.
First, a lot of duplicate messages are generated; many of them are redundant due to
the local route selection (non-optimal). Second, paths converge in some DHTs [13,
27, 37], and bypassing malicious nodes becomes impossible.

11.2.2 Chord

Chord [30] uses an identifier circular space of n-bit integers, and participating nodes
form a ring taking IDs from [0,2n− 1]. A node forwards messages in clockwise
direction. The distance ρ(u,w) is length of the clockwise ring arc between u and w,
see Fig. 11.1a. Key k is assigned to the first node whose ID is equal or follows k
clockwise.

A Chord routing table for a node s consists of three types of neighbors:
(1) successors, (2) fingers, and (3) predecessors. Successors and predecessors are
several closest nodes to s, clockwise and counterclockwise, respectively. Successors
are node’s short-distance contacts aiming at local routing. The ith finger of s is the
node that succeeds s by at least 2i−1 on the ring, where i = 1,2, . . . ,n. For i = 1, the
finger is the immediate successor. In a sparse network, several first and last fingers
coincide typically with some successors and predecessors, respectively. Fingers are
node’s long-distance contacts aiming at global routing. Predecessors are mainly for
routing table maintenance.

In a lookup for a key k, each node finds the closest preceding neighbor v. When v
is a finger, each hop at least halves the distance. Eventually, a lookup arrives at the
node whose immediate successor is responsible for k.

Basic Chord restricts a finger table to n entries. They are updated systematically.
More efficient routing is achieved when a node can keep additional fingers having
more knowledge about the network [20]. Let naf denote the number of additional
fingers. When Chord occasionally discovers a node, it is inserted as an additional
finger. Periodically, Chord removes fingers that have not been used.
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11.2.3 Attacks by Dropping Lookups

In attacks on routing a malicious node drops messages, modifies them, or forwards
incorrectly. We consider only the case of dropped lookups. Such a lookup fails to
reach the destination, and no response is sent.

Dropped lookups concern routing security as well as fault-tolerance. In recursive
routing detection of lookup failures is more difficult than in iterative case. Dropped
lookups are harder to reveal compared to incorrect lookups; a querying node has no
response, and the lookup validity cannot be checked. In fact, only straightforward
timeout techniques detect such failures.

Multicast mitigates dropped lookups. Instead of the only next-hop, a node uses
several neighbors to forward a message (several alternate paths). The efficiency,
however, depends on the number of disjointed paths m [29]:

f m ≤ Pr(lookup failure)≤
(

1− (1− f )l
)m

, (11.1)

where f is the fraction of malicious nodes (uniform distribution), l is the number
of hops in a lookup. Equation (11.1) is valid for any DHT, but Chord is more
sensitive than many others. Its finger selection is restrictive, and the ith finger
must immediately succeed s+ 2i−1. This is avoided in randomized-Chord [13, 36],
where the ith finger is taken randomly from [s+ 2i−1,s+ 2i). Moreover, introducing
additional fingers allows s to know several neighbors in [s+ 2i−1,s+ 2i).

In Chord, any path s →+ d goes through p, the d’s immediate predecessor
[27, 29], defining the so called shield problem. Although Chord has alternative
paths s→+ p→ d, they are not disjointed, and p becomes a single point of failure
for all lookups to d. Therefore, Chord satisfies (11.1) only for m = 1, and the lower
bound can be refined (valid for N ≥ 16) [27]:

1− (1− f )2 ≤ Pr(lookup failure)≤ 1− (1− f )l. (11.2)

Multicast helps even when there are no disjointed paths. However, the problem
is in finding a good path among available. DHT routing works locally, and a node
just selects several next hops without much knowledge about the remaining paths.
In this chapter, we offer a more systematic way that uses the results of previous
lookups. Having a path that a successful lookup followed lately, a node uses it for
subsequent lookups.

With global routing each hop typically halves the distance, ρ(v j−1,d) ≈
2ρ(v j,d) in s→ v1 → ··· → v j−1 → v j → ··· → vl−1 → d. That is, the distance
decreases geometrically (ρ(s,d) = δ , δ/2, . . . , δ/2 j, . . . ) while the number of
remaining hops decreases linearly (l, l − 1, . . . , l − j, . . . ). With the uniform
distribution of nodes, there are twice as little nodes in an interval (v j,d) than in
(v j−1,d), and good and malicious nodes decrease equally. Nevertheless, attacks on
ID assignment and routing tables can make the malicious node population slower
decreasing from (v j−1,d) to (v j,d) than of good nodes. Then at each hop the
probability of failure becomes higher, and the lookups failure rate is worse than
dictated by the above bounds.
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Algorithm 2 Cyclic routing a message to a node d.
Require: Message p arrives at u �= d.

The node u maintains Tu and Cu.

Find c ∈ Cu such that
c =
(
u→ v1→+ d̃→+ u

)
where d̃ is close to d;

if c is found then
Let the next-hop node v be v1;

else
Find the next-hop node v ∈ Tu according to the underlying DHT;

end if
Forward p to v;

These problems are likely to happen in a real environment, and they motivate
our study on improving Chord security. Our solution exploits the concept of cyclic
routing.

11.2.4 Cyclic Routing (CR)

Formal background of CR is introduced in [16] and Chap. 8. Let a node s send a
message to a node d (s→+ d). Then d replies to s (d→+ s), see Fig. 11.1b. The
paths form the cycle s→+ d →+ s. Taking intermediate nodes, c =

(
s→ v1 →+

v2→+ · · · →+ vl−1→+ s
)
, where v1 ∈ Ts. Nodes v1, . . . , vl−1 may represent some

but not all the nodes visited.
Let each node s maintain a collection of cycles additionally to its routing table Ts,

Cs = {c1, . . . ,cq}, where c j = (s→ v j,1→+ · · · →+ v j,l−1→ s) for j = 1, . . . ,q. The
collection Cs is a network cyclic structure known to s. In Algorithm 2, each node u
of s→+ d can construct the remaining route using Cu when appropriate. Otherwise,
the underlying DHT is called to find the next-hop node.

A simple reactive strategy is used for constructing cycles. When receiving a
successful lookup response, s keeps the cycle if it is efficient (e.g., a low number
of hops). The underlying DHT facilities are used more optimally; only good and
efficient paths are collected among available ones. Note, however, that the strategy
should be considered as a catalyst; it fails when the underlying DHT cannot produce
good paths, and another way for constructing cycles is needed.

11.3 Integration of Cyclic Routing with Chord

Algorithm 2 works on top of any DHT. We adapt cyclic routing to the Chord DHT.
The resulting system is called CR-Chord and follows Algorithm 3. In general, CR
aims at routing a packet p from a source node s to a destination node d. In Chord,
u usually does not know d’s ID since most lookups are done to documents, and the
goal is to route p to such d that stores the requested document knowing only the
document key.
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Algorithm 3 The CR-Chord pseudocode.
Require: A node u receives a lookup packet p for a key k.

Let (v1, . . . vmd ) be the closest to k fingers in Tu

if u = s then
Send secondary lookups to (v1, . . . vmd ) {Multicast}

end if
Let cp be a cycle piggybacked in p (if any)
cp = BestCycle(Cu ∪{cp},k)
vcycle = NextCycleHop(cp ,k)
if vcycle �=∅ then

Piggyback cp into p
Send p to vcycle {Forward along the cycle}

else
Send p to v1 {Forward via the underlying Chord}

end if
BestCycle(C ,k)

Find c in C such that
CycleDist(c,k) is minimal and CycleDist(c,k) < ∞

return c if found, and ∅ otherwise
NextCycleHop(c,k)

Find in c the closest node v to k such that
v ∈ Tu and ρ(v,k)< ρ(u,k)

return v if found, and ∅ otherwise
CycleDist(c,k)

Find in c the closest node d̃ to k such that ρ(d̃,k)< ρ(u,k)
return ρ(d̃,k) if found, and ∞ otherwise

Nodes maintain cyclic structures exploiting regular Chord lookups. Let s initiate
a lookup for a key k. The lookup arrives to the destination d according to Chord
routing. Then d acknowledges to s. Nodes of s→+ d→+ s form a candidate cycle c
for Cs.

There are two types of lookup messages in CR-Chord, primary and secondary.
Primary lookups may exploit cycles. Secondary lookups are used for constructing
cycles and do not use cycles. Both lookup types allow finding requested documents.
A source sends a primary lookup and multicasts secondary lookups with the
multicast degree md. Thus, a primary lookup is duplicated with md Chord-based
ones. Since at every node cyclic routing is not applied to secondary lookups, cycles
reflect good paths available in a regular Chord network.

Although the lookup success is our primary goal, CR-Chord remains efficient by
storing only those cycles that satisfy the performance criterion. Let l be the number
of hops in c and fs be the number of fingers at s. Then c is stored when

l ≤ kh min( fs,n), (11.3)

where min( f ,n) approximates log2 N (the mean number of hops in a Chord cyclic
path s→+ d →+ s), kh is a tradeoff parameter between performance and security.
In our simulations, we allow kh = 2 for bypassing malicious nodes.
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Let fc be the number of fingers in c. Then c is stored when

fc ≤ kcl, (11.4)

where kc defines an upper bound to the number of “local” nodes that a cycle
includes. The fewer such nodes in a cycle the more global network info the cycle
contains—the network coverage criterion. In our simulations we use kc = 1/2.

At each routing step, a node u selects a next-hop v to forward p. There are three
options. (1) A cycle cp piggybacked at p is used. (2) A better cycle is available in
Cu. (3) None of cycles in Cu ∪{cp} is appropriate, and the Chord-provided choice
is used.

In Algorithm 3, u calls BestCycle to decide either to use the previously fixed
cycle cp or there is a better cycle in Cu. The criterion is the closeness according to
the Chord distance ρ (see CycleDist). If a cycle contains a node d̃ that is closer to k
than u, then the cycle is appropriate. Also a cycle must have at least one node ṽ such
that ṽ ∈ Tu. Therefore, u searches for the best cycle among appropriate ones. When
no appropriate cycle exists, u performs regular Chord forwarding. Otherwise, u finds
in cp the finger vcycle that is closest to k, piggybacks cp into p, and forwards p.

A cycle piggybacked into a packet does not consume much space. Chord node
ID is 160-bit long (20 bytes). In a Chord network of N = 106 nodes, the mean cycle
length l does not exceed 20 hops, which results in 400 bytes-long cycles (n= 20 bits
in ID). IP packets with a typical Maximum Transmission Unit of 1,500 bytes can
easily include such a cycle. The number of cycle nodes piggybacked into a packet
can be reduced by storing not a full cycle, but a contiguous subset of its nodes.
After a lookup traverses all these nodes, according to Algorithm 3 it will follow the
regular Chord algorithm until it finds a new cycle or reaches the destination.

The storage space consumed by cycles at a node can be approximated by lb|C |
where lb is the cycle length in bytes and |C | is the number of cycles per node.
As discussed above, lb ≈ 400 bytes is enough in a network of 106 nodes. In our
experiments (see Sect. 11.5.3 and Figs. 11.11–11.13), we have |C | ≈ 60 in the worst
case of various scenarios. Thus 400×60= 24,000 bytes or about 24 KB are needed
to store cycles. We consider this to be negligible for modern computers.

The same node may appear in different cycles, and efficient data structures can be
applied to store the cyclic structure, e.g., a digraph (a local representation of known
network topology). Hence O(Nu) space instead of O(l|Cu|) is needed at u, where Nu

is the number of nodes whose IDs u knows. Note that u controls Nu independently
on other nodes and may vary from Nu = 0 (no CR) to Nu = N (total knowledge
about the network) according to locally available capacity. Moreover in practice,
the maintenance cost for node IDs is less than for fingers since the former (1) does
not involve expensive IP address maintenance and (2) uses piggybacking to regular
lookups.

The processing time at u is mostly determined by BestCycle(Cu,k) depending
on the data structure that implements Cu. First, finding the closest node to k takes
time O(l|Cu|) or O(Nu). The efficiency can be improved by standard searching
optimization technique like indexing. Second, finding the cycle c and the next hop v
takes time O(l).
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11.4 Simulation Methodology

The only security parameter, the fraction of malicious nodes 0≤ f < 1, is used. For
readability we express f also as percentage. Although the model is simple it allows
comparing key properties of the lookup availability in Chord and CR-Chord.

11.4.1 Attack Model

Let M = f N be the number of malicious nodes. Then G = N−M is the number of
good nodes. Malicious and good nodes are distributed uniformly in the Chord ring.

Malicious nodes attack the network by dropping lookups. Since such a node
pretends to be good as much as possible, we assume that it processes correctly all
routing maintenance traffic. Otherwise, its malicious activity can be detected easier,
and we do not consider this case here. To some degree this behavior is similar to
a faulty or overloaded node; its malicious but imperceptible activity includes the
following.

1. Dropping lookup and acknowledgment messages (no forwarding).
2. Processing data placement requests as a good node but no real data are stored.
3. Ignoring lookup requests for data items for which the node is responsible.

Note that a malicious node can perform this activity only with a certain probability
p. However, such a case is similar to the previous one with the fraction f ′ = f p.
Without loss of generality we also assume that malicious nodes do not send lookup
requests.

We assume that the network has reached a stable state where data items are
distributed uniformly among nodes. If any data happen to be at a malicious node
then the data are lost. There are no more data insertion and deletion. Routing
maintenance goes as if all nodes are good. In this stable state the network provides
the lookup service for data by keys. A random good node u queries a lookup for
a given key k. Assuming that u selects k uniformly, the lookup failure and success
rates characterize the availability of the lookup service.

11.4.2 Simulation Scheme

Our simulation of a Chord network with malicious nodes follows Algorithm 4.
We used the MIT original Chord simulator (http://cvs.pdos.csail.mit.edu/cvs/
sfsnet/simulator/) for networks with N = 1,000,2,000,3,000 and IDs with n = 24.
The simulator implements the basic Chord [30]; the ith finger of s is the first node
in [s+ 2i−1,s+ 2i) for i = 1,2, . . . ,n. The randomized-Chord [13, 36] would lead
to better results for CR-Chord since nodes have more freedom in selecting fingers,
and more good paths are available.

http://cvs.pdos.csail.mit.edu/cvs/sfsnet/simulator/
http://cvs.pdos.csail.mit.edu/cvs/sfsnet/simulator/
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Algorithm 4 Simulation steps
1. Initially a good network. A network of G good nodes is constructed. Nodes are joining

randomly.
2. Data placement. D data items are distributed in a good network. In all simulations D = 100N

assuming that the mean number of data items per node does not affect much the lookup
availability.

3. Introducing malicious nodes. M malicious nodes join the network at the same time. Some data
items are lost since each malicious node becomes responsible for a certain part (arc) of the
Chord ring.

4. Serving lookups. L requests are performed. For a request a pair (u,k) is selected randomly,
where u is a good node and k is the key for a data item stored at step 2. There are two phases,
Stabilization and Analysis, L = Lstab +Lrate requests.
Stabilization (for CR-Chord only). Good nodes initiate Lstab requests without multicast.
The requests are used for constructing cycles but they are not counted in the lookup availability
estimation.
Analysis. Good nodes initiate Lrate = 0.01N2 requests. They are analyzed for the success
or failure. In CR-Chord, a request induces one primary lookup and md secondary lookups.
In Scenario 7, churn of both good and malicious nodes is performed during this phase.

We enhanced the MIT simulator with CR-Chord implementation (see Algorithm
3 above). In current version, the size |Cu| is unbounded and no maintenance for
cycles is implemented. It does not, however, affect the results much. First, the attack
model assumes a stable network. Second, the number of cycles constructed per node
is moderate or even small for large M (see Figs. 11.11–11.13).

Variation of N provides a more adequate analysis of the lookup availability [27].
For every value of N, the fraction of malicious nodes f varies from 5% or 10% up to
50%; the incremental step is either 5 or 10. When varying N, parameters D (Step 2)
and Lrate (Step 4) are proportional to N and N2, respectively. Table 11.1 summarizes
our simulation scenarios. Each scenario consists of two parts, for Chord and CR-
Chord, respectively. Each part takes ten executions of Algorithm 4 for statistical
averaging.

11.4.3 Churn Model

To assess the CR-Chord behavior in a dynamic environment we introduce churn.
In simulations, nodes join and leave the network at a constant rate R. At the same
time good nodes generate lookup requests. The ratio of good and malicious nodes
joining network (parameter f ) is preserved constant; each join event is accompanied
by a leave event. Thus during churn total number of nodes in the network and
fraction of malicious nodes on average remain constant for the whole simulation.

This churn model comprises only dynamics of nodes, not documents. The latter
are inserted before churn starts. During churn, documents are moved to appropriate
nodes. When a node joins the network it acquires from its successor all the
documents it becomes responsible for. When a node, either good or malicious,
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leaves the network it hands over all its documents to the successor. For simplicity
we omit a more realistic model where documents stored at malicious nodes are
lost completely. To masquerade their activity malicious nodes also perform these
operations.

According to [30] the churn rate R is the number of joins/leaves per second.
We vary churn rate from 0.01 to 0.2. Note that in our simulations lookups are
generated with interval of 1 s and stabilization of nodes is done every 30 s on
average. Thus, for boundary values of R each churn event is performed after
every 100 and 5 lookups respectively. Such rates are consistent with the previous
studies. In [25] a node generates a lookup every 0.1 s, while churn events occur
at the rate of 0.067 to 8 per second, which corresponds to a churn event happening
every 150 to 1.25 lookups. In [30] for the same lookup generation rate as ours, churn
rate varies from 0.05 to 0.4, which is equivalent to 20 and 2.5 lookups between two
churn events.

11.4.4 Success and Failure Types

A request for a key includes a primary lookup and md secondary lookups. Either
of the lookups or both of them can succeed by reaching the responsible node.
To find out the share of each we compute detailed successes and failures metrics,
see Table 11.2 for Scenario 1, which is most typical in our simulations.

We distinguish three success cases:

1. Only primary lookup succeeds, all secondary lookups fail (Primary lookups
success).

2. At least one of secondary lookups succeeds, primary lookup fails (Multicast
lookups success).

3. Both primary and at least one of secondary lookups succeed (Joint success).

The total success rate (Successful requests) is the sum of the above values. Note that
only one (first reached) successful secondary lookup contributes to the success rate
regardless of the other md− 1 secondary lookups.

The metrics below show how actively successful primary lookups (Primary
lookups success) use cycles:

1. A successful primary lookup cycle was first inserted at the initiator node
(Initiator cycle success).

2. A successful primary lookup’s cycle was first inserted at an intermediate node
(Intermediate cycle success).

3. A successful primary lookup does not contain a cycle (No cycle success).

Besides success metrics we estimate primary lookup failure rates (Primary
lookups failure):
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1. The responsible node d is malicious (Primary lookups failure at responsible
node).

2. The predecessor node of a key k is malicious (Primary lookups failure at
predecessor).

3. A primary lookup failed at an intermediate node (Primary lookups failure in the
middle).

There are also two primary lookup failure types that are solely due to churn and
are relevant only for Scenario 7:

1. A document cannot be found at the responsible node due to churn (Primary
lookup document churn failures).

2. A primary lookup failed along the route due to churn (Primary lookup routing
churn failures).

A primary lookup document churn failure happens when the lookup arrives at
the predecessor after the successor leaves the network, but before predecessor is
notified about that. Similarly, when a new node joined between the predecessor and
former successor, but the Chord stabilization is not completed.

There is no timeout mechanism to retransmit lost packets. It leads to the primary
lookup routing churn failures. At each moment a node has a number of requests to
forward. If the node leaves the network, all unsent requests are lost. Sender node
does not know that its request was lost and since there is no retransmission, we can
count it a lookup failure. Similarly, a primary lookup can fail along the route due to
churn since nodes do not ping fingers before forwarding. In this case a lookup can
be forwarded to a node that is already not a part of the network. Eventually such
a finger will be removed from the finger table by the stabilization procedure, but
before this sending a packet to it will result in a routing churn failure.

11.5 Analysis of Lookup Availability

Table 11.2 presents its key metrics for Scenario 1. Other scenarios are focused on
particular aspects of lookup availability. Instead of lookup availability we sometimes
equivalently prefer an opposite metric, the lookup failure rate. The lower bound of
Chord lookup failure rate is defined in (11.2). Standard statistical averaging is used
for computing typical values.

11.5.1 Basic Facts

Figure 11.2 confirms [27, 29] that Chord is not well resistant to the presence of
malicious nodes. The lookup failure rate exceeds the lower bound significantly. The
peak is for moderate malicious cases (20%≤ f ≤ 35%). For f = 10%,20%, . . . ,50%
the lookup availability is 32% on average.
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Let Schord( f ,R) and Fchord( f ,R) = L− Schord( f ,R) be counters of successful and
failed lookups for Chord. Similarly, Scr( f ,R) and Fcr( f ,R) = L− Scr( f ,R) are for
CR-Chord.

Table 11.3 partially overlaps with Table 11.2 in showing absolute success and
failure values, but also includes relative lookup success improvement and relative
lookup failure reduction offered by CR-Chord as well as performance under churn.

The relative lookup success improvement and relative lookup failure reduction,

Δ(S) =
Scr− Schord

Schord
and Δ(F) =

Fchord−Fcr

Fchord
,

are also given. In these relative estimates, Chord is the base.
Two cases—with churn (R = 0.2) and without churn (R = 0)—are considered.

The effect of churn is estimated with the relative variation

Δc(x) =
x( f ,0)− x( f ,0.2)

x( f ,0)
for x = S,F,

where R = 0 is the base.
Both in Chord and CR-Chord, the lookup success (failure) rate decreases

(increases) with more malicious nodes and churn. CR-Chord always has better val-
ues for these rates. Interestingly that CR-Chord under churn (R = 0.2) outperforms
Chord in stable networks (R = 0).

When the fraction of malicious nodes is small (5–10%) the CR-Chord lookup
failure rate is almost twice lower. When the fraction of malicious nodes is large
(40–50%) the CR-Chord lookup success rate is about twice higher.

Churn affects the CR-Chord lookup availability less than the one of Chord.
In particular, Δc(Schord) > Δc(Scr) for all fractions of malicious nodes, and
Δc(Schord)/Δc(Scr) ≈ 2 on the average. In terms of the lookup failure rate,
Δc(Fchord) becomes slightly lower than Δc(Fcr) only for large f . On average,
Δc(Fchord)/Δc(Fcr)≈ 1.5.
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The CR-Chord lookup failure rate is lower. For f = 5% it is 1.77 times less than
for Chord (10.4% and 18.4% respectively). In contrast to Chord, the difference with
the lower bound monotonically grows when increasing f . The lookup availability of
CR-Chord is 45% on average. Comparing with basic Chord, CR-Chord has 7–16%
better absolute lookup availability; the best result is for moderate malicious cases.
On average CR-Chord performs 1.4 times better; the absolute effect is 13%. For
50% of malicious nodes lookup availability of Chord and CR-Chord is 8.1% and
15.2% respectively; thus for big values of f lookup availability is almost doubled.

A lookup fails either at a responsible node, at its immediate predecessor, or
in the middle of the route. Figure 11.3 demonstrates share of lookups that failed
at these locations among all lookups. While CR-Chord has more lookup failures
en route than Chord for all f , the picture is opposite for failures at shield and
destination nodes. This suggests that CR-Chord makes it easier for lookups to
bypass malicious nodes along the route. Another interesting phenomenon is that
share of responsible+predecessor nodes falls for high f . This is explained by more
failures at middle nodes—with growth of f it gets harder for packets to reach last
two nodes and fail there.

According to the widespread opinion the shield problem is most essential for
Chord lookup availability. Figure 11.3 and the last rows in Table 11.2 show,
however, that failures in the middle constitute a comparable part or even bigger
part. It means that a solution to the shield problem does not necessarily lead to high
lookup availability.

In fact, the shield problem relates to local routing but failures in the middle affect
global routing. CR-Chord has more failures at responsible nodes and immediate
predecessors than Chord (average value of absolute difference is 3%) because of
reducing failures in the middle (average absolute difference is 7%). Consequently,
CR-Chord optimizes global routing.

Scenario 2 provides further clarification. Any request satisfies two extra require-
ments: (1) it is for data stored at a good node and (2) its immediate predecessor
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is also good. The scenario focuses on global routing since all lookups can fail
only in the middle. Figure 11.4 shows the results; Scenario 1 is for comparison.
Chord suffers much from failures in the middle. In contrast, CR-Chord reduces such
failures up to three to four times.

Most failures in Chord happen at the few first hops, see Fig. 11.5a–c (all failed
lookups are 100%). CR-Chord routes better around malicious nodes, and less
failures happen at the beginning. The trend is seen for all f even despite the fact
that for high fractions of malicious nodes it gets easier for lookups to hit a malicious
node, which explains the shift of failures to smaller number of hops as f increases.
This is yet another confirmation of optimized global routing in CR-Chord.

11.5.2 Variations

Previous research showed that lookup availability varies depending on the network
size [27]. To validate how this affects CR-Chord we ran scenario 3 simulations that
estimate lookup availability for different values of N (Fig. 11.6). Clearly, growing N
increases the number of hops in lookups, and the lookup failure rate becomes higher
(see also (11.1)). However since CR-Chord improves global routing, the effect of
higher number of hops is mitigated by the use of cycles. This is proved by lookup
availability ratio. For N = 3,000 the lookup availability of Chord and CR-Chord is
25% and 39% respectively. Thus CR-Chord performs 1.56 times better than Chord,
while for N = 1,000 if does only 1.4 times better. The failure rate seems to grow
sublinearly, and the reason is O(logN)-paths.

Scenario 4 focuses on the effect of additional fingers (Fig. 11.7). Increasing naf

converges the failure rate to the lower bound. However, introducing too many fingers
does not help much; doubling naf improves the failure rate only by a constant.
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Scenario 5 aims at improving the lookup availability by multicast (Fig. 11.8).
Basic Chord does not support multicast (md = 0). In CR-Chord, increasing md

converges the failure rate to the lower bound (as with additional fingers). The small
multicast degree (md = 3) reduces the failure rate significantly. Further increasing
does not affect much.

Scenario 6 considers the effect of stabilization period (for CR-Chord only).
Intuitively, with larger Lstab more cycles are collected before the actual measure-
ment, and better values are estimated for the lookup availability. Actually, this
dependence is negligible since the average difference in lookup availability is about
0.1% of Lrate. Hence Lstab = 0 is used in other simulation scenarios. Moreover, it is
an indicator of good dynamic properties of CR-Chord since only a short stabilization
period is required to adopt cycles to the current network state.

Scenario 7 analyzes dynamic properties of CR-Chord under churn. Figure 11.9
shows that Chord is weakly resistant to the high churn rate R = 0.2. In Sect. 11.4.4
we explained two churn-related failure types. Churn-related losses along the route
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are much more prevalent than inability to find target document. For example, for
R = 0.2 and f = 10% Chord has only 35 document failures but 2,077 along-the-
route loss failures for the total of 10,000 requests.

CR-Chord helps to mitigate the negative effect of churn. The mean difference in
number of lookup failures among R = 0 and R = 0.2 is lower for CR-Chord than for
Chord. CR-Chord has less loss along the route. This is yet another confirmation that
CR-Chord improves global routing. For moderate churn rates CR-Chord has lookup
availability very close to that shown by simulations without churn, which proves its
good dynamic properties.

11.5.3 Analysis of Cycles

Cyclic routing allows transitions when a node changes the cycle obtained previously.
Figure 11.10 shows the cycle usage in lookups. Many successful lookups follow one
or two cycles only; the number of lookups with more cycles is essentially less. It
validates that CR is stable to changing a cycle, and previous cycle is likely to be
preserved.

There are lookups without cycles (Figs. 11.11–11.13) when nodes cannot find
appropriate cycles because of the small number of cycles at a node for large
f . Additional fingers (Fig. 11.11) and multicast (Fig. 11.12) do not help much
in constructing cycles. Additional fingers increase the number of cycles almost
uniformly for all f while the multicast efficiency decreases for large f . Churn
has negative effect since some cycles become incorrect (Fig. 11.13). A more
sophisticated cycle construction is needed in this case.

Figure 11.14 is similar to Fig. 11.10, but also shows the share of lookup failures
due to churn. The share of churn failures is mostly independent of f . Though as f
grows, malicious failures start vastly prevailing over churn failures, which suggests
that it is more important to mitigate malicious presence in the network than churn.
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CR-Chord lookup hops are either along cycles or use regular Chord. Figure 11.15
shows the cycle hops share in successful lookups. For instance, for f = 10% about
16% of lookups use cycles for 21% . . .30% of hops. There are no successful lookups
with 1% . . .10% cycle share of hops.

Many successful lookups do not use cycles. In particular, their share is 45%,
58% and 70% for f = 10%,20%,30% respectively (not shown in Fig. 11.15).
Nevertheless, when there are enough cycles available the essential part of a
successful lookup is due to cycles. Thus the problem is in cycle construction, not
in CR.

In Scenario 3 we studied how varying number of nodes in the network affects
average cycle length in number of hops (Fig. 11.16). For small f cycle length varies
as expected—logarithmically in respect to N. This also implies that embedding
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cycles into packets routed in the network is feasible even for high N, since cycle
length doesn’t grow linearly in respect to number of nodes. Average cycle length
falls as we increase f since it gets increasingly harder to construct long cycles.

Besides the hop count, the lookup length can be measured with Chord distance.
The simulation (Scenario 1) identifies two extreme cases. Either a successful lookup
does not use cycles, or 91% . . .100% of its distance is along cycles (41%, 30% and
19% for f = 10%,20%,30% respectively).

Our experiments also assess the number of cycles per node for various scenarios.
In particular, Fig. 11.12 shows that the highest number of cycles is 60 for 10% of
malicious nodes and md = 10. Note that such a value is enough for the reasonable
improvement of lookup availability while it keeps the increase in storage and
processing time moderate at node (see Sect. 11.3).
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11.6 Related Work, Comparison, and Discussion

There has been a substantial amount of work on various approaches to enhance
the basic Chord routing mechanism. In this section, we discuss these approaches in
comparison with CR-Chord and show that most of them can complement our design.
Table 11.4 summarizes some relevant solutions proposed in the literature. Inspection
of the whole lookup path (cycle) is one of the main CR-Chord features; it is present
in neither of the listed approaches, and thus we skip it in the key differences column.

Leong et al. [19] parallelize Chord lookups with reactive routing state manage-
ment (EpiChord). CR-Chord similarly exploits multi-path routing; cycles mainte-
nance is reactive, amortizing the cost into regular lookups. EpiChord, however, uses
iterative routing that suffers when connectivity is non-transitive [10] or other IP-
level reachability restrictions happen [16]. In contrast to CR-Chord, the EpiChord
next hop selection and similar multicast schemes do not analyze the rest of paths in
route selection.

EpiChord exploits the approach of large routing tables when a node maintains
a lot of neighbors and lookups consist of few hops. Tang et al. [31] compare
DHTs with O(1) to O(N) routing tables. Extreme cases are [31] 1h-Calot (one
hop routing) and 2h-Calot (two-hop routing) with O(N) and O(

√
N) routing tables,

correspondingly.
IP connectivity problems can prevent keeping some neighbors in a routing table

(as it also happens in iterative lookups). Moreover, nodes of low capacity cannot
store all or even O(

√
N) nodes. EpiChord [19] and Accordion [20] utilize a flexible

approach when a node independently varies the state between O(logN) and O(N).
CR-Chord also allows varying the number of additional fingers. In contrast, even
if a node u fails to insert a finger v (no direct IP contact, e.g., v does not trust u),
u can still progress further and make more knowledge via cycles to cache indirect
contacts.

In a dynamic environment a large routing table needs much traffic for keeping
neighbors up-to-date. IP addresses change more frequently than node IDs, e.g., for
mobile hosts. If nodes probe their neighbors periodically (proactive strategy), then
high IP traffic is generated (many ping packets). Even if nodes use overlay multicast
of regular lookups (reactive strategy) instead of IP probing, the IP change rate can
be too high, and routing tables contain many neighbors with incorrect IP addresses.

CR-Chord does not focus on increasing the number of neighbors; a node makes
more knowledge keeping non-neighboring nodes in cycles. No IP address is stored
for such nodes, hence no IP probing is needed. Although availability checks use
existing lookups with multi-path routing, CR is less sensitive to the dynamic level:
even if one or more nodes in a cycle become unavailable, other nodes are still
servable.

DHT nodes can optimize lookups and its availability by careful selection of
neighbors. Chiola et al. [4] reduce the Chord number of hops and lookup availability
by optimizing fingers based on Fibonacci distances (F-Chord). Kunzmann and
Schollmeier [18] propose a scheme that extends a routing table with additional
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fingers without causing additional traffic (existing maintenance requests are
used). In randomized Chord [13], a node u takes its ith finger randomly in
[u+ 2i−1,u+ 2i), decreasing in result the fraction of failed lookups (by 29% in
the Gnutella trace [12]). The proximity neighbor selection scheme (PNS) [13]
allows reducing the lookup latency; concrete Chord extensions include bidirectional
latency-sensitive Chord [32], LLChord [15],2 and topology matching [8]. All these
approaches also apply to CR-Chord since it does not fix a strategy of neighbor
selection.

Experimental study of various neighbor selection strategies under churn can be
found in [12]. Another analysis of the Chord performance under churn is given
in [34]. Among other results authors derive a closed-form analytic expression for
performance of lookup parallelism. Their approach can be used to select an efficient
value of multicast degree for CR-Chord.

Fiat et al. [9] propose S-Chord,3 aiming at robustness to Byzantine join attacks
when a large number of malicious nodes can join the network. The number of
malicious nodes is assumed to be no more than 1/4 of all peers, while in CR-Chord
we considered the fraction up to 1/2. For robustness S-Chord relies on the concept of
swarms that are sets of adjacent nodes; it is very similar to our idea of local routing.
S-Chord requires each node to store O(log2(N)) fingers. The number of messages
sent is also increased: during a lookup operation to Θ(log2(N)) and during a node
join to Θ(log3(N)). Note that [9] lacks extensive experimentation, and we cannot
compare its efficiency with CR-Chord numerically.

Seedorf and Muus [27] look at the analytical and simulation methodology to
study the Chord lookup availability and the shield problem. They also experiment
with zig-zag routing [7] for diminishing Sybil attacks. The algorithm alternates basic
Chord routing and trust diversity routing (in the bootstrap graph that describes
which node introduced which to the network), hence balancing distance progress
and social properties. Our simulation model is close to [27] but we capture more
factors, including additional fingers, multi-path routing, and churn. The absolute
gain in availability for CR-Chord is 7–16% compared to at most by 6% for zig-zag
routing (10%≤ f ≤ 50%).

Artigas et al. [1] propose an elegant method—a binary-equivalence relationship
makes each node available via n different predecessors. It fortifies Chord routing
to deal with the shield problem and to defend against data-forwarding attacks.
Bidirectional variants of Chord diminish the shield problem allowing to contact a
destination both clockwise and anticlockwise, e.g. S-Chord [23],4 RChord [35],5

and Bidirectional Chord [32]. Theoretical analysis of Chord bidirectional schemes
and their optimal values are studied in [11]. Ktari et al. [17] combine bidirectional
routing with an altered finger selection procedure that allows to create supernodes

2In LLChord the abbreviation “LL” stands for “low latency.”
3In Fiat’s et al. S-Chord the abbreviation “S” stands for “secure routing.”
4In Mesaros’s S-Chord the abbreviation “S” stands for “routing symmetry.”
5In RChord the abbreviation “R” stands for “with reverse edges.”
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with a large number of fingers following a power law. These techniques tend to
reduce the path hop length even in presence of malicious nodes, since there are
more paths for bypassing malicious nodes. In turn, the lookup availability is higher.
CR-Chord can adapt these techniques since they improve local routing and provide
more good paths for global routing.

Manku et al. [22] show that neighbor-of-neighbor (NoN) routing (one step
lookahead to the rest of path) optimizes the path hop length in some networks.
Evaluation of NoN-routing for Chord networks can be found in [2, 5]. In fact, this
type of lookahead is very close to CR-Chord and may be considered as a special
case of cyclic routing [16].

In Chap. 8 we introduced the general CR method and analytically studied its
properties. This chapter develops the topic by (1) designing a particular protocol on
top of Chord, (2) simulation modeling a Chord network with malicious nodes for
the lookup availability analysis, and (3) identifying the key factors that influence the
lookup availability.

The improvement that CR-Chord provides depends on the number of cycles
stored by nodes. For large f and R, cycles are constructed insufficiently, since our
simple construction method is based on Chord lookups. It aims merely at more
efficient usage of Chord routing facilities. As a result, there are only few cycles per
node and the difference between Chord and CR-Chord is smaller.

A core problem of Chord (as of other DHTs) is that lookups can fail although
good paths do exist. In CR-Chord, good paths are stored for future use, but an
efficient method for cycle construction is needed. We refer to [16] where an
interesting algorithm is proposed that uses a kind of look-ahead. This is a topic
of our further research.

We suggested dividing DHT routing to global and local parts. Weak local routing
in Chord does not allow better routing than dictated by the lower bound in (11.2).
Recall that CR is not limited to the Chord DHT but can be implemented on top
of others. If the underlying DHT has better local routing properties then its basic
routing is more efficiently utilized in CR.

CR-Chord optimizes global routing compared to Chord. Combining CR-Chord
with a mechanism for secure local routing would improve the lookup availability.
The better local routing properties a DHT has, the more efficiently its routing is
utilized by CR. Secure local routing seems an easier problem compared to global
routing. Node’s neighborhood is limited and its exhaustive secure maintenance is
possible.

11.7 Summary

We have compared the resilience of CR-Chord and Chord in the presence of
malicious nodes. The lookup availability of CR-Chord is on the average 1.4 times
higher compared to Chord, and up to two times higher for big number of malicious
nodes. The absolute gain in availability of 7–16% for 10%≤ f ≤ 50% is reasonable
compared to existing enhancements for Chord.
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Our analysis shows that the increase in packet and node storage space as well as
processing time at nodes is moderate. It depends linearly on the number of nodes
(IDs only) a given node would like to know. Our simulations suggest that CR-Chord
can not only mitigate malicious activity, but also compensate routing churn losses
caused by unconcerned nodes routing policy.

We also confirm the idea of combining additional fingers and cyclic routing [16].
Some nodes have resources to maintain more fingers than in basic Chord. When
inserting a finger is not possible due to IP addressing restrictions, CR helps in
keeping additional information about the network. That is, these two techniques
efficiently complement each other.
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Chapter 12
Indirection Infrastructures

Abstract The Host Identity Indirection Infrastructure (Hi3) is a general-purpose
networking architecture, derived from the Internet Indirection Infrastructure (i3) and
the Host Identity Protocol (HIP). Hi3 combines efficient and secure end-to-end data
plane transmission of HIP with robustness and resilience of i3. The architecture
is well-suited for mobile hosts given the support for simultaneous host mobility,
rendezvous and multi-homing. Although an Hi3 prototype is implemented and
tested on PlanetLab, scalability properties of Hi3 for a large number of hosts are
unknown. In this chapter, we propose a simple model for bounds of size and latency
of the Hi3 control plane for a large number of clients and in the presence of DoS
attacks. The model can be used for a first approximation study of a large-scale
Internet control plane before its deployment. We apply the model to quantify the
performance of the Hi3 control plane. Our results show that the Hi3 control plane
can support a large number of mobile hosts with acceptable latency.

12.1 Introduction

The original Internet Protocol stack was designed without explicit consideration
for address agility or IP-layer security.1 Recently, much effort has been applied to
develop an architecturally sound solution to address these shortcomings (refer, e.g.,
to [2–5, 9]).

The Host Identity Indirection Infrastructure (Hi3) [7, 16] is a novel general-
purpose networking architecture, derived from the Internet Indirection Infrastructure
(i3) [11, 19] and the Host Identity Protocol (HIP) [8, 10, 13, 15]. Hi3 benefits
from HIP by efficient end-to-end data transfer over IPsec, IPv4/v6 interoperability,

1This section includes text and figures from an article published in Computer Communications
29(17):3591–3601 by D. Korzun and A. Gurtov, On Scalability Properties of the Hi3 Control
Plane, c© Elsevier 2006.

D. Korzun and A. Gurtov, Structured Peer-to-Peer Systems: Fundamentals of Hierarchical
Organization, Routing, Scaling, and Security, DOI 10.1007/978-1-4614-5483-0 12,
© Springer Science+Business Media New York 2013
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basic mobility, multi-homing, Denial-of-Service (DoS) protection, as well as IETF
standardization and strong support of the industry. Integration with i3 allows for
simultaneous mobility of end points, additional DoS protection, and the initial
rendezvous service for Hi3 hosts. Hi3 can be gradually deployed, has been included
into public HIPL and OpenHIP implementations, and tested on PlanetLab [6].

Hi3 consists of separate control and data planes. The control plane running
over i3 is used only for HIP messages; the user data flows via the end-to-end data
plane over IPsec. Main performance issues for a control plane infrastructure are
scalability, DoS resilience, and robustness to node failures. Despite initial promising
measurement results, the Hi3 performance at larger scales remains unknown. In
this chapter, we develop an analytical model of the first two issues and apply it to
quantify the Hi3 performance. The third property, robustness, is inherited by Hi3
from Chord and has been analyzed elsewhere [18].

Our model can be used as a first approximation of a large-scale Internet control
plane before its deployment. In practical terms, the model provides us with a
conservative estimate of the Hi3 capacity. Despite conservative estimating, our
results show that the Hi3 control plane can support Internet applications for a large
number of mobile hosts.

Our analysis shows that the Hi3 control plane scales well; a few hundred
infrastructure servers are sufficient to support millions of clients. The internal
latency of the infrastructure is satisfactory and does not exceed a few hundred
milliseconds in most cases. Additionally, we describe Hi3 behavior under a load
of Distributed DoS (DDoS) attacks generated by zombies, a set of compromised
and exploited PCs.

The rest of the chapter is organized as follows. In Sect. 12.2, background material
on HIP and i3 is provided. In Sect. 12.3, we describe the Hi3 control plane, introduce
our modeling approach and derive cost estimates of basic requests to the control
plane. Workload scenarios are given in Sect. 12.4. The scenarios illustrate the use
of Hi3 capacity by mobile, stationary and zombie hosts. In Sect. 12.5, scalability
properties of Hi3 are analyzed. Based on the workload scenarios, we derive trends
for the size and latency of the control plane.

12.2 Background

We begin by giving the necessary background on i3, HIP, and the Hi3 architecture.

12.2.1 Host Identity Protocol (HIP)

In HIP [13, 14], IP addresses are used to locate and route the packets just as
today. Only in the upper parts of the stack the addresses are replaced with the host
identifiers. These host identifiers form a new Internet-wide name space, the host



12.2 Background 327

identity name space. The identifiers in this name space are public cryptographic
keys. With HIP, each host is directly identified with a public key that corresponds to
a private key, possessed by the host. Each host generates one or more public/private
key pairs to provide identities for itself. A host can prove that it corresponds to the
identity by signing data with its private key. All other parties use the host identifier,
i.e., the public key, to identify and authenticate the host.

Typically, a host identifier is represented by a 128-bit long identifier, the Host
Identity Tag (HIT). A HIT is constructed by applying a cryptographic hash function
over the public key. The purpose and function of HITs is similar to i3 identifiers used
in triggers (see Sect. 12.2.2), but HITs are constructed entirely cryptographically.

The actual HIP protocol [14] consists of a two-round-trip, end-to-end Diffie–
Hellman key exchange protocol (called the HIP base exchange), a mobility ex-
change, and some additional messages. The purpose of the HIP base exchange is to
create assurance that the peers indeed possess the private key corresponding to their
host identifiers. Additionally, the exchange creates a pair of Encapsulated Security
Payload (ESP) security associations (SAs), one in each direction.

12.2.2 Internet Indirection Infrastructure (i3)

To ease the deployment of services, Stoica et al. proposed an i3 overlay network
that offers a rendezvous-based communication abstraction [19]. Instead of explicitly
sending a packet to a destination, each packet is associated with a destination
identifier; this identifier is then used by the infrastructure to deliver the packet. As
an example, a host A may insert a trigger [ID|IPA] in the i3 infrastructure to receive
all packets that have the destination identifier ID.

i3 provides natural support for mobility. When a host changes its address, the
host needs only to update its trigger. When the host changes its address from IP1 to
IP2, it updates its trigger from [ID|IP1] to [ID|IP2]. As a result, all packets with the
identifier ID are correctly forwarded to the new address.

The next step of i3 evolution is the Secure-i3 proposal [1]. Its main goal is
to provide enhancements against DoS attacks and misuse of the infrastructure.
The basic idea is hiding the IP addresses of the end-hosts from other users of
the network. In Secure-i3, there are two types of triggers, public [ID|ID′] and
private [ID′|IP]. Public triggers are used to announce the existence of a service with
identifier ID. Private triggers are used for the actual communication between sender
and receiver(s).

12.2.3 Host Identity Indirection Infrastructure (Hi3)

The Hi3 sketch [16] by Nikander et al. was based on the observation that a HIP
rendezvous server and a single i3 server are functionally close to each other.
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Fig. 12.1 The Hi3 architecture. (a) Separating data and control in Hi3. (b) Schematic distribution
of HIT-based triggers in i3 for C↔ S communication

Therefore, the basic idea in Hi3 is to allow direct IP end-to-end traffic (the Hi3 data
plane) while using an indirection infrastructure to route the HIP control packets (the
Hi3 control plane). The concept of this separation is shown in Fig. 12.1a. i3 has
an important capability to map HITs from a flat namespace to IP addresses using
the underlying Chord DHT, a key property missing from a stand-alone rendezvous
server.

The control plane is used to relay HIP messages during the association es-
tablishment and when the direct end-to-end connectivity is lost, e.g., after a
simultaneous movement of both hosts. The main benefit of using the control plane
during association establishment is protection against DoS attacks. This way, the
IP addresses of communicating hosts are not revealed until mutual authentication is
completed. The data plane provides further protection against DoS if IP addresses
become revealed to a group of DDoS attackers after one of them establishes a HIP
connection over Hi3.

For each host A the pair of triggers [HITA|IDA] and [IDA|IPA] can be stored in
i3, where HITA acts as a public i3 identifier of the host A and IDA is a private i3
identifier constructed by i3. Let C and S be two communicating hosts. Figure 12.1b
shows how the corresponding HIT-based public and private triggers are distributed
in i3 for C↔ S communication.

In the data plane, end-to-end traffic is encrypted with ESP, but other encapsula-
tion methods are possible too [7]. The IPsec-aware NAT (SPINAT) provides privacy
and protection against DoS of the data plane [20] by dynamic mapping between the
actual IP addresses and the NAT addresses using the IPsec Secure Parameter Index
(SPI). For the rest of this chapter, we concentrate on the Hi3 control plane only.

12.3 Control Plane

In this section, we describe available request types to the Hi3 control plane and
estimate their computational cost and latency.
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Fig. 12.2 Request types in Hi3. (a) Pure association setup: I1 and R1 packets. (b) Pure association
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location update. (f) Double-jump resolving

12.3.1 Request Types

Consider two hosts that use Hi3 for communication. Let one of them be a HIP
initiator C (e.g., a mobile client) and the other one be a HIP responder S (e.g.,
a stationary Internet server). Figure 12.2 shows main scenarios when C ↔ S
communication involves the Hi3 control plane. For details refer to a complete Hi3
description [7].
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12.3.1.1 Association Setup

The client C starts an Hi3 association setup with the server S for initiating the
communication. This requires i3 to contain a server’s HIT as a valid public trigger
[HITS|IDS] (at node S1 in Figs. 12.1b and 12.2a) and a valid private trigger [IDS|IPS]
(at node S3).

The association setup is implemented via the HIP base exchange [14]. The client
C uses an IP address of either the i3 node that keeps the S’s public trigger (node S1),
or a random i3 node (S2). The latter case is typical, and the nearest i3 server would
be typically contacted.

There are two variants of the association setup in Hi3, pure and optimized. In
pure setup, the client C inserts, perhaps temporarily, its HIT into i3, the public
trigger [HITC|IDC] (at node S4) and the private trigger [IDC|IPC] (at node S6). These
triggers are needed for replying to an I1 packet with an R1 packet during the HIP
base exchange. Figure 12.2a, b show the packet flow.

In optimized setup the insertion of a client’s HIT into i3 is not necessary; replying
to I1 with R1 is delegated to i3 and the R2 reply packet is sent directly to the client.
The packet flow is presented in Fig. 12.2c.

12.3.1.2 Mobility Update

Let us assume that C and S can change their locations and, consequently, their IP
addresses during the communication.

Typically, only one host changes its IP address and performs a location update
at a time. If the change is by the server S, then S updates its private trigger in i3
(Fig. 12.2d). The location update also causes the HIP update exchange [17] between
C and S running over the data plane. One update to i3 is sufficient independently of
the number of hosts communicating with S. For C having a permanent trigger pair in
i3 is optional. Thus, if C changes its location, the HIP update exchange runs directly
between hosts (only UPDATE1 messages use i3 as shown in Fig. 12.2d).

It may happen that both hosts change their locations at the same time, an event
known as the double-jump problem. We assume that simultaneous mobility of C and
S is rare compared to the usual location update. This scenario proceeds as follows.
The hosts update their triggers in i3 (for C it is optional) as shown in Fig. 12.2e. In
parallel, the hosts start a HIP location update on the Hi3 data plane. The exchange
fails since each host uses the out-of-date IP address to contact the peer. This failure
is discovered by a timeout.

At this point the hosts need to use the control plane to recover from the double-
jump (Fig. 12.2f). The double jump can be discovered by both hosts, but the client C
is responsible for starting the recovery. C sends the first packet of the HIP update
exchange (addressed to HITS) to S via i3. After receiving this packet, S continues
the update talking directly to C.
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12.3.1.3 Auxiliary Requests

For Hi3 association setup and mobility update, the Hi3 control plane has to support
three auxiliary requests, namely HIT insertion, HIT refreshment, and HIT removal.

Let HITA be a HIT of a host A. HITA is inserted as a trigger to i3 when A is
an initiator of a pure association setup. If A is a server, HITA needs to stay in i3
permanently. In the current i3 implementation2 a trigger needs refreshing every 30 s.
If the i3 node crashes, the trigger is lost until the host refreshes the trigger (re-
insertion). Therefore, HIT removal can be done by sending a message to i3 or
automatically after the trigger expires.

12.3.2 Transmission and Processing Costs

In this section, we make a preliminary analysis of transmission and processing costs
in Hi3 according to the ideas given in previous work [7].

12.3.2.1 Upper Bounds for Costs

Let p be a cost parameter, for instance the round-trip time, latency, or the number of
hops. The classical worst-case analysis aims in finding an upper bound P such that
p ≤ P for all possible p. A more robust metric is a high-probability bound P such
that p≤ P with high probability (w.h.p.).3 Figure 12.3a shows the parameter domain
division based on this bound. Most p values concentrate w.h.p. in the interval [0,P];
other values appear rarely and form the worst-case domain of the cost.

Given its clear limitations, this approach stills allows to discover some basic
trends for conservative cases. It is often applied for cost analysis of concrete DHT
systems [12, 18]. The accuracy of trends can be improved by using typical values
such as the average or median for some parameters instead of the high-probability
bound.

Finding a theoretically approved high-probability bound is quite challenging
and meets a lot of difficulties. Formally, one needs to define exactly what a high
probability is and give assumptions on the probability distribution. Alternatively,
one can apply statistical methods and calculate, based on measurements, a confi-
dence interval for the parameter, e.g., that the bound estimated is valid for 95%. In
many cases, however, various practical reasons are enough to provide a reasonable
empirical value for the bound. We shall follow this simpler but more practical
approach. It is useful as a first approximation of the parameters.

2Available at http://i3.cs.berkeley.edu.
3Throughout this chapter we use the term w.h.p. to mean with probability at least 1−c/N for some
constant 0 < c� N, where N is the size of network.
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12.3.2.2 Costs Inside and Outside of i3

Let N be the size of i3 (the number of nodes). A request to the Hi3 control plane
affects two network parts, inside and outside of i3 (see Fig. 12.3b).

The outside part is characterized by the one-way trip time τHi3
A from a HIP host A

to an i3 node (or backwards). The parameter τHi3
A depends on the host’s location,

but not on the i3 size N. Some requests to the control plane can continue as direct
host-to-host communication, e.g., in the optimized association setup an R2 packet
is sent by S to C directly (see Fig. 12.2c). The cost of direct IP-based transmission
between C and S is estimated as the one-way trip time τCS = τSC .

Communication inside i3, i.e. between i3 nodes, can be divided into two types.
(1) If two nodes use direct IP-based communication, then the one-way trip time is τ .
(2) If a node makes a lookup to route a packet to the target node, then the packet
visits w.h.p. O(logN) nodes [18] as a sequence of i3 hops towards the destination.
Each hop takes time τ +μ , where μ is the forwarding cost of a packet at an i3 node:
matching against the i3 identifier in the forwarding table, updating the packet header
and internal state (if needed), and forwarding to the next hop. Therefore, a lookup
takes time t = (τ +μ)O(logN) or, in other words, time t ≤ α(τ +μ) logN for some
positive constant α and for all large N. Considering the w.h.p. case, we assume that
t = α(τ + μ) logN. The reasonable high-probability bound is μ ∼ 0.5 . . .1.0 ms.

By experimental results of Stoica et al. [18] the average lookup time can be
estimated as τ+μ

2 logN. Taking α > 1
2 makes the bound more conservative, and

α = 1 is a high-probability bound.
Hi3 inherits cryptographic operations from HIP that load end-hosts and/or i3

nodes. The operations include the following:

1. Solving a cryptographic puzzle in the HIP base exchange when C receives an R1
packet and generates an I2 packet with a correct puzzle solution.

2. Checking the puzzle solution and authenticating the client. This is a consequence
of the previous step.
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A HIP responder (server S) can delegate a part of these operations to i3. In the
optimized association setup, the i3 node S3 having the public trigger of the server S
(Fig. 12.1b) caches precomputed R1 packets of S. It is able to send R1 packets
to initiators in response to I1 packets. Let μpr be the duration of this operation
(Fig. 12.3b). A high-probability bound is μpr ∼ 100 . . .200 ms.

All other operations are less time consuming. Delegation of responding with an
R1 to i3 is comparable with a cost μ of forwarding a packet. According to [1], the
cost of a trigger insertion in i3 (even with checking trigger constraints) is 20 . . .40μs
and can also be bounded w.h.p. by μ .

12.3.2.3 Cost of a Request

Requests to the control plane can be classified in two groups: O(1)- and O(logN)-
requests depending on whether Chord routing is required.

O(1)-Requests

The requests involve a constant-bounded number of i3 nodes regardless of the i3
size N. The requests for HITs refreshment, update, and removal can be implemented
with direct IP-based communication to the corresponding i3 node. However, when a
HIT refreshment becomes the HIT re-insertion or when A loses direct connectivity
with its peer, i3 lookups are needed and the request becomes the O(logN)-type.

O(1)-requests load two i3 nodes having a public and a private trigger. Exactly
one node is needed for an IP address update in i3 and in the rare case when the
public trigger and the private one are stored at the same node.

O(logN)-Requests

O(logN)-requests use i3 lookups and, therefore, affect O(logN) nodes. The follow-
ing requests belong to this group: pure and optimized association setup, recovering
the double-jump, and HIT (re-)insertion.

Unlike the O(1)-requests, the O(logN)-ones are “deep,” involving many nodes
for a large N. However, logN

N → 0 when N → ∞ and the relative cost is small in a
large-size infrastructure.

12.3.3 Latency Estimates

Each request consists of one or more packets (e.g., the association setup requires
four HIP base exchange packets I1, R1, I2, and R2). Denote this number k.
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Table 12.1 Latency estimates of requests to the Hi3 control plane

Request type k T Hi3 = kτHi3 T out = kτout

Pure association setup 4 6α(τ +μ) logN 4τHi3
C +2μpr +4τHi3

S

Optimized association setup 4 2α(τ +μ) logN 3τHi3
C +2μpr + τHi3

S + τSC

Location update, A ∈ {C,S} 2 τ +μ 2τHi3
A

Double-jump 2 α(τ +μ) logN τHi3
C + τHi3

S + τSC

HIT insertion, A ∈ {C,S} 2 2α(τ +μ) logN 2τHi3
A

HIT refreshment/removal, A ∈ {C,S} 4 2(τ +μ) 4τHi3
A

(C↔ S communication)

A packet enters i3 when it is received by a first-hop i3 node and it leaves i3 when it
is forwarded by a last-hop node to the destination end-host. Define τHi3 and τout as
the time for a packet to be inside and outside i3, respectively. The request latency
is L = k(τHi3 + τout) = T Hi3 + T out, where τHi3 and τout are averaged over all k
packets of the request, T Hi3 = kτHi3 and T out = kτout are internal and external
request latencies.

There are three types of i3 nodes that may communicate directly with a HIP
host A, see Fig. 12.4a. The node S1 is an arbitrary i3 node that A contacts. The node
S2 keeps the public trigger [HIT | ID] inserted by A, or a trigger of an A’s peer. The
node S3 stores the A’s private trigger. According to Sect. 12.3.2, the one-way trip
time to these nodes is τHi3

A .
A request to the Hi3 control plane uses i3 lookups in the following cases

(Fig. 12.4b). (1) An arbitrary i3 node (S1 in our case) is requested by A to forward
a message to the public trigger location. (2) The node S2, which stores the public
trigger, looks up the private trigger. The cost of such a lookup is α(τ +μ) logN. The
latency estimates are summarized in Table 12.1 and explained below.
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Pure Association Setup

There are k = 4 packets. Each of them travels to i3 nodes and back. HIP crypto-
graphic processing of the cost μpr is needed in both end-hosts: R1/I2 (initiator) and
I2/R2 (responder). Therefore, T out = 4τHi3

C + 2μpr + 4τHi3
S . The two first packets

(I1 and R1) use two i3 lookups each. For two last packets (I2 and R2) one lookup is
sufficient. In total, there are six lookups and T Hi3 = 6α(τ + μ) logN.

Optimized Association Setup

The I1/R1 processing is delegated to the i3 node where [HITS|IPS] is stored. One
lookup for the I1 packet is used to find this node. Both I1 and R1 packets are outside
i3 for time τHi3

C . The I2 packet leaves i3 after one lookup to route between the nodes
with a public and a private trigger, the external time is τHi3

C + τHi3
S . The R2 packet

does not use i3 and travels directly from S to C in time τSC. The cost of cryptographic
processing is the same as for the pure association setup. There are two lookups,
T Hi3 = 2α(τ + μ) logN and T out = 3τHi3

C + 2μpr+ τHi3
S + τSC.

Location Update (IP Update)

When a host A, either C or S, changes its location, the private trigger update is
performed [IDA|IPA]→ [IDA|IP′A], where IP′A is a new A’s address. Two packets are
involved (k = 2), an update request by A and the response. The request packet travels
directly from A to the i3 node storing the private trigger, and the node replies back.
The external latency is T out = 2τHi3

A . The internal latency τ +μ includes the update
and forward operations.

Double-Jump

When C has discovered the double-jump by a timeout it sends the first packet of
the HIP update exchange to i3. As for the location update, k = 2. We assume that
C remembers the IP address of an i3 node storing HITS. The first packet crosses i3
with one lookup with additional latency outside of i3 of τHi3

C + τHi3
S . Then, S sends

the response packet that travels directly to C in time τSC.

HIT (Re-)insertion

Host A sends a request packet to an i3 node. Two i3 lookups are performed: routing
to a node to insert the public trigger and routing to a node to insert a private trigger.
Hence, T Hi3 = 2α(τ + μ) logN and T out = 2τHi3

A .
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HIT Refreshment and Removal

Two requests are used by a host to refresh or remove the triggers. In the worst
case, both requests run sequentially and the latency is doubled. For each request the
internal i3 latency is τ + μ and the external latency is 2τHi3

A .

12.4 Workload Model

The preceding section described existing request types to the Hi3 control plane.
Scalability analysis needs to consider scenarios with many end hosts involved so
that Hi3 is highly loaded. In this section, we present several such scenarios and
derive estimates for the control plane workload.

12.4.1 General Workload Pattern

A request of a given type loads several i3 nodes; denote this number r. The request is
either O(1)- or O(logN)-type and r = c or r = c logN, where c is a constant relative
to N different for each request type.

Consider a set of H hosts sending requests of a given type to the control plane.
Let λ be the corresponding rate (requests per time unit) that is uniform for all hosts.
Then, λ H is the total number of requests sent by the hosts per time unit.

Let us define the workload W of an i3 node as

W =
λ Hr

N
, (12.1)

Several examples for (12.1) are presented in Table 12.2. A parameter 0 ≤ Pus < 1
gives the probability that a location update event is a double-jump.

Total workload Wtot is defined as the sum of each request type workload. If
the hosts use an optimized association setup (Wso), location update (Wu), and HIT
insertion (Wi), then Wtot = Wso +Wu +Wi. Some important cases are presented in
Sect. 12.4.2.

A node involved in serving the request either forwards a HIP packet (primary
requests) or manages a HIT-based trigger (auxiliary requests). According to the
assumptions in Sect. 12.3.2, the processing cost is bounded w.h.p. by μ . Hence,
r can also be interpreted as the number of μ-long operations per a request.

More detailed analysis could differentiate operations in an i3 node using different
values for the processing costs. In general μ = μ(N) since the local state in a node
grows with the size N of a DHT-based infrastructure. Measuring the workload in
units of μ is CPU-oriented. It is possible to take into account the link bandwidth; it
is a subject of further work.



12.4 Workload Model 337

Table 12.2 Workload estimates for requests to the Hi3 control plane

Request type Rate, λ #(i3 nodes), r Workload, W

Pure association setup λs 6α logN Ws =
6αλsH logN

N

Optimized association setup λso 2α logN Wso =
2αλsoH logN

N

Location update λu 1 Wu =
λuH

N

Double-jump λuPus α logN Wus =
2αλuPusH logN

N

HIT insertion λi 2α logN Wi =
2αλiH logN

N

HIT refreshment/removal λr 2 Wr =
λrH
N

The workload is generated by H hosts at the rate of λ per host

i3 infrastructure
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Fig. 12.5 Workload scenarios. (a) Mobile peers. (b) Mobile hosts and stationary servers.
(c) Presence of zombie

12.4.2 Workload Scenarios

Let us consider several simple scenarios of Hi3 use based on the workload model.

12.4.2.1 Mobile Peers

Let M hosts (mobile peers) use Hi3 for communication, see Fig. 12.5a. All hosts
generate requests for association setups (pure and optimized) and location updates.
This leads to the following estimate of total workload:

Wtot =Ws +Wso +Wu +Wus = α
λmobM

N
logN +

λuM
N

, (12.2)

where λmob = 6λs+ 2λso +λuPus.
For simplicity we do not consider requests of HIT insertion and refreshment.

These requests are rare compared to the other requests. Instead, we can use larger
values for λmob and λu to avoid underestimating the workload.
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12.4.2.2 Mobile Hosts and Stationary Internet Servers

In this scenario, M mobile hosts and L stationary Internet servers (Fig. 12.5b) are
considered separately. A mobile host communicates with servers and with other
mobile hosts as in the previous scenario. The servers do not initiate communication
and do not change their location, but perform HIT insertion and refreshment.
Together, all M+L hosts generate the following workload:

Wtot = α
λmobM+ 2λiL

N
logN +

λuM+ 2λrL
N

. (12.3)

The (12.2) is a particular case of (12.3) when L = 0.

12.4.2.3 DDoS Attacks from Zombies

We extend the previous scenario to model DDoS attacks to the control plane. A
set of Z zombie hosts generates workload to Hi3 in a distributed denial-of-service
(DDoS) attack as shown in Fig. 12.5c. The goal of the zombie set is to overload i3.

Obviously, a zombie prefers O(logN)-requests since these requests add more
load to i3. Thus, a zombie can (1) initiate the association setup with many other
hosts via Hi3 and/or (2) insert many HITs to i3. We skip the double-jump request
as the same load can be achieved easier by (1) and/or (2).

An initiation of the association setup can be implemented by a zombie as follows
(1) send an I1 packet to i3, (2) receive an R1 packet from i3, (3) immediately reply
with an I2 packet containing a wrong puzzle solution.

Overall, this generates five (for a pure setup) or two (for an optimized setup) i3
lookups. Let λzs, λzso and λzi be request rates for a pure association setup, optimized
association setup, and HIT insertion by a zombie, respectively. Together all zombies
generate the following injurious workload

Wbad =Wzs +Wzso +Wzi = α
λzZ
N

logN, (12.4)

where λz = 5λzs + 2λzso+ 2λzi.

12.5 Scalability Analysis

In this section, we analyze the scalability of the control plane for workload scenarios
described in the previous section. The general idea is to estimate the utilization of
the control plane depending on the number of i3 nodes N. We obtain an estimate
of N that provides a certain utilization level for given workload and internal request
processing latency.
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12.5.1 The Utilization/Latency Trade-Off

The utilization of an i3 node can be estimated as U = UCPU = W μ > 0, i.e.,
what fraction of time a node spends for Hi3-related processing. If U > 1 then the
infrastructure is overloaded by requests. Similarly, the utilization of i3 bandwidth is
U ′ =UCOM =Wτ > 0, where τ is the one-trip time between two arbitrary i3 nodes
(see Sect. 12.3.2). Each node involved in a request sends a packet after processing
for μ milliseconds. The overload happens when U ′ > B for a some throughput
threshold B.

Intuitively, the greater N is, the less the utilization is. This fact is supported
by the workload model, see (12.1). On the other hand, increasing N increases the
internal latency T Hi3 as shown in Table 12.1. The trade-off between the utilization
and latency of the infrastructure is an interesting fact that we consider next. We
assume μ = 1 ms and α = 1/2 based on the measurements in [6, 18].

Figure 12.6 presents the case when workload is generated in accordance to the
mobile peers scenario, (12.2). The plot in Fig. 12.6a shows a rapidly decreasing
load with the growth of N (order of logN

N ). On the other hand, the internal latency
increases slowly with the growth of N (order of logN). Figure 12.6b shows the
internal latency for the optimized association setup; the latency of a pure association
setup, double jump and HIT insertion is proportional with coefficients 3, 1/2 and 1,
respectively. The latency of the location update does not depend on N and equals
τ + μ ≈ τ , i.e., 100 . . .200 ms.

Figure 12.7 shows utilization for M mobile hosts and L stationary Internet
servers. These two sets generate good workload Wgood according to (12.3), as
shown in Fig. 12.7a. Injurious utilization is plotted in Fig. 12.7b for different values
of z = λzZ.
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12.5.2 Scalability Problems

Rapidly decreasing workload and slowly increasing internal latency are attractive
properties of the Hi3 control plane inherited from Chord [18]. It enables Hi3 to
scale well, as shown in detail below.

Let us introduce a simple solution to the utilization/latency trade-off. Despite its
simplicity and coarseness, it is useful for evaluating several important scalability
problems. We show the estimates only for the CPU utilization; the throughput
utilization is a subject of future work.

12.5.2.1 Estimating the Needed i3 Size

The problem is to find an interval for N values that keeps utilization reasonable for
the workload presented in Sect. 12.4.2. For these values, the internal latency can be
estimated using equations in Table 12.1.

Consider the mobile peers scenario with τ = 100 ms. Require the latency of the
optimized association setup to be at most 1 s.4 w.h.p. As shown in Fig. 12.6b, the
i3 size can reach 1,000 nodes without exceeding the latency bound. As shown in
Fig. 12.6a, several hundred i3 nodes can serve several million mobile hosts within
reasonable utilization bounds.

Consider the workload scenario shown in Fig. 12.7a with L servers added.
Increasing L from 104 to 105 increases utilization less compared to increasing M
from 106 to 5 ·106. The result confirms that Hi3 is more resilient to the number of
stationary servers.

4In this case, a pure association setup and a double-jump would take 3 and 0.5 s, respectively.
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12.5.2.2 Resistance to DDoS Attacks

Below we present analysis for a zombie DDoS attack to the Hi3 control plane. Let
a threshold W for total workload of an i3 node be fixed, e.g., W μ = 50%,70%, or
90%. We assume that i3 can handle the given workload if Wgood +Wbad ≤W , where
Wgood is good workload generated by L+M legitimate hosts and Wbad is injurious
workload from zombie DDoS attacks. According to (12.4) the critical value for the
rate×size of the zombie set is

z = λzZ =
(
W −Wgood

) N
α logN

(12.5)

The dependency is plotted in Fig. 12.8 for several values of the threshold.
Let us estimate the size of the zombie set based on the critical value z. Assume

that links between i3 nodes have much higher bandwidth compared with links
between zombies and i3. In the worst case, a HIP packet has a size of several
hundred bytes or approximately 0.5kB= 4Kbits. If every zombie host has 1 Mbits/s
access to i3 then λr ≤ 0.25. For Z = 100 we have λrZ ≤ 25. According to Fig. 12.8,
about 120. . . 230 nodes can resist the attack with utilization at most 90. . . 50%.
For 1,000 nodes, the maximal number of zombies is in the range of 400 . . .700.

For large N, z = rate× size grows a little slower than linearly. More precisely,
z = z(N) = a N

logN + b logN + c, where a, b, and c are constants [see (12.2) and
(12.3)]. Such behavior is due to the Chord protocol where most requests require
O(logN) hops. However, an i3 node can cache IP addresses of other nodes reducing
the lookup time to O(1). Although this enables i3 to be a one-hop network for
repeating requests, it also complicates its operation in the presence of churn, when
nodes enter and leave the Chord ring. Evaluation of such effects is left for future
study.
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12.6 Summary

In this chapter, we presented analytical analysis of an Internet control plane created
by integration of HIP and i3. Our workload model includes a conservative (w.h.p.)
case of host requests, as well as the case of heavy load generated by a DDoS attack
of zombies. The scalability analysis of the control plane outlines the trade-off in
balancing the latency of the control infrastructure vs. decreasing the utilization of i3
servers.

Summarizing the results, the Hi3 control plane has the following scalability
properties.

• The workload and the internal latency scale well: order logN
N of decreasing and

order logN of increasing, respectively.
• A few i3 nodes (N ∼ 102) is sufficient for a large set of HIP hosts (M + L ∼

106 . . .107).
• The resilience of Hi3 control plane to DDoS attacks behaves as z(N) = O( N

logN ),
which is close to linear (proportional) behavior for large values of i3 size.

• For reasonable values of i3 size (N ∼ 102 . . .103) the internal latency is satis-
factory: at most a few seconds for rare requests such as association setup and
simultaneous host mobility; for location update the internal latency does not
depend on N and is at most a few hundred milliseconds (a substantial part of
the total request latency is outside of i3).

The model is based on estimates that are high-probability bounds between typical
values and the worst case. In practice, the trends of estimated parameters are more
optimistic. For instance, when caching of Chord IDs is enabled in i3, the control
plane is certainly more resilient to DDoS attacks.

At larger scales, performance evaluation using measurements or simulation can
be prohibitively expensive or impossible. Even given its clear limitations, the simple
model used in this chaper is a suitable tool to study a new large-scale networking
architecture before its wide deployment. In future work, we plan to extend our first
approximation analysis to include details of the Hi3 infrastructure such as caching,
and perform more extensive calibration of a model using measurements.
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Chapter 13
Commercial Applications

Abstract This chapter describes several distributed databases for storing structured
data in the Internet. They are known under a common name of NoSQL, to separate
from traditional relational database management systems (RDBMSes). NoSQL
databases are often built on top of classical DHT functionality with goals of
high performance put and get operations for data using a key. Databases such as
Cassandra power popular services including Facebook and therefore have to scale
up to billions of users.

13.1 OpenDHT

OpenDHT [6] is a publicly available DHT service running on PlanetLab, a world-
wide testbed of several hundred servers. Unlike other DHT systems, the user does
not have to run a local DHT node to be able to access OpenDHT. There is no
registration or accounts required to store and lookup data in OpenDHT; available
storage is shared fairly among all users. Applications can access OpenDHT using
Sun RPC and XML RPC interfaces. The TCP protocol is used to contact DHT nodes
from a client that allows access from behind most NATs and firewalls.

OpenDHT is based on Bamboo DHT servers. While its code is publicly available
to set up its own set of DHT servers, it is more convenient for most users to rely
on a publicly maintained set of servers instead of its own set. Some advanced
HIP extensions, such as proving HIT ownership to DHT, require modification to
OpenDHT code to operate. Then, running a private set of modified OpenDHT
servers is the only alternative until the proposed changes have been incorporated
to the official OpenDHT release.

OpenDHT stores values using a key that can be up to 20 bytes long. A key is
typically a fixed-length hash of an actual identifier, such as a DNS host name. Each
value has a limited Time-to-Live of a maximum of 604,800 s, which is 1 week.

D. Korzun and A. Gurtov, Structured Peer-to-Peer Systems: Fundamentals of Hierarchical
Organization, Routing, Scaling, and Security, DOI 10.1007/978-1-4614-5483-0 13,
© Springer Science+Business Media New York 2013

345



346 13 Commercial Applications

Table 13.1 General content
of a put operation to
OpenDHT

Field Type

Application String
Client library String
Key Max 20-byte array
Value Max 1024-byte array
ttl sec Four-byte integer (max 604800)

Table 13.2 Content of a get
operation to OpenDHT

Field Type

Application String
Client library String
Key Max 20-byte array
Maxvals Four-byte signed integer (max 231–1)
Placemark Byte array (100 bytes max)

The basic interface provided by OpenDHT implements put and get operations.
In our experiments we are using an XML-RPC interface. XML tags corresponding
to field names are used to encapsulate data values in the interface messages.

Table 13.1 shows the content of all OpenDHT put operations. OpenDHT uses
application and client library fields for the logging of requests. The application
is given as a string name, and the client library refers to the particular name
and version of the XML-RPC library used in the query. The key supplied by an
application selects an OpenDHT server to store the value.

The OpenDHT server can reply to a put operation with three values. “Zero” refers
to a successful put, “one” indicates failure because the capacity of the server is
exceeded, and “two” indicates a temporal failure and a suggestion to re-try the put
operation.

Table 13.2 shows the content of a get operation to OpenDHT server replies with
values in an array and a placemark. The placemark can be used in a subsequent
query to obtain additional values stored for the key.

To select the closest available server to the client, OpenDHT employs Overlay
Anycast Service InfraStructure (OASIS) [3]. By performing a DNS lookup on the
host name “opendht.nyuld.net”, the OpenDHT client obtains an IP address of the
server that has the lowest RTT to the client’s host. Alternatively, the client can
retrieve a list of available OpenDHT servers from a well-known location and itself
select the server to use.

Since OpenDHT is a public open data repository, anyone can place data under
any key using the simple put/get interface. This opens a way to drowning attacks,
when an adversary places a large number of garbage values under the same key
as the client being attacked. To prevent such attacks, OpenDHT supports two
mechanisms: immutable puts and signed puts. Immutable puts are of the form
k = H(v) (the key is a hash of the stored value) and cannot be removed until their
lifetime expires. Clearly, immutable puts are not a suitable mechanism to secure
HIP name resolution as the key value is fixed for such operations.
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Fig. 13.1 The structure of BigTable

Signed puts include a value and nonce signed by the private key of the client
storing the value. When another client retrieves a value stored under the given
key, it also provides a hash of the public key of the client that stored the value.
Therefore, that client would obtain only values stored with the private key matching
the supplied public key. This prevents the client from drowning attacks. Signed puts
are a suitable mechanism to secure HIT to IP address mappings for HIP hosts, as
the HIT effectively is a hash of the public key of the client that stored the mapping.

13.2 Google’s BigTable

BigTable [1] is a distributed storage system developed by Google for its applications
such as Google Earth, web index, and Google Analytics, total over 60 products.
The system spans thousands of servers capable of storing petabytes of data.
BigTable provides high-performance storage for structured data for a wide range
of applications with different object size and latency requirements.

Although similar to RDBMS, BigTable does not provide the relational data
model. BigTable consists of rows and columns that are treated as uninterpreted
strings that applications can store and retrieve using a network API. The data format
is follows: (row : string,column : string, time : int64) ��� string, where time is a
timestamp. As an example, Webtable contains a web index with URL names as
rows and various web page properties under contents: column and references to this
web page under anchor: columns.

Generally row keys are up to 64 kB in size (although typical size is under 100
Bytes) and are stored in lexicographic order. Rows are partitioned to ranges that are
stored in a single server and are efficient to access. The table can contain similar data
collected at different time and identified by a timestamp. BigTable can be configured
to garbage-collect old data columns automatically.

Figure 13.1 shows an example of table storing Web pages. Each row is identified
by a reversed URL of the web page. The column labeled “contents” contains
the actual HTML code of the web page. The “anchor” columns contains pages
that reference the original web page (www.ietf.org). In this example, ietf.org is
referenced by two other web pages, 3gpp.org and w3c.org, each having own
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timestamp (t3 and t4). The contents cell has two versions of the original web page,
with timestamps t1 and t2.

BigTable design goals were different to those of traditional DHT such as Chord.
In particular, variable bandwidth, untrusted nodes, decentralized control and node
churn were left out of scope for the BigTable. The data storage model of DHTs
is limited to key-value storage, there as BigTable provides richer model including
multiple attributes (columns) for a single key. On the other hand, BigTable is simpler
than RDBMS systems and does not provide complex queries but does allow the user
to specify explicitly which records should be kept in memory or on the disk.

13.3 Amazon’s Dynamo

E-commerce services such as provided by amazon.com require data key-value
operations at large scales, including hundreds of thousands concurrent sessions. The
operations must be fault-tolerant working even in the presence of server and network
failures. Traditional relation databases (RDBMS) provide excessive functionality
for most e-commerce web applications focusing on data consistency at the expense
of speed, hardware and management cost and availability. Therefore, creating a
simpler but highly scalable key-value storage service has been a requirement set
by Amazon [2].

Dynamo provides a highly-available and scalable data storage service that can be
distributed among data centers. It has been in operational use since 2007 and served
millions of customers daily running over tens of thousands servers worldwide.
Dynamo provides high availability of data somewhat sacrificing consistency in the
presence of failures. Compared to complex query interface of relational databases,
Dynamo provides simple key-value interface available to applications over the
network. In this respect, Dynamo provides similar service as traditional Distributed
Hash Tables (DHTs) but presents a next evolution step in scalability and fault
tolerance. Each data object up to 1 MB is identified by a unique key and can be
accessed by a query operation (no operations span over multiple objects).

The ACID (Atomicity, Consistency, Isolation, Durability) properties of tradi-
tional databases are not always adequate for most web e-commerce operations.
Strict adherence to these properties affects availability which is not suitable for strict
service-level agreements (for example, a response within 300 ms for 99.9 % of its
requests up to 500 requests per second) with e-commerce providers. Therefore, less
consistency might be acceptable to satisfy 99.9 percentile latency and throughput
requirements with cost efficiency and availability. Dynamo provides these as an
internal service in Amazon which is assumed to run in trusted environment, without
the need to authenticate participating servers.

To achieve high availability, Dynamo permits data updates to proceed in back-
ground while permitting the access to potentially inconsistent data objects. Possible
conflicts need to be detected and resolved between replicas using a voting procedure,
so that eventually all replicas reach a consistent state. Write operations are never
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rejected, and conflict resolution is pushed towards read operations. The system can
provide simple conflict resolution rules such as “last write wins” or alternatively the
application can be made aware of replicas differences to perform more intelligent
conflict resolutions, such as merging the differences.

Other key design goals of Dynamo include incremental scalability (adding
one node at a time), symmetry (all nodes have equal functionality to facilitate
system partitioning), decentralization (lack of centralized control and single point of
failures), and heterogeneity (addressing nodes with different hardware capabilities).

Dynamo can be viewed as a zero-hop DHT where all keys are reachable from
any node without request routing. In this respect, it is different from classic DHTs
such as Chord there request traverse several hops before reaching the destination
node. Multi-hop routing increases delay variability and therefore Dynamo maintains
additional state at each node enabling to reach any data key directly from its
responsible node.

The objects are identified by a 128-bit hash of the key. The Dynamo interface is
very simple and involves only put() and get() operations. The get(key) operation
retrieves the associated object to a key. The put(key, context, object) stores the
object under the key with associated metadata in the context field, such as the object
version. The partitioning of key space among nodes is similar to Chord: the hashed
keys form a ring and each node is allocated a range of keys in the ring. Each node
has a predecessor and an immediate successor, the ring can be walked in a clockwise
directions. This basic mechanism is extended with a concept of virtual nodes: in fact
each node is responsible for multiple ranges on the ring so that each physical node
is responsible for several virtual nodes. It brings the advantages of fine-grain load
distribution when nodes join or leave the system, as well as load assignment based
on capabilities of physical node.

The data are replicated on N nodes including the coordinator node holding the
primary replica and its N − 1 successors in the ring, as shown in Fig. 13.2. The
preference list contains the list of nodes holding the replicas and ensures that at
least N physical nodes (in opposite of virtual nodes) have the data replica. The vector
clocks are associated to each object and include a list of (node, counter) pairs. Vector
clocks are used to synchronized different object branches resulted from updated in
portioned state. If the system detects a conflict that cannot be automatically resolved,
it returns all replicas to the application for semantically-aware resolution.

To provide consistency, Dynamo uses a quorum-like system to resolve conflicts
as shown in Fig. 13.3. R is defined as the minimum number of nodes responding
to read request, and W—to the write request. A typical setting is R+W > N to
provide quorum, but R and W less than N to reduce the latency. The coordinator node
receives the client request and distribute queries to other N−1 nodes combining the
results if necessary. A typical value of N = 3 for production systems, whereas W
can be set to one to guarantee that writes are never rejected if there is at least one
active node.

To handle failures, a mechanism of hinted handoff to temporarily re-allocate data
from a node to the successor of N− 1 nodes holding the data replicas. The nodes
in replica set are typically configured from different data centers that ensures data
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Fig. 13.3 Conflict resolution in Dynamo

availability even in the presence of power outages or network failures. To handle
more permanent failures, replica synchronization mechanism involving Merkle tree
(a tree of hashes) is used. It minimizes the amount of data that needs transferring
between the data centers as it enables quick localization of conflicts.

The node membership is controlled manually by an administrator that can insert
and delete nodes from Dynamo. After joining, the node employs a gossip protocol to
acquire itself a key range from the ring, synchronize its data replicas and learn about
other peers’ key ranges. That enable eventually global knowledge about the system
and allows nodes to route requests directly to the node responsible for a given key.

13.4 Facebook’s Cassandra

Facebook’s Cassandra [4,5] is a distributed storage system that runs on hundreds of
servers located in multiple data centers. It is highly available service that can tolerate
server and network failures. Cassandra does not provide a full relational data model
of RDBMS, instead focusing on storing large amounts of structured data with high
read and write throughput (Fig. 13.4).
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Fig. 13.4 The supertable structure in Cassandra

Cassandra powers the Facebook Inbox search and needs to scale up continuously
to account for the growth of the system and number of users. To deal with failures,
data needs to be replicated across servers in data centers, yet without sacrificing
performance for billions of updates per day. The developers described Cassandra as
“a BigTable data model running on an Amazon Dynamo-like infrastructure.”

Data is stored in tables, which is a distributed multi-dimensional map indexed
by a key. Columns can be organized to Column Families; nested Super columns
including another Column Family are supported. The row key is a string of typically
16–36 bytes. The columns are sorted either by time or name.

The API to access a table is quite straightforward:

• Insert(table; key; rowMutation)
• Get(table; key; columnName)
• Delete(table; key; columnName)

where a columnName can be of the form column family:column.
The data values are organized among nodes in a circular fashion, similar to Chord

DHT. Each node is responsible for a range of hashed key values. The ring can
be traversed in clockwise direction; a node departure affects only its immediate
neighbors. For load balancing, a lightly loaded nodes can move on the ring. For
reliability, data is replicated at N nodes in one of following ways: Rack Unaware,
Rack Aware, and Datacenter Aware. In the first case, data is replicated on N − 1
successors on the ring. For other cases, the replication algorithm take into account
the physical location of the nodes in racks and datacenters.

Differently from Chord, in Cassandra each node knows about all other nodes
and ranges of data they are responsible for. That allows for fast request routing and
durability in the presence of node failures.
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13.5 LinkedIn Voldemort

Project Voldemort is a distributed key-value storage system used by LinkedIn for
high-capacity storage. The data is stored under a key and partition and replicated
among multiple servers. In case of failures, conflicts can be resolved using
versioning of data. Similar to Dynamo, Voldemort is not a relational database. In
summary, developers describe it as a “big, distributed, persistent, fault-tolerant hash
table.”

The API of Voldemort is simple and involves only three operations:

• value = store.get(key)
• store.put(key, value)
• store.delete(key)

where keys and values could be a complex object including lists.
Voldemort uses a technique of consistent hashing to distribute the load evenly

among servers. Figure 13.5 illustrates the concept. In case of a server failure, its
keys will be distributed equally to other servers in the cluster. To accomplish this, a
ring node structure of size Q partitions, which is larger than the number of nodes, S.
Each node is assigned Q/S partitions, so that it appears multiple times in a ring. The
keys are held by the primary node as well as its k unique successors in a clockwise
direction.

The simple API of Voldemort has an advantage of predictable performance
comparing to SQL queries of relational databases. The get operation returns all
values associated with a key organized into lists. The data value can be of following
types: int8, int16, int32, int64, float32, float64, string, date, object, bytes, Boolean,
object, array.

Voldemort is available as open-source under Apache license.1

1http://project-voldemort.com/design.php.

http://project-voldemort.com/design.php.
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13.6 Amazon’s S3 and SimpleDB

Amazon’s S3 (Simple Storage Service) is a proprietary online storage system
offered by Amazon Web Services using public API of Representational State
Transfer (REST), Simple Object Access Protocol (SOAP) and BitTorrent. S3 stores
over 500 billion objects and is used by popular services such as DropBox to store
data. It provides 99.99 % availability of data and 99.999999999% durability in the
presence of network and hardware failures. A single stored object can reach 5 TB
and contain up to 2 KB of metadata.

While the design details of S3 are not public, it shares the basic principles with
Dynamo. The goals of S3 are somewhat different from Dynamo. S3 focuses on
providing simple key-value storage for large data objects, without conflict resolution
visible to the user. On the opposite, Dynamo is targeted for highly dynamic
services such as web shopping cart management, with plenty of small writes with
user-controlled conflict resolution. S3 posses web-service driven interface with
authentication and accounting, but conflict resolution is handled internally.

The objects stored in S3 are accessible by normal web clients using the URL
scheme such as http://s3.amazonaws.com/bucket/key. Therefore, S3 can host whole
static web sites. S3 servers can also act as BitTorrent seeds providing the users
opportunity to download the objects using normal BitTorrent clients, that can reduce
the bandwidth load (and hence the user bill) on S3 for popular objects. Security is
ensured using Access Control Lists for buckets and objects.

SimpleDB is another distributed database from Amazon that provides eventual
consistency, a weaker guarantee than RDBMS provide. However, it is highly avail-
able and partition-tolerant, operating in the presence of network disconnections.
Compared to S3, SimpleDB objects are stored in fast memory while S3 objects are
in slow storage. Therefore, having the same amount of data in SimpleDB is more
expensive than in S3. S3 has a limited amount of metadata stored with each objects,
and in order to find an object based on metadata, the user has to retrieve all metadata
from each object in a bucket which can be slow and expensive. SimpleDB provides
indexing of key-value pairs for fast querying, and allows updating the metadata for
stored objects. In S3, changing the metadata requires deleting and recreating the
object.

For applications requiring large objects with rich metadata, a hybrid approach
combining S3 and SimpleDB can be used. The large objects are stored in cheaper
S3 while the metadata for the object is stored in more expensive but faster SimpleDB
together with a pointer to S3 object data.

13.7 BitTorrent

BitTorrent [7] is a peer-to-peer protocols for distributing files in the Internet.
It is used by individual users for file sharing, as well as companies including
Blizzard forsoftware distribution and updates, and even by Amazon S3 as a content

http://s3.amazonaws.com/bucket/key
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’announce’: ’http://bttracker.debian.org:6969/announce’,
’info’: ’name’: ’Win7.iso’,
’piece length’: 262144,
’length’: 678301696,
’pieces’: ’841ae846bc5b6d7bd6e9aa3dd9e551559c82abc1 ...
d14f1631d776008f83772ee170c42411618190a4’

Fig. 13.6 Torrent file for a Debian Linux distribution CD

distribution protocol. By some estimates, BitTorrent traffic accounts for 40–70 %
of all present Internet traffic. The BitTorrent protocol was designed in 2001 by
Bram Cohen.

A set of users distributing a single file is called a swarm. Users having the full
version of the file act as seeders, providing the file to others for download. Users
having only a part of the file are called leechers, they attempt to download the
missing file pieces while providing to other users the pieces they have already. The
pieces are downloaded in random order or rarest-first approach which accelerates
download of a complete file, but complicated the streaming view of media files. The
description of the file including its name, checksum, length and other metadata is
stored in a torrent file which is distributed using web sites.

Figure 13.6 shows an example of .torrent file containing a Linux distribution
CD. The file is separated to pieces of length of about 260 KB (piece size can vary
from 32 KB up to 16 MB). The total length of the file is 647 MB. The list of SHA-1
hashed for all pieces are given in the end of the torrent file.

A server that maintains a list of BitTorrent clients downloading the same file is
called a tracker. The use of tracker accelerates downloads as users can find peers
more easily. In addition, the tracker can maintain a degree of fairness, preventing
free-riding, i.e. just downloading files without providing uploading to other peers.
This is accomplished by monitoring the download/upload ratio and banning the
peers with ratio significantly lower than one.

Since trackers present a single point of failure and can be attacked to disable the
system. A trackerless approach in BitTorrent was introduced that relies on a DHT to
find peers. Two incompatible DHTs are used in the BitTorrent community: the DHT
first implemented by Azureus client and the Mainline DHT used by BitComet and
other clients. Both DHTs are based on Kademlia.

BitTorrent clients can implement various approaches in selecting the peers
and selecting the pieces for uploading. One common strategy is to use tit-for-
tat mechanism, rewarding those peers that have recently uploaded a piece to the
client. However, this approach makes it difficult for new peers to join the swarm, as
those do not yet many pieces to share. To overcome this problem, clients perform
optimistic unchoking, uploading pieces to new peers in hoping to be rewarded in
return. Such approach can be exploited by strategic clients in order to increase their
download speed without providing uploads to other peers. Many BitTorrent clients
employ peer exchange (PEX) to learn about other peers in the swarm.

Recent torrent clients also implement the technique of web seeding. It allows to
download pieces from a web server using HTTP protocol. This way, the web server
can act as a permanent seeder while reducing own traffic load thanks to peer-to-



Reference 355

peer interactions among clients. The web server can decide to stop seeding when
the swarm becomes popular enough and there is sufficient number of other seeds.
Finally, latest Burnbit software even allows creating a torrent from arbitrary URL
using web seeding.

13.8 Summary

In this chapter, we introduced several distributed storage systems utilizing P2P
concepts. OpenDHT was an attempt to setup and maintain a public DHT store and
lookup service. Although its maintenance stopped, it has served as a one of the first
large real-world DHT deployments used by real Internet applications. Its interface
is well defined and can serve also in other systems, for example for resolving host
identifiers to locators.

Other class of systems is represented by industrial grade systems including
Google BigTable, Amazon Dynamo and S3, Facebook’s Cassandra, LinkedIn’s
Voldemort. These are operated in many servers across different datacenters, and
therefore are not P2P applications in the traditional sense. However, many of them
are using the organization structure developed for classical DHTs. These systems
aim for high performance in availability under expense of consistency, which make
them different from traditional relational database systems.

Finally, we presented BitTorrent, one of most popular P2P applications on
Internet. Its traffic has a major impact on operator’s networks. From the start
BitTorrent used centralized tracker to connect file sharing peers together, later
also supporting decentralized DHT-based model. Nowadays, BitTorrent is used by
mainstream software companies to distribute updates to their products.
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Summary of Part IV

In this part we covered several architectures utilizing P2P concepts, as well as
commercial systems using P2P algorithms. Secure lookup routing and privacy-
preserving host rendezvous services are examples of advanced P2P architectures.
Identifier-locator split appears as one of new fundamental trends of Future Internet,
where P2P name resolution service will play a critical role. We also covered several
popular content distribution and commercial key-value storage services that are of
decentralized nature and use DHT algorithms internally.

Naturally, in a few chapters it is difficult to describe all versatile P2P applications
in use in the Internet. For example, also such popular voice and video commu-
nication applications as Skype utilize P2P approach. Services such as Joost help
users to enjoy streaming video and IP TV using P2P approach. A music listening
service Spotify is also based on P2P. With ossification of Internet architecture
on the IP layer, new overlay P2P applications play increasingly important role in
implementing services such as peercasting for multicast delivery. Online gaming
and virtual worlds is another example where players can benefit from lower latency
of direct user-to-user communication.

Advanced P2P concepts such as cooperative web cashing and search, distributed
scientific computation, online academic teaching all promise a bright future for P2P
architectures, backup up by multi-million R & D investments in these area. In the
presence of oppressive governments, citizens will have to increasingly rely on P2P
technologies such as Tor to circumvent surveillance and censorship. For example,
a web of trust for Pretty Good Privacy was established for P2P user email key
certification and verification. In future, it is possible that centralized social networks
such as Facebook are replaced by open-source, decentralized P2P services that give
the users control over who and when can access their social data.
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