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Preface

Peer-to-peer (P2P) technology, or peer computing, is an emerging paradigm that is
now viewed as a potential technology to redesign distributed architectures (e.g., the
Internet) and, consequently, distributed processing. In a classical P2P network, all
participating computers (or nodes) have equivalent capabilities and responsibilities.
The nodes can directly exchange resources and services between each other without
the need for centralized servers. They can collaborate to perform tasks by aggregat-
ing the pool of resources (e.g., storage, CPU cycles) available in the P2P network.
The distributed nature of such a design provides exciting opportunities for new killer
applications to be developed.

P2P computing distinguishes itself from traditional distributed computing in
three main aspects. First, the scalability of P2P systems goes far beyond that of
traditional distributed systems. In particular, since P2P systems are able to scale
to thousands of nodes, they can harness the power of computers over the Internet.
Second, P2P, in its most uncompromising definition, requires everything to be com-
pletely decentralized. Ideally, no centralized structures should exist in P2P systems.
Finally, and also the most important one, P2P applications often work in highly dy-
namic environments. Specifically, in terms of network topology, since P2P nodes
can join and leave the system anytime, P2P systems do not have a fixed topology.
Instead, their topology changes according to nodes in the system. Furthermore, the
system’s content and load are distributed in real time according to the actual demand
and resource capability of nodes. For example, if a sharing file becomes “hot”, i.e.,
it is repeatedly requested by several users, the file can be duplicated and deployed
in many parts of the system.

The scale and dynamism that characterize P2P systems require traditional
distributed technologies to be reexamined. A paradigm shift that includes self-
reorganization, adaptation and resilience is called for. In recent years, there has been
a proliferation of research efforts to design P2P systems and applications. This book
attempts to present the technical challenges offered by P2P systems, and the efforts
that have been proposed to address them. The purpose of this book is to provide
a thorough and comprehensive review of recent advances on routing and discov-
ery methods; load balancing and replication techniques; security, accountability and
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anonymity, as well as trust and reputation schemes; programming models and P2P
systems and projects. Besides surveying existing methods and systems, the book
also compares and evaluates some of the more promising schemes.

The need for such a book is evident. It provides a single source for practitioners,
researchers and newcomers on the state-of-the-art in the field. For practitioners, this
book explains best practice, guiding selection of appropriate techniques for each
application. For researchers, this book provides a foundation for development of
new and more effective methods. For newcomers, this book is an overview of the
wide range of advanced techniques for realizing effective P2P systems. This book
can also be used as a text for an advanced course on Peer-to-Peer Computing and
Technologies, or as a companion text for a variety of courses, including courses on
distributed systems, grid, and cluster computing.

Organization of the Book

This book consists of ten chapters. Besides the first chapter that sets up the con-
text and the last chapter that concludes with directions on the future of P2P, each
of the other eight chapters is essentially self-contained and focuses on one aspect
of P2P computing. These eight chapters can thus be read and used on their own,
independently of the others.

− In Chap. 1, we provide background on P2P computing in general. We discuss
the characteristics of P2P systems that distinguish them from other distributed
systems. This chapter also looks at the benefits and promises of P2P, and some
of the applications that will benefit from P2P computing. It examines the issues
in designing P2P systems and sets the stage for subsequent chapters.

− Chapter 2 presents the various architectures of P2P systems. At one extreme, we
have P2P systems that are supported by centralized servers. At the other extreme,
pure P2P systems are completely decentralized. Between these two extremes are
hybrid systems where nodes are organized into two layers: the upper tier “super”
nodes act as servers for lower tier nodes. We compare these different architec-
tures. In parallel to the static architectural considerations, we also look at how
peers are defined—statically or dynamically. Support for dynamic reorganiza-
tion of peers allows communities to be formed based on some common interests
among nodes. For hybrid systems, we examine how nodes that are more power-
ful can be exploited to shoulder more responsibilities. Issues on incentives and
fairness are also addressed.

− In Chap. 3, we focus on the issue of searching. There are several modes in which
searching can be performed. First, a query node can broadcast queries to all
nodes. Second, the query can be directed to nodes that are more likely to contain
useful information first. This requires nodes to organize their peers based on
some optimization criterion. Third, hashing techniques can be applied. We also
look at how load-balancing can be realized in the hash-based category. Each of
these techniques call for different metadata to be maintained.
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− Chapter 4 presents techniques to perform complex queries. Besides simple key-
word search, there is an increasing need to support more semantic-based queries
for database and multimedia applications. These include partial match queries,
range and join queries, and queries involving high-dimension vectors. We also
look at how distributed queries are optimized and processed in the P2P context.

− Replication and caching are very effective mechanisms that can bring the
data/results closer to the users to improve performance. However, in the P2P
environment, it becomes much harder to control the optimal degree of replica-
tion, as well as to maintain the consistency between replicas. Chapter 5 presents
the issues that need to be addressed and examines some of the existing solutions.
In particular, we look at techniques that manage replicas/cache dynamically.

− Before P2P can be widely accepted by users, there are several other issues that
need to be addressed: trust, privacy, anonymity, accountability, reliability, and
security. These issues are discussed in Chaps. 6 and 7. In Chap. 6, we focus on
security, privacy, and anonymity issues. We begin by discussing techniques de-
signed to secure data as well as the overall P2P environment from different types
of attacks. Then we present methods that prevent users from taking advantage
of the system by freeloading off the resources contributed by a few. Finally, we
look at techniques that are designed to support anonymity and privacy, to pro-
tect both the users that disseminate the data, as well as nodes that store the data.
Techniques that authenticate third-party data publication are also examined in
this chapter.

− Chapter 7 focuses on accountability, trust, and reputation. Here, we look at tech-
niques that automate the collection and processing of information from previous
queries to help users assess whether they can trust a server with a new query.

− In Chap. 8, we look at programming tools that are suitable for P2P environ-
ments. After having presented in the previous chapters the theoretical aspects
of P2P systems, in this chapter we will identify tools to develop P2P systems,
ranging from low level network programming tools, like sockets, to specific pro-
gramming languages designed to be used for P2P applications.

− Chapter 9 describes some representative P2P systems and applications that have
been deployed. We look at how different application environments and require-
ments drive the design and architecture of the systems. We discuss popular tech-
niques employed in each type of applications. In particular, we present systems
that support file sharing, data backup, structured data management, and data
caching. Additionally, we also introduce mobile systems employing P2P tech-
nologies.

Finally, in Chap. 10, we make a conclusion of the book and suggest promising re-
search topics that deserve further attention. Additionally, we also discuss a potential
use of P2P in industry by analyzing a case of supply chain management system.
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Chapter 1
Introduction

Peer-to-peer (P2P) computing has been reincarnated as a promising paradigm for
distributed computing. This thirty-year-old technology was deployed in USENET
in 1979 and FiDoNet in 1984. At that time, the number of computer users was rela-
tively small and P2P applications were less user-friendly. Moreover, users failed to
recognize the benefits of the technology. However, recently, several trends have refo-
cused the attention of researchers on this technology. First, the Internet has allowed
a large number of computers to be connected. Second, the Internet has also provided
an avenue for users to share and disseminate their data in a user-friendly manner.
Third, “killer” P2P and social network based applications have surfaced. For exam-
ple, the Napster [226] MP3 music file sharing applications served over 20 million
users by mid-2000. As another example, by 2006, the SETI@home [288] program
had accumulated over 2.5 million years of CPU time through more than 5 million
users.

In this chapter, we provide background on P2P computing in general. We discuss
the characteristics of P2P systems that distinguish them from traditional distributed
systems. Next, we discuss the benefits and promises of P2P, and some of the appli-
cations that will benefit from P2P computing. We also examine the issues that need
to be considered in designing P2P systems.

1.1 Peer-to-Peer Computing

Peer-to-peer (P2P) computing is essentially a model of how we (people) interact in
real life. We deal directly with one another whenever we wish to. Very often, when
we need something, we ask our peers (friends) who may in turn refer us to their
peers. P2P technologies enable us, through our computers, to carry our interactions
into cyberspace and to continue to deal with one another as we do in the real world.

The main interpretation of peer-to-peer is that nodes are able to directly exchange
resources and services between themselves without the need for centralized servers.
However, a more encompassing definition has been suggested in [292]: “P2P is
a class of applications that takes advantage of resources—storage, cycles, content,
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2 1 Introduction

Fig. 1.1 Peer-to-peer computing. Peer A requests for some data that Peer B has. However, Peer A
has to first locate Peer B through other peers in the P2P network. Once Peer B is located, Peer A
deals directly with Peer B

human presence—available at the edges of the Internet.” Overall, the system should
be capable to aggregate resources and data from nodes to accomplish a task. Fig-
ure 1.1 illustrates how P2P computing operates for data sharing applications. Each
node typically maintains some metadata that facilitates searching. For instance, this
metadata might contain information about the types of data that the current peer
will share with the community, as well as information about the data of other peers.
A query involves a resource discovery process that, using such metadata, routes the
query around the network to nodes that store the requested piece of information.
This information may be stored on a single peer, divided amongst a set of peers,
each having a part of it, or shared amongst a set of peers, each storing a copy. Upon
identifying the storing peer(s), the query node can then directly communicate with
it (them) to acquire the data.

P2P computing is one form of distributed computing. It shares the set of issues
that distributed computing researchers have been addressing over the years (e.g., se-
curity, trust, anonymity, fault tolerance, scalability, distributed query processing, and
coordination). However, P2P computing distinguishes itself from traditional distrib-
uted computing in several aspects. Some of the most important ones are:

1. Symmetric role. Each participating node in a P2P system typically acts both as
a server and as a client. In fact, each node installs a single package that encom-
passes both client and server code. As such, a node can issue queries (like a
client) and serve requests (like a server).

2. Scalability. Different from traditional distributed systems, P2P systems can scale
to thousands of nodes. As a result, they can harness the power of computers over
the Internet. To achieve this property, the P2P protocols do not require “all-to-all”
communication or coordination.

3. Heterogeneity. A P2P system can be heterogeneous in terms of the hardware
capacity of the nodes—a node may be a very slow machine and another may be
a high-end super computer.
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4. Distributed control. In its strictest definition, P2P requires everything to be com-
pletely decentralized. Ideally, no centralized structures should exist in P2P sys-
tems.

5. Dynamism. P2P applications often work in highly dynamic environments. The
topology of P2P systems may change very fast due to joining of new nodes or
leaving of existing nodes. The content and load of P2P systems typically change
according to the actual demand and resource capability of nodes.

The scale and dynamism that characterize P2P systems invalidate many founda-
tions that conventional distributed technologies have been built upon. A paradigm
shift in the aspect of self-organization, adaptation, and resilience is part of the re-
quired changes, and this, to a great extent, resonates with the advocation for auto-
nomicity in systems.

1.2 Potential, Benefits, and Applications

P2P computing has tremendous potential to meet many organizational and personal
needs. It not only leverages on computing resources without incurring excessive
cost, but it also allows information to be disseminated effectively. Furthermore, ex-
ercise full control over their data, either by making sure that the data is only stored
on their machine, or, conversely, by P2P computing is very flexible in terms of con-
tent management. The content owners may opt to always store their data on their
own machine, never allowing it to be copied and thus protecting their intellectual
property. Conversely, they may decide to publish the data anonymously and have all
traces that link them to that content erased by immersing themselves in a pool of
nodes that collectively share the responsibility.

In recent years, there has been a proliferation of research efforts to design P2P
systems and applications. These applications can be broadly divided into two cate-
gories: resource sharing and data sharing. In resource sharing, applications allow
enterprises or individuals to leverage on available (idle or otherwise) CPU cycles,
disk storage, and bandwidth capacity within the P2P network. P2P computing en-
ables harnessing of underused resources to perform tasks that would otherwise re-
quire a much more expensive machine such as a super computer. Similarly, data
storage devices are exploited to create a wide area storage network, and to push the
data closer to the users.

In data sharing, applications allow users to access, modify or exchange data in
a flexible manner. The distinction between data sharing and data storage resource
sharing should be emphasized here. While the latter one simply assumes a scenario
where one user is able to store his or her own content on another machine, the former
implies much more. Data sharing could involve storage, but also access privileges,
automatic notification systems, or multicast and broadcast techniques.

The remaining of this section makes a survey of existing and future applications,
where P2P technology brings, or could bring, a significant advantage. They are listed
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personal enterprise

Content sharing

Gaming

Scientific computation

Instant Messaging

Distributed databases

Collaborative caching and storage

Collaborative work environments

Fig. 1.2 P2P applications

chronologically according to their occurrence in the P2P context. Figure 1.2 sum-
marizes them, indicating the environment for which they are most appropriate (i.e.,
personal vs. enterprise environments).

− Digital content sharing. The Internet is essentially an asymmetric repository of
shared content, where there are a small number of content providers (servers)
but a large number of content consumers (end users). This paradigm is rendered
inviable by the new reality, where every user has the possibility to generate huge
amounts of data. P2P technology overcomes this asymmetry by enabling users
to act as a producer, as well as a consumer. Essentially, a request for some digital
content is passed from peer to peer, and as each peer is traversed it transmits back
the requested content, if any, either directly to the querying node, or through the
peer that forwarded the request. At the same time, the peer forwards the request
to other nodes. In this way, a peer contributes his/her content to the P2P network.
Such content sharing not only allows owners to have control over their content,
but also removes any single point of failure. Examples of P2P platforms that
support content sharing are Gnutella [133, 172], Freenet [3, 189], Free Haven
[108], and Publis [326].

− Scientific computation. Many scientific research projects involve extensive com-
putation that typically require massive supercomputers. However, with P2P tech-
nology, we can now exploit the large number of computers (e.g., PCs) partici-
pating in the P2P network to perform the task. This not only saves cost, but also
makes more effective use of the large number of idling computers sitting around.
The most notable project is the Search for Extraterrestrial Intelligence (SETI) at
Home (SETI@home) project [288].1 We should note that in this particular case,
of SETI@home or similar projects, the more general definition of P2P applies
(that of Shirky [292]): even though they essentially rely on a server to provide the
data tasks, the system uses resources at the edges of the Internet: to make use of
less powerful computers, SETI splits each computational task into manageable
work units. Each home PC operates on a work unit, and when it has completed

1Now part of the BOINC project at University of California at Berkeley.
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its assignment, it picks up another work unit. In this way, SETI is able to develop
the “world’s most powerful computer”. For example, as reported by Anderson
[28], SETI@home is faster than ASCI White, at less than 1% of the cost. More-
over, in a typical day, SETI@home clients (i.e., the PCs) process about 700,000
work units, which works out to over 20 TeraFLOPS (TFLOPS). The success of
SETI prompted more compute intensive projects (whose tasks can be split into
subtasks with little or no interdependence and the ratio of communication over-
head to computation is low) to exploit PCs within or outside an organization, e.g.,
the Folding@Home project that studies protein folding, misfolding, aggregation,
and related diseases [2].

− Gaming. The recognition and attention given to P2P technology as a disrup-
tive technology was mainly due to entertainment. This is due essentially to file
sharing applications, but P2P also fits well for interactive gaming over the In-
ternet. Such applications have been developed in several games and (e.g., Net-Z
[230] and Star Craft [14]), more recently, in gaming consoles (e.g., PlayStation
Portable and PlayStation 3). Each peer can store, manipulate, and process com-
plex models involving 3D graphics. The communication overhead between gam-
ing peers can be minimal, e.g., a few message exchanges may involve significant
local computation and refreshing of the screen display (e.g., on how troops in a
battle may be deployed).

− Instant messaging. People communicate and exchange information to acquire
and share knowledge in real life. However, exchange of information can take
place within the Internet through conversation or gossiping. This includes “meet-
ings” organized among friends and associates in the Internet. Instant messaging
(IM) is one such technology that enables users to locate their peers, provides a
P2P communication path, and even offers an informal status of a peer’s avail-
ability. Through IM platforms, users can compose messages and transmit files
to one or more peers that are online. Typically, peers are connected to mediat-
ing servers who are responsible for negotiating the delivery and receipt of their
clients’ messages with other servers. The message is routed from node to node
until the server closest to the recipient is reached, who will then deliver the mes-
sage. Once connected to their servers, computers at the network’s edge can es-
tablish real-time conversations with any other peers. Jabber [164, 222] is such a
P2P Instant Messaging application, where users can either act as simple clients,
or run their own Jabber server that communicates with other similar servers in
a completely decentralized fashion. Similarly, Skype [140] uses a 2-level hierar-
chical architecture to allow users to exchange not only written messages but also
voice streams.

− Collaborative work environments. Today’s work environments involve people
who may be geographically dispersed. As such, it is critical for net-based col-
laboration tools to be developed to facilitate cooperation. P2P technology lends
itself well for cooperative collaboration environments. Here, a collaboration or
virtual space will be created for the team members to interact and work to-
gether on project in real time. Shared content (e.g., documents and software)
may be modified by any user, and automatically synchronized for consistency.
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Groove [139] and Magi [11] are examples of two P2P collaboration platforms.
Grove has been recently acquired by Microsoft and incorporated into its latest
version of Office application suite.

− Collaborative caching and storage. Computers in a P2P system can contribute
storage to enable content to be replicated and cached in different parts of the
network. Such an environment offers many advantages. First, content can be
brought nearer to users who need them. For example, in e-learning applica-
tions, an education center can minimize remote accesses to course content (and
hence minimize bandwidth consumption) by caching materials that are fre-
quently needed on local nodes. Similarly, internet accesses within an enterprise
can exploit the local cache within each computer to share content that are com-
mon to most users [330].

P2PTV has also gained its popularity in recent years. In such an applica-
tion, P2P acts as a platform for redistributing video streams, and this is being
exploited even by commercial entities to reduce the caching cost at the ser-
vice providers near the edge devices. In such a setup, instead of downloading
a video from the nearest server, a peer downloads segments of video from vari-
ous peers that cache these segments. Since the quality of service and efficiency
of transmission improve with the increase on the number of peers, P2P platform
is amenable to scalability and cost saving. Joost [168] is one such application
that distributes free content based on a hierarchical platform similar to the one
used in Skype. In the enterprise context, the Kontiki Delivery Management Sys-
tem [322], recently acquired by VeriSign, Inc., provides a trust-aware environ-
ment for data distribution. Data warehouse is yet another practical application
where caching is beneficial especially since the content of a warehouse is only
updated periodically [169]. Here, P2P techniques enhance availability and secu-
rity.

− Distributed databases. Content sharing can be taken a step further by allow-
ing local databases stored in a database server to be shared. For example, in
the health care domain, hospital specialists typically have a group of patients
who are solely under their care. While some patient data are stored in a cen-
tralized server of the hospital (e.g., name, address, etc.), other data (e.g., X-
rays, prescription, allergy to drugs, history, reaction to drugs, etc.) are typi-
cally managed by the specialists on their workstations. Similarly, in life sci-
ences, when a new protein is discovered, a complex analysis needs to be
done to determine the function and classification of the protein. This analy-
sis process often involves a search of existing protein databases (e.g., Gen-
Bank, SWISS-PROT, and EMBL), which are maintained by different labo-
ratories all over the world, to find similarities between known proteins and
the newly discovered unknown protein. In both examples, it is cumbersome
and costly for any single entity to manage the large amounts of newly gen-
erated data and therefore P2P becomes a good platform for such data shar-
ing.
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1.3 Challenges and Design Issues

P2P is not a panacea yet. While it offers great potential and promises, there are still
many challenges that have to be addressed before its full potential could be realized.
Some of these are:

− Availability. In a P2P environment, nodes are autonomous and can therefore join
and leave the network as and when they like. This renders the system unpre-
dictable: a resource (data or service) may be available at some time but not at
others. As such, critical data or services may not be available when they are
needed. Therefore, for a given query, the answer may be incomplete, and may
also be different at different times. Mechanisms that replicate data or services
can, to some extent, alleviate this problem.

− Performance. The same query, posed at different times, may be answered not
only with different answers, but also with different costs, largely depending on
node connectivity and the network topology at time of querying. Here, again,
replication and caching may be useful in the sense that the data resides closer to
the query nodes. Mechanisms that load-balance the system are very useful. For
instance, nodes that are more powerful may be exploited to perform a heavier
load. Still, sizing up the capacity of a node is not always straightforward.

− Integrity. The two problems above take replication as a possible solution. This,
in turn, raises the problem of replica integrity. In a P2P environment, data may
be replicated and cached in many nodes. It is hard to maintain the integrity and
consistency of all the copies. There is a need to remove outdated copies or to
refresh them. Techniques to validate or certify copies are also important, espe-
cially since it is easy to tamper with the content and further spread the modified
copies.

− Routing and resource discovery. The main requirement from a P2P environment
is to be able to locate data or resources. At one extreme, we can employ a
Gnutella-like mechanism [133] that broadcasts a query from a query node to
its peers, who in turn will relay the message to their peers and so forth. Such
a method is simple, does not require any metadata to be retained and can po-
tentially reach to a large number of peers in the network. However, flooding the
network with queries is inefficient because it generates a huge amount of traf-
fic. Moreover, a large amount of resources are expended to evaluate the query -
even peers that do not contain the results. At the other extreme, each peer can
store some metadata that can direct the search for data/resource to the peers
that contain the data/resource. The challenge, however, is to determine the type
of metadata necessary for effective searching. Moreover, the need to maintain
the metadata can be complicated by peers’ frequent connection and disconnec-
tion from the network. As such, there is a need to design effective and efficient
data/resource discovery mechanisms.

− Complex query processing. Most of the existing P2P systems support simple
queries such as keyword search. However, to support more advanced applica-
tions such as P2P-based database management systems or semantic information
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retrieval systems, there is a need to design techniques for complex query process-
ing. For the former, database-specific information needs to be indexed by the
P2P system: columns, tables, local, and foreign keys must be searchable across
the network. For semantic information retrieval, high-dimensional data might be
needed, like in the case of Latent Semantic Indexing [102] or an ontology system
could be reused [285]. Either way, new forms of querying need to be developed.

− Security. P2P systems present interesting security problems. Like any other ap-
plications, P2P applications could have security holes. The P2P ideology of
openness and sharing just makes these security issues more acute. By allow-
ing other nodes to access a node’s content/service, the node is more vulnerable
to attack in the situation where it acts only as a client. Similarly, because many
nodes are used to transfer messages, the network could be vulnerable to denial-
of-service (DoS) attacks. In unstructured networks in particular, it is relatively
easy for a malicious node to flood the network with queries. Such attacks are
much harder to detect since these are at the application level.

− Trust and accountability vs. anonymity. Since P2P computing has its core motiva-
tion based on the interaction between humans, one of the traits that characterize
human interaction, trust, must somehow be implemented in P2P systems as well.
Trust can be determined by reputation, which, in turn, requires accountability. At
the same time, anonymity is required in some applications that wish to bypass
censorship systems. How can one establish trust, while maintaining the openness
and anonymity of the network, is an interesting and challenging research topic.

− Incentives and fairness. For P2P system to be successful, there must be incen-
tives for nodes to participate and contribute to the community. For example, a
node may find itself being swamped by requests for some data that it has cached;
without incentives, it may decide to leave the network. On the other hand, there
may be nodes that are exploiting the system resource while contributing very
little in return. Some mechanisms should be developed to ensure fairness in the
system.

− Programming model. Most of the existing P2P systems lack an adequate par-
allel programming model. Moreover, unlike parallel programming systems, the
unique features of P2P environment such as dynamic resource discovery and
fault-tolerance and availability should be considered to develop an integrated en-
vironment optimized for parallel computing. New programming models must be
developed to fully exploit the potential of P2P computing.

From the above discussions, it is clear that P2P computing offers tremendous
amounts of opportunity for research and development. This book is devoted to deal-
ing with most of these issues and to reviewing the various approaches that have been
adopted in the literature.

1.4 P2P vs. Grid Computing

Before leaving this chapter, we need to compare P2P with Grid computing [121,
122]. Grid computing has emerged recently with the intent of scaling the system
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performance and availability by sharing resources. Like P2P computing, Grid com-
puting has been popularized by the need for resource sharing and consequently, it
rides on existing underlying organizational structure. However, there are differences
that distinguish the two.

− The grid network involves higher-end resources as compared to edge level de-
vices in the P2P network. While the former requires large sums of money to be
invested, the latter can tap into existing idle resources and hence requires less
upfront cost commitment.

− The participants in the Grid network are organizations that agree in good faith to
share resources with a good degree of trust, accountability, and common under-
standing. Membership can be rather exclusive and hence the number of partici-
pants is usually not large. The common platform for sharing is usually clusters
that have been demonstrated to be cost effective to super-computing, and to-
gether they provide an enormous amount of aggregated computing resources.
In contrast, the participants of the P2P network are mainly end-users and the
platform of sharing is mainly individual Personal Computer (PC). However, due
to the mass appeal, the network grows in a much faster rate and may scale up
to thousands of nodes. Because of the loose integration, it is more difficult and
critical to manage trust, accountability, and security.

− The Grid network is well structured and generally stable. As a result, resource
discovery is less of an issue. On the contrary, P2P network is unstable—nodes
can join and leave the network anytime. This complicates the design of resource
discovery mechanisms. Nodes that leave the network may mean some directories
may be temporarily “unavailable”.

− Grid computing is more amenable to exploitation of traditional distributed query
processing techniques and is able to ensure the completeness of answers. In con-
trast, nodes in the P2P network containing data may not be connected at the time
of query, and hence answers are likely to be incomplete.

− Computational grids are largely set up in anticipation of resource intensive ap-
plications, e.g., BioGrid for bioinformatics. On the other hand, “killer” applica-
tions have surfaced in P2P naturally as exemplified by file sharing applications,
telecommunication, P2P video streaming, and Web 2.0 applications.

In summary, the Grid structure may be considered a special case of P2P comput-
ing, where each participating node has a larger capacity and collaboration is more
constrained and organized, and the nodes are generally closer in distance than in the
general case of a P2P network. We believe that Grid computing will continue to play
an important role in specialized applications. Notwithstanding, we also believe that
P2P technology is more “user friendly” in the sense that it allows users (particularly
those at the edges of the Internet) to share their resources and information easily and
freely. P2P also offers more research challenges in view of the scale, free-and-easy
membership, and instability of the network.
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1.5 Summary

A “P2P system” can be broadly understood as a system where resources are pulled
together from the edges of the Internet to achieve a desired goal. In some cases, this
may involve a central server for coordination, in other cases there might be a set of
coordinating peers, or in the purest of P2P systems—the coordination will be em-
bedded in each peer. For all these variants, advantages and disadvantages compete
and different applications, with different needs and different goals, may prefer one
variant over another. However, what we should remember is that a P2P system, dif-
ferent from a Grid or other distributed systems, must take into account a much larger
extent the dynamism of the participants. Either it must not rely on the presence of all
or some subset of the peers at any particular time, or, it must take proactive measures
to eliminate the adverse effects of a peer’s temporary or definitive absence.



Chapter 2
Architecture of Peer-to-Peer Systems

Peer-to-peer (P2P) computing has been hailed as a promising technology that will
reconstruct the architecture of distributed computing (or even that of the Internet).
This is because it can harness various resources (including computation, storage and
bandwidth) at the edge of the Internet, with lower cost of ownership, and at the same
time enjoy many desirable features (e.g., scalability, autonomy, etc.). Since mid-
2000, P2P computing technology has spurred increasing interests in both industrial
and academic communities. As such, there are increasingly more applications be-
ing developed based on this paradigm. For example, digital content sharing (e.g.,
Naspter [226], Gnutella [133], and Shareaza [289]), scientific computation (e.g.,
BOINC [63] and Folding@home [2]), collaborative groupware (e.g., Groove [139]),
instant messages (e.g., ICQ [9]) and so on. Furthermore, many research topics re-
lated to P2P computing have also been studied extensively—overlay network, rout-
ing strategies, resource location and allocation, query processing, replication, and
caching. However, there has not been much effort to study the architecture of P2P
systems. As the architecture of a system is the cornerstone of high-level applications
that are implemented upon it, an understanding of P2P architecture is crucial to re-
alizing its full potential. Such a study is important because: (a) It helps researchers,
developers, and users to better appreciate the relationships and differences between
P2P and other distributed computing paradigms (e.g., client-server and grid comput-
ing). (b) It allows us to be conscious of the potential merits of P2P computing for
newly emerging application demands, and to determine the most suitable architec-
ture for them. (c) It enables us to determine the architectural factors that are critical
to a P2P system’s performance, scalability, reliability, and other features. Therefore,
we dedicate this chapter to summarize and examine the architecture of P2P systems
and some related issues.

We first present a taxonomy of P2P architectures based on existing systems that
have been developed. On one extreme, some P2P systems are supported by central-
ized servers. On the other extreme, pure P2P systems are completely decentralized.
Between these two extremes are hybrid systems where nodes are organized into two
layers: the upper tier servers and the lower tier common nodes. Second, we will con-
duct an extensive comparison among these three types of architectures. Third, we
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will check how peers in different architectures define their neighbors (those that are
directly connected)—statically or dynamically, and figure out the supporting tech-
niques for dynamic reorganization of peers that allow communities to be formed
based on some common interests among the nodes. We will also examine how nodes
that are relatively powerful can be exploited to shoulder more responsibilities.

2.1 A Taxonomy

We begin by looking at a taxonomy of P2P systems. This taxonomy is derived from
examining existing P2P systems. Figure 2.1 shows the taxonomy. In general, we
can categorize the systems into two broad categories, centralized vs. decentralized,
based on the availability of one or more servers, and to what extent the peers depend
on the services provided by those servers. As expected, most of the research focuses
on decentralized systems. There are essentially two main design issues to consider
in decentralized systems: (a) the structure—flat (single tier) vs. hierarchical (multi-
tier); and (b) the overlay topology—unstructured vs. structured. Besides these two
main categories, there are also hybrid P2P systems that combine both centralized
and decentralized architectures to leverage the advantages of both architectures. We
shall examine each of these issues here.

Fig. 2.1 A taxonomy of P2P systems
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2.1.1 Centralized P2P Systems

Centralized P2P systems beautifully mix the features of both centralized (e.g.,
client-server) and decentralized architectures. Like a client-server system, there are
one or more central servers, which help peers to locate their desired resources or
act as task scheduler to coordinate actions among them. To locate resources, a peer
sends messages to the central server to determine the addresses of peers that contain
the desired resources (e.g., Napster [226]), or to fetch work units from the central
server directly (e.g., BOINC [63]). However, like a decentralized system, once a
peer has its information/data, it can communicate directly with other peers (without
going through the server anymore). As in all centralized systems, this category of
P2P systems are susceptible to malicious attacks and single point of failure. More-
over, the centralized server will become a bottleneck for a large number of peers,
potentially degrading performance dramatically. Finally, this type of system lacks
scalability and robustness. Some examples of this architecture include Napster [226]
and BOINC [63].

2.1.2 Decentralized P2P Systems

In a decentralized P2P system, peers have equal rights and responsibilities. Each
peer has only a partial view of the P2P network and offers data/services that may be
relevant to only some queries/peers. As such, locating peers offering services/data
quickly is a critical and challenging issue. The advantages of these systems are
obvious: (a) they are immune to single point of failure, and (b) possibly enjoy high
performance, scalability, robustness, and other desirable features.

As shown in Fig. 2.1, there are two dimensions in the design of decentralized
P2P systems. First, the network structure can be flat (single-tier) or hierarchical
(multi-tier). In a flat structure, the functionality and load are uniformly distributed
among the participating nodes. It turns out that most of the existing decentralized
systems are nonhierarchical. On the other hand, as noted in [126], hierarchical de-
sign naturally offers certain advantages including fault isolation and security, ef-
fective caching and bandwidth utilization, hierarchical storage and so on. In a hi-
erarchical structure, there are essentially multiple layers of routing structures. For
example, at a national level, there may be a routing structure to interconnect states;
within each state, there may be another routing structure for universities within the
state; and within each university, there may be yet another level that connects de-
partments, and so on. Representatives of this category are the super-peer architecture
[341] and the Crescendo system [126].

The second dimension concerns the logical network topology (the overlay net-
work), whether it is structured or unstructured. The difference between these two
designs lies in how queries are being forwarded to other nodes. In an unstructured
P2P system, each peer is responsible for its own data, and keeps track of a set of
neighbors that it may forward queries to. There is no strict mapping between the



14 2 Architecture of Peer-to-Peer Systems

identifiers of objects and those of peers. This means (a) locating data in such a sys-
tem is challenging since it is difficult to precisely predict which peers maintain the
queried data; (b) there is no guarantee on the completeness of answers (unless the
entire network is searched), and (c) there is no guarantee on response time (except
for the worst case where the entire network is searched). The famous forerunners of
unstructured P2P systems are FreeNet [3] and the original Guntella [133]. The for-
mer applies unicast-based lookup mechanisms to locate expected resources, which
is inefficient in terms of response time, but efficient with respect to the bandwidth
consumption and the number of messages used; the latter adopts flooding-based
routing strategy, which is efficient in terms of response time but inefficient in band-
width consumption and the number of messages used (since the network is flooded
with exponential number of messages). A key issue in unstructured P2P systems is
the determination of the neighbors. These neighbors can be (pre-)determined stati-
cally and fixed. However, more often, neighbors are determined based on a peer’s
(or rather the user’s) interests. Thus, as the user interests (reflected by the queries)
change, the set of neighbors may change. This is based on the inherent assumption
that a peer is likely to be issuing similar queries during a period of time, and nodes
that have previously provided answers are likely to be contributing answers as well.
Thus, keeping these nodes as neighbors can reduce the querying time (in the im-
mediate future). We refer to the latter approach as reconfigurable systems, and one
such system is the BestPeer system [234].

On the contrary, in a structured P2P system, data placement is under the control
of certain predefined strategies (generally a distributed hash table, or simply DHT).
In other words, there is a mapping between data and peers. (Very often, for secu-
rity/privacy reasons, the owners have full control over their own data. Instead, it is
the metadata that is being “inserted” into the P2P network, e.g., (id, ptr) pairs that in-
dicate that object with identifier id is located at peer pointed to by ptr. However, we
shall use the term data in our discussion to refer to both.) More importantly, these
systems provide a guarantee (precise or probabilistic) on search cost. This, however,
is typically at the expense of maintaining certain additional information. Employing
the principle of the mapping, most of the structured P2P systems, including CAN
[266], Chord [173], and Pastry [275], adopt the key-based routing (KBR) strategy
to locate the desired resource. As a result, a request can be routed to the peer who
maintains the desired data quickly and accurately. However, since the placement of
data is tightly controlled, the cost of maintaining the structured topology is high,
especially in a dynamic network environment, where peers may join and leave the
network at will.

Note that there are some systems such as [199] whose overlay network is a mix
between unstructured topology and structured topology. The purpose of these sys-
tems is to leverage the advantage of search in structured topology while still allow-
ing a good degree of autonomy, and hence keeping an inexpensive maintenance cost
as in unstructured topology. The basic idea of a system based on a mixed topology
is that the system employs search techniques of unstructured P2P systems such as
flooding for locating popular items and search techniques of structured P2P sys-
tems (structured search) for locating rare items. To serve the purpose of structured
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search, a small part of nodes are selected to form a structured network for keeping
rare items. Since only a small part of nodes forms the structured network, the main-
tenance cost is not high. In this system, search is executed in two steps. At first, the
system performs unstructured search by broadcasting the query to neighbor nodes.
If the search item is a popular item, it should be found in the first few steps, and
hence the search cost is not expensive. On the other hand, if the search item is a
rare item, i.e., there are not enough results returned within a predefined time or a
predefined number of search steps, the system performs structured search, which
should locate the item if it exists in the system. As a result, the system can alleviate
the problems of search in conventional unstructured P2P systems. The problem of
this system, however, is that without global knowledge, it is not easy to identify if a
data item is a popular item or a rare item for indexing.

2.1.3 Hybrid P2P Systems

The main advantage of centralized P2P systems is that they are able to provide a
quick and reliable resource locating. Their limitation, however, is that the scalabil-
ity of the systems is affected by the use of servers. While decentralized P2P systems
are better than centralized P2P systems in this aspect, they require a longer time in
resource locating. As a result, hybrid P2P systems have been introduced to take ad-
vantages of both centralized and decentralized architectures. Basically, to maintain
the scalability, similar to decentralized P2P systems, there are no servers in hybrid
P2P systems. However, peer nodes that are more powerful than others can be se-
lected to act as servers to serve others. These nodes are often called super peers. In
this way, resource locating can be done by both decentralized search techniques and
centralized search techniques (asking super peers), and hence the systems benefit
from the search techniques of centralized P2P systems.

While it is clearly that different P2P systems belonging to different categories
have different advantages and disadvantages, P2P systems in the same category also
have different strengths and weaknesses depending on the specific design of the sys-
tems. This leads to the fact that different P2P systems are different in the system per-
formance, resource location, scalability, load-balancing, autonomy, and anonymity.
In the following sections, we will examine the architectural features of outstanding
P2P systems from different categories in detail. Throughout most of our discussion,
we shall deal with data sharing applications. However, it should be clear that the
systems can also be used for other applications, e.g., sharing of storage, processing
cycles and so on.

2.2 Centralized P2P Systems

Napster and SETI@home are two of the earliest and yet very popular P2P
centralized-based systems. The success of Napster in digital content sharing and
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SETI@home in scientific computation contributes to a proliferation of applica-
tions of centralized P2P systems in various other domains: Folding@home [2],
Genome@home [130], and BOINC [63] for scientific computation; Jabber [164]
in instant message; Openext [246] in digital content sharing; Net-Z [230] and Star
Craft [52] in entertainment.

In general, P2P computing by definition emphasizes the equality of functions and
responsibilities of all participants, which play the roles of both resource providers
and resource requestors. Thus, a node can issue queries (as a client) and answers
queries (as a server). Somewhat different from the equality concept, centralized P2P
systems inherit some centralized features from traditional client-server architecture.
Figure 2.2 illustrates the typical network structure of a centralized P2P system and
how it supports data sharing applications. There is one central server in the net-
work. (In general, there may be more than one servers. For simplicity, we restrict
our discussion to just one single server.) The central server maintains metadata of
files/objects shared by peers in the network. This metadata can be viewed as (objec-
tID, peerID) pairs where objectID and peerID denote the object identifier and peer
identifier, respectively. Any query is first directed to the central server that returns a
list of nodes containing the desired objects. Then the query initiator communicates
directly with these nodes to obtain the objects. At this phase, the central server is no
longer needed.

Briefly speaking, a centralized P2P system enjoys two merits: (a) It speeds up the
process of resource location, and guarantees finding all possible nodes that maintain
the desired files; (b) It is easy to maintain, organize, and administer the whole system
through the central server. However, the central server may become the bottleneck
of the system’s scalability. Even worse, it may result in a single point of failure.
Therefore, improving the scalability, robustness, and security of these systems is
an important research issue. In the next two subsections, we present Napster and

Fig. 2.2 The centralized P2P
system. Peer A submits a
request to the central server to
acquire a list of nodes that
satisfy the request. Once Peer
A obtains the list (which
contains Peer B and Peer C),
it communicates directly with
the nodes
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SETI@home as representative systems to further clarify the advantages and limita-
tions of centralized P2P systems.

2.2.1 Napster: Sharing of Digital Content

Music file sharing is perhaps one of the fastest growing applications in the Internet,
and Napster [226] certainly played a critical role in facilitating music file exchange
over the net. In Napster, each user (computer) acted as a producer of content. Thus,
one can view the system as a collection of MP3 files that are distributed over the
personal computers of Napster users. To enable users to locate music files, Napster
employed a centralized server that stored the locations of the nodes that own the
files. Thus, a request will be channeled to the central server to obtain the list of
owner nodes. Actual data exchange between two peers can proceed without any
further intervention from the central server.

Generally, Napster provided three basic functions [226]: search engine, file shar-
ing, and Internet relay chat. The search engine is a dedicated server, which realizes
the function of resource location. File sharing provides a mechanism to trade MP3
files among peers, without using the storage space of the central server. Internet
relay chat provides a way to find and chat with other online peers. A simple MP3
trading procedure in Napster can be divided into three phases: joining Napster, re-
source discovery, and downloading files. First, through various connections (e.g.,
dial-up or LAN), a user was able to join the Napster network by connecting to the
central server and completing a registration process on this central server. Second,
a peer queries the central server by sending out a lookup message. After receiving
the message, the central server first looked up against the index in its local reposi-
tory and then returned a list of nodes that contained the desired files. Thus, resource
discovery was accomplished with the help of the central server. Note that the cen-
tral server maintained an index of metadata of shared files on all online peers and
corresponding information (e.g., IP address), but it did not store MP3 files itself.
Finally, the query peer established direct connections with the desired peers, and
downloaded files without the involvement of the central server. The advantages and
limitations of Napster architecture can be briefly described as follows.

− Fault resilience, privacy, anonymity, and security. Since Napster relies on the
central server to record the information about online users and shared files, it is
vulnerable to malicious attacks and a single point of failure. A query peer can
easily obtain IP addresses of other peers from the central server, which may de-
stroy the anonymity and privacy of peers. Knowing the IP addresses, a malicious
user (e.g., a hacker) can attack other peers directly, or steal valuable information
from them (e.g., data loss or data leakage). Therefore, potential danger exists in
Napster network, and security cannot be guaranteed efficiently. How to improve
fault resilience, privacy, anonymous, and security is a critical issues to Napster.

− Scalability. In Napster, all peers must connect to the central server and all queries
must be processed by the central server firstly. Considering the server has lim-
ited capability, no matter how powerful it is. If the number of connections and
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queries at one time exceed the permitted capability of the server, the response
time may be beyond users’ patience or denial-of-service (DOS). Therefore, Nap-
ster is weak in scalability and robustness; that is, it can only serve a limited
number of connections and queries at one time.

− Availability. In P2P environment, we define availability as to what degree or like-
lihood a query peer can find the desired data on other peers. After a peer down-
loads MP3 files from other peers, it will keep a copy of these files within its local
storage. Assume that the original peers that maintain the desired files all retreat
from Napster network in a extreme condition, and these files are still available
on the query peers that downloaded the files previously. Thus, the exchange of
music files among peers improves data availability of Napster.

− Decentralization, self-organization and resource location. The degree of decen-
tralization of Napster is low since a central server is employed to manage the
operation of the system. But the searching process is quite efficient, for the map-
ping between resources and peers can be found directly from the central server.
Self-organization refers to the ability of peers to cluster dynamically according
to their own interests or optimization objectives. In Napster, peers connect first
to the central server, and then interact with each other. So, it is unnecessary for
Napster to do self-organization.

− Cost of ownership. One attractive feature of P2P system is of lower ownership
cost, including the cost to maintain various resources in P2P network. In the case
of client-server architecture, a powerful server is used to store sharing resources
for clients to download, and provide other services to the clients. It is very expen-
sive to maintain such a powerful server. There is also a central server in Napster.
But different from client-server architecture, Napster stores resources on individ-
ual peers other than the server. Free from the burden of providing a large amount
of storage spaces for resources, maintaining the central server of Napster is much
cheaper than that of traditional client-server applications.

− Efficiency and effectiveness. The success of Napster has proved that a central
control can accelerate resource location with cheaper cost and high efficiency.
Also, in terms of effectiveness, peers can obtain expected files by directly ex-
change among themselves at will.

2.2.2 About SETI@home

Many scientific research projects require tremendous computational power. Follow-
ing the conventional methodology, they are typically satisfied with a massive num-
ber of supercomputers, which of course results in substantive cost of infrastruc-
ture, administration, and maintenance. Inspiringly, armed with P2P technology, we
can exploit the idle computing resources of the numerous computers (e.g., PCs) at
the edge of the Internet, which is not only more economical but also more power-
ful than the conventional method. The most notable project in this sense is Search
for Extraterrestrial Intelligence (SETI) at home (SETI@home), that aims to detect
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aliens and intelligent life outside the earth. Instead of accomplishing all of tasks
with high-end computers, SETI@home splits each computational task into manage-
able work units and incites each peer (i.e., a PC at the edge of the Internet who
also is a participant of SETI@home) to process one work unit at one time. After
finishing one unit, peers can pick up another. In this way, SETI@home has evolved
into the “world’s most powerful computer”. For example, as reported on their web-
site [288], SETI@home is faster than ASCI White even though the cost of building
SETI@home is less than 1% of the cost of building ASCI White. Every day, peers
joining SETI@home process an average of 700,000 work units, which works out
to over 20 TFLOPS. This success has triggered the expansion of the project into
many other areas of scientific computation. The University of California at Berke-
ley has then developed a general purpose distributed scientific computation project,
BOINC [63] of which SETI@home is now part of.

SETI@home consists of four components: data collector, data distribution
server, screensaver (SETI@home client), and user database [247]. Data collector
is an antenna that is responsible for gathering radio signals from outer space, and
recording these radio signals in digital linear tapes (DLT). Data distribution server
receives data from data collector, and divides data into work unit from two dimen-
sions: time and frequency. Then the work units will be dispensed to personal com-
puters that have installed screensaver. Screensaver can be downloaded freely and
conveniently installed on personal computer, where the software runs in the idle
CPU cycles. User database is a relational database that keeps track of SETI@home
users information, for instance, tapes, work units, results, user name, and so on.
Some important features of SETI@home are as follows:

− Fault resilience. SETI@home is also vulnerable to a single point of failure. If
servers (e.g., data distribution server or data collector) are down or suffer from
malicious attacks, the whole system will break down. While with respect to the
validation of computation result of a work unit, a threshold is predefined, and if
the computational time span exceeds the threshold, then the result of the work
unit is expired. The work unit will be redispatched to another peer.

− Privacy, anonymity and security. Peers of SETI@home only fetch work units
from data distribution server or send computation results back to user database
server. They never need to know about or exchange information with other peers.
Thus, SETI@home can assure the privacy and anonymity among peers.

− Decentralization and scalability. Similar to Napster, SETI@home has a server
for dispatching work units. The bottleneck of SETI@home lies in the capability
provided for maximum connections, storage spaces for work units and results.
Due to limited capability of the server, SETI@home cannot obtain high decen-
tralization and scalability.

− Availability. SETI@home assumes that a work unit can be completed within
a given time span. If the time period for calculating a work unit exceeds the
given threshold, the result of the work unit is expired, and the work unit will be
reassigned to another peer. Therefore, no matter whether a peer can complete a
task on time or not, SETI@home always can obtain the corresponding results of
the assigned work units.
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− Cost of ownership. SETI@home pools idle computing power of PCs together,
and provides a parallel and distributed computing environment with high per-
formance. As shown by a statistics coming from SETI@home [288], the total
number of users in the system are about four millions, and the TFLOPS is about
2.8 × 1021. By far, SETI@home arms with the most powerful computing capa-
bility in the world, but pays for a very cheap cost of ownership.

− Efficiency and effectiveness. As reported in [288], SETI@home is faster than
ASCI White even though the cost of building SETI@home is much lower than
the cost of building ASCI White. Furthermore, peers participating SETI@home
can process a huge amount of work each day. Therefore, SETI@home has satis-
fying efficiency and effectiveness.

2.3 Fully Decentralized P2P Systems

In a P2P system of fully decentralized architecture, each peer is of equal responsibil-
ities and rights, so that none is superior to the other. Furthermore, there are neither
centralized servers nor other auxiliary mechanisms, e.g., “supernodes” to coordinate
the operations among peers, including resource location, replication and caching,
etc. The system can run smoothly while nodes joining or leaving the network at any
time.

Several existing P2P systems belong to this category, such as the origi-
nal Gnutella [133], FreeNet [3], FreeHaven [155], Chord [173], PAST [114],
OceanStore [242], etc. As mentioned before, they can be further classified into two
subcategories, i.e., unstructured P2P systems and structured P2P systems, based on
the criterion of “the structure of overlay network”.

− In unstructured P2P systems, the content resided on each peer has no relation-
ship to the “structure” of the underlying overlay network. That is to say, each
peer chooses the content to store at will. So given a query, it is hard to know pre-
cisely the location where the results are. The solution is to search all or a subset
of the peers in the network. Usually, a lot of nodes need to be checked before the
desired files are found. Most of unstructured P2P systems adopt broadcast-based
query routing strategies to discover expected resources, for example, BFS-based
(breadth-first search) broadcast in Gnutella. The advantage is that it can easily
accommodate a highly transient node population, since the query can be spread
to a large number of peers within a short time. The disadvantage is that it widely
floods the query to many peers in the network no matter whether they can answer
the query or not, which causes heavy network traffic of exponential query mes-
sages. Therefore, this routing strategy is efficient as far as network bandwidth
consuming is concerned. Consequently, the scalability of an unstructured sys-
tem is problematic. Examples of the unstructured P2P systems are the original
Gnutella, FreeNet, FreeHaven.

− On the contrary, in a structured P2P system, there is a certain mechanism to
determine the location of files in the network; that is to say, files are placed at
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precisely specified locations. For example, by applying a distributed hash func-
tion (e.g., SHA-1) on both files and peers’ name, files are placed on the peers
whose hash values are numerically close to that of the files. Thus, a mapping is
built up between files and peers. Given a query, the location of desired files can
be decided quickly and deterministically, so it is unnecessary to aimlessly visit
unrelated nodes to find the answers to the query. As a result, the efficiency of
searching and routing can be improved greatly. Usually, peers need to maintain
some data structures (e.g., distributed hash table) to guarantee the correctness
and efficiency of query routing. When nodes join and leave the network very fre-
quently, the cost to maintain the routing information is quite high. Systems such
as Chord, PAST, and OceanStore belong to this category.

2.3.1 Properties

Fully decentralized P2P systems have no centralized mechanism, such as central
servers and “super” nodes, to provide services to others or coordinate the operations
of the systems. All participants have the same rights and obligations, and any peer
can depart the network without significantly impacting the normal running of the
system. Obviously, a single point of failure is avoided, since all tasks and services
are distributed throughout the network and no peer is indispensable to the system.
Thus, the network has strong immunity to censorship, technical failures of partial
network and malicious attacks.

As there exists no central index, routing is also done in a distributed manner.
Usually, peers send messages to their neighbors to indicate their requests, decide
the path to use, and return feedbacks. In unstructured P2P systems, query routing is
often achieved via message-based broadcasting, which involves a large number of
peers in the searching process during a short time. To avoid messages flooding in
the network, a Time-To-Live (TTL) counter is attached to each message. The TTL
value decreases as the message is forwarded among nodes. When it turns zero, the
message reaches the end of its lifetime and is no longer forwarded.

Though the broadcast strategy is easy to employ, it is inefficient with regard to
the bandwidth consumption and response time. To overcome these limitations, a
number of structured P2P systems have been proposed to improve the efficiency
of query routing. Since there are precise mappings between the identifiers of the
files and those of the peers (or locations), desired objects can be located precisely
and efficiently. The cost to pay is some storage space at each peer for the routing
table that contains routing information. Also it is the peer’s duty to keep the routing
information fresh with the change of the network. The difficulty lies in the efficient
maintenance of distributed routing tables when nodes join and leave the network at
a high rate.

As peers in a fully decentralized P2P system interact with each other without
any central coordination, the network is entirely decentralized, self-organizing, and
symmetric. In the following subsections, we study two typical fully decentralized
P2P systems, Gnutella and Pastry, on various aspects of the design and functionali-
ties.
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2.3.2 Gnutella: The First “Pure” P2P System

Gnutella is a purely decentralized P2P system. No central authority is in charge of
the network’s organization, and there is no discrimination between the client and the
server. Nodes in the system connect to each other directly through a specific soft-
ware application. The Gnutella network expands as new nodes join the network and
collapses as all nodes leave the network. In this sense, it is a software-based network
infrastructure. Routers, switches, and hubs are not necessary to enable communica-
tion at this level.

Briefly speaking, the basic operations of Gnutella include joining or leaving net-
work, searching and downloading files:

− Joining or leaving network. When a node joins the Gnutella network, it sends
a “PING” message to indicate its presence. The “PING” message is forwarded
to other nodes by broadcast strategy. When nodes receive the “PING” message,
they feed back “PONG” messages as replying, which means they are now aware
of the existence of the newcomer. From the “PONG” messages, the newcomer
can get the information about those nodes and establish its own neighborhood
with some of them. When a node leaves the network, it is not necessary for the
node to notify its neighbors. On the contrary, each node needs to probe its neigh-
bors with “PING” messages at regular intervals to confirm whether its neighbors
are still online. If no response is returned, the node will take it for granted that
these nodes have left the network, and then update the list of its neighbors.

− Searching and downloading files. When a node wants to find certain files, it asks
its neighbors by issuing a “lookup” message, and its neighbors in turn relay the
message to all of their own neighbors in the same manner. Those who have the
desired files reply the query initiator with “hit” messages, which are reversely
routed back along the same path as the “lookup” message has routed. Through
relaying the “lookup” message via nodes’ neighbors, a good recall of the search-
ing can be achieved. The broadcasting process goes on until the entire network
is covered or the TTL (time-to-live) value of the lookup message reaches zero.
Now the original node may have many replies at hand, and can choose some
nodes to connect and then download the desired files. Moreover, each message
is attached to a unique identifier. When a node receives a message with an iden-
tifier it has seen, it will drop the message so that message loops can be avoided.
Figure 2.3 illustrates the routing process of Gnutella.

2.3.2.1 Properties

Gnutella has the following properties:

− Scalability. The broadcasting mechanism of Gnutella is a two-edged sword. On
one hand, because each query may be broadcasted to as many nodes as possible
in the network, Gnutella is powerful at discovering all potential results. On the
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Fig. 2.3 Gnutella’s search
mechanism. Peer A requests
for some data that Peer D and
Peer H have. The query will
be broadcasted to the
neighbors of Peer A, and
gradually, to the other peers
in the whole network

other hand, as more and more nodes join the Gnutella network and the nodes is-
sue queries continuously, the network may be congested with floods of messages.
Thus, the scalability of Gnutella is problematic.

− Self-organization. When a node connects to the Gnutella network at the first time
(or even rejoins after a departure or failure), it is just like a person entering a
totally new environment. It randomly chooses a node as its entry point and stays
there. As time goes, it becomes familiar with more nodes and builds connections
with them. These connections are not permanent. In order to make sure that
queries can be best and quickly satisfied, it is up to the node itself to decide which
connections are to be established and which established connections are to be
severed. Obviously, the node tends to maintain connections with those nodes who
have often answered its queries and have enough bandwidth. From the viewpoint
of the whole network, high-speed nodes will gradually be placed in the central
part of the topology, while low-speed ones will be pushed to the edge of the
topology.

− Anonymity. Gnutella is a system with good certain degree of anonymity. It uses
a message-based broadcasting mechanism to delivery a query. The broadcast-
based routing strategy is influenced by the routing tables of quite a lot of Gnutella
nodes, which are dynamic and changing all the time. Therefore, it is almost im-
possible to figure out from which nodes a query came or to which nodes the query
would go. However, the anonymity is broken when the original node chooses one
or several nodes to establish direct connection and download files. At this phase,
the IP addresses of the providers and the requesters are exposed to each other.

− Availability. Since a node can connect to and disconnect from the Gnutella net-
work at any time without warning and because there is no mechanism to control
the availability and the stability of the replies from other nodes, the availability
is not guaranteed. Studies in [21, 284] have shown that only a small fraction of
Gnutella nodes will be online long enough to share files with other nodes. There-
fore it cannot be guaranteed that queries can be answered well, and the desired
files can be downloaded successfully. When it fails, the only available solution
is to retry the query or download from other peers.
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2.3.3 PAST: A Structured P2P File Sharing System

PAST is a persistent peer-to-peer archival storage utility that enjoys many desirable
advantages, including high performance, scalability, availability, and security. It is
built on Pastry [275], a DHT-supported overlay that adopts a prefix-based routing
scheme. In the PAST system, each node is assigned a 128-bit node identifier that is
obtained by hashing the node’s public key using a hash function such as SHA-1 [16].
Similarly, each file stored in the PAST is assigned a 160-bit file identifier that is
derived from hashing the file name, the owner’s public key, and a randomly chosen
salt.

When a file is inserted into PAST, it is put on k nodes whose identifiers are nu-
merically closest to the 128 most significant bits of the file identifier, among all live
nodes. Given a lookup for a file, a node will forward the request to a node whose
identifier has a longer prefix match with the file identifier than itself. If such a node
cannot be found, the message will be forwarded to a node whose identifier shares
the same length with the file identifier as the present node, but is numerically closer
to the file identifier. To achieve this, each node needs to maintain a leaf set and a
routing table, whose entry maps a node identifier to its corresponding IP address.
Finally, the request will be reliably routed to one of the k nodes that store the file
and near to the node issuing the lookup. A simple routing process is illustrated in
Fig. 2.4.

2.3.3.1 Properties

PAST has the following properties:

− Efficiency and cost of ownership. Since PAST assigns documents to specific
nodes according to some predefined rules, the locations of a file are not totally
random. As a result, the routing of a request can be well directed. In a steady
PAST network, all lookups can be resolved in a number of hops at most logarith-
mic to the total number of nodes in the system. The property is valid even when

Fig. 2.4 PAST’s search
mechanism. Peer 2331 issues
a query for a file on Peer
1233. Each time, the query is
forwarded to a peer closer to
the destination. Finally, it will
arrive at Peer 1233
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the number of nodes in the network expands dramatically. The cost of ownership
is that each PAST node needs to maintain a table with (2b − 1) ∗ �log2b N� + 2l

entries, where N is the number of nodes in the PAST network, while b and l are
configuration parameters with typical value 4 and 32, respectively.

− Availability and persistence. PAST is an entirely self-organizing overlay net-
work, and provides high availability and persistence. One key factor that may
influence system performance is the dynamic nature of the network. Fortu-
nately, the PAST network can be efficiently maintained as nodes arrive frequently
or leave without notifying others. Another situation under which performance
should be examined is that of extreme operating states, such as when a large
fraction of the aggregate storage capacity of all nodes has been occupied. PAST
presents two kinds of storage management methods, replica diversion and file
diversion, to deal with this situation. With them, free storage space among nodes
in PAST network can be well-balanced, and hence PAST can achieve high global
storage utilization and graceful degradation when the system approaches its max-
imal load. Furthermore, PAST will cache copies of popular files on some nodes
to minimize the hops count, maximize the query throughput, and balance the
workload in the system.

− Anonymity. Recall that when a file is inserted into PAST, a file identifier is com-
puted by applying the SHA-1 hash function to the file name, the owner’s pub-
lic key, and a random number. The public key acts as an initially unlinkable
pseudonym [255] for users to hide their identities. It is also possible that a user
uses several pseudonyms to obscure that certain operations were initiated by the
same user. It is hard to break the pseudonym to reveal the identity of a user. In
addition, other strong mechanisms can be layered on top of PAST to provide
higher levels of anonymity.

− Fault resilience. In PAST, each file has several replicas on different nodes, and
the probability that those nodes fail simultaneously is quite low. Through which,
PAST guarantees the availability of files unless all k nodes have failed at the same
time. In the case of node failures, all members in the leaf set of the failed node
will be notified and updated by the first one that detects this failure. However,
routing table entries that refer to failed nodes are repaired lazily: only when the
failed node is on a routing path, it will be detected and be replaced by another
appropriate node. Experimental results [275] show that Pastry can recover all
missing table entries, and the average number of hops is only slightly higher
than that before the failures.

− Security. In most conditions, PAST nodes and end users use smart card to en-
sure security and do quota management. The smart cards generate identities for
nodes and files, and maintain their integrity. Consequently, an attacker cannot
forge identifiers of nodes and files to control the identifier space or mislead file
insertions. When a file is inserted into the PAST network, a file certification is
issued and signed with the owner’s private key. The file certification should be
verified by the stored receipt, which prevents a malicious node from tampering
the stored content or occupying extra storage quotas. Analogously, in order to
reclaim a file, the file’s legitimate owner must issue a reclaim certificate, which
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is verified by a node storing the file by comparison with the file certificate stored
with the file itself. The PAST routing scheme is actually randomized to prevent
from repeating requests along a path being intercepted by a malicious node. Be-
cause of all these measures taken, PAST has a high security level and is resistant
to attackers.

2.3.4 Canon: Turning Flat DHT into Hierarchical DHT

As stated in Sect. 2.1, the network structure can be flat (single-tier) or hierarchical
(multi-tier). In a flat structure, the functionality and load are uniformly distributed
among the participating nodes. It turns out that most existing decentralized systems
are nonhierarchical. On the other hand, recently, Ganesan et al [126] put forward
an approach to turn flat DHT into hierarchical one, which takes advantages of both
flat and hierarchical structures. Concretely, hierarchical design naturally offers fault
isolation and security, efficient caching and effective bandwidth utilization, hierar-
chical storage, proximity of physical network and so on. In what follows, we discuss
the hierarchical DHT design, named as Canonical approach.

The key idea behind of the Canonical approach is that it uses recursive rout-
ing structure to construct a hierarchical DHT. For example, Fig. 2.5 shows a part
of hierarchical structure of National University of Singapore. In the Canonical ap-
proach, all nodes in any domain are interconnected with each other to form a flat
DHT routing structure. Notice that “nodes in domain X” refers to all nodes in the
subtree rooted at X. However, different from any flat DHT structure, the Canonical
approach ensures the nodes located in different sub-domains, will be merged into
a new, high-level DHT structure in the current domain by adding some links from
each node in one domain to some nodes in other domains. For example, there are
three research groups in the SoC domain, i.e., DB, IS, and DS, and all computers of
each sub-domain forms a Chord ring. Similarly, in SoC domain, all nodes of DB,
IS, and DS domains form a new, high-level Chord ring. In this way, all participating
nodes will form a hierarchical DHT according to the hierarchical structure of their
domains.

Fig. 2.5 A hierarchical structure of National University of Singapore
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Fig. 2.6 Merging Chord rings of DB and IS into Chord ring of SoC

Obviously, the challenge of the Canonical approach is to design a merging oper-
ation in such a manner that the total number of links per node remains the same as
in a flat DHT, and that global routing between any two nodes can still be achieved
as efficiently as in the flat design. In what follows, we use the Chord protocol [173]
as an example to illustrate how to design such a hierarchical DHT (please refer
to Sect. 3.3.1 for description of Chord). Specifically, nodes of Chord rings being
merged together retain all their original neighborhood. At the same time, they may
create some additional links from each node n in its Chord ring to other nodes n′
in their Chord rings if and only if (1) for some 0 ≤ k < m (m is the size of the
namespace), node n′ is the closest node that is at least distance 2k away; and (2) n′
is closer to n than any other node in n’s ring. Condition (1) is indeed the standard
Chord rule for establishing neighborhood with other remote nodes, which is used
for uniting nodes of different Chord rings. On the other side, condition (2) empha-
sizes on the fact that each node in one ring need only establish a subset of these
links (defined by Chord protocol). That is, only the links to nodes that are closer to
it than any other nodes in its own ring.

Figure 2.6 depicts how two Chord rings are merged together into a new Chord
ring. Suppose that there are two Chord rings of DB and IS, each with four nodes
and its namespace m equals to 4. Let’s focus on node 1 of DB ring and node 9 of IS
ring. Recall that node 1 builds neighborhood with node 6 and node 11 in DB ring
(for each 0 ≤ k < 4, the closest node that is at least distance 2k away, and hence,
node 6 is the closest node corresponding to distance 1, 2, and 4, and node 11 is the
closest node corresponding to distance 8). Similarly, in IS ring, node 9’s neighbors
are node 14 and node 3.

When we merge two Chord rings of DB and IS together, a few new links must be
created between nodes of the two Chord rings. Returning to the example above, let’s
consider the links to be created by node 1 in DB ring. According to condition (1),
node 1 will build neighborhood with node 3 (for distance 1 and 2), and with node 9
(for distance 8). However, according to condition (2), node 9 should be ruled out
since it is further away than the closest node (node 6) in the DB ring. As such,
node 1 only establishes neighboring relationship with node 3. Similarly, node 9 in
IS ring should build links with node 11 (for distance 1 and 2) and node 13 (for
distance 4), while not with node 1 (for distance 8).

To route messages in such a hierarchical DHT, the Chord protocol is employed.
In general, greedy clockwise routing will forward the message to the closest pre-
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decessor p of the destination at each level, and p would then be responsible for
switching to the next level of Canonical ring and continue routing on that ring. For
example, in Fig. 2.6, if node 3 looks for the node with key 13, it first routes the
query to node 9 in DB ring. Then node 9 will route the query in the merged ring
till node 13 is found. The maintenance of node joining and leaving is similar to the
Chord protocol (if interesting, reader can refer to [126] for details).

2.3.4.1 Properties

Hierarchical DHT has the following properties:

− Efficiency and cost of ownership. From above, we observe that the cost of owner-
ship of each node in the Canonical ring is O(logN) irrespective of the structure
of the hierarchy. Thus, the efficiency of the Canonical structure is the same as
the original one.

− Fault isolation. Like DNS system, such a hierarchical DHT can isolate fault ef-
ficiently. This is because all nodes in a domain have their own flat DHT. As
such, any fault occurring within certain domain would not affect nodes outside
the domain.

− Proximity of physical network. The likelihood of nodes within a domain being
physically close to each other is very high. Hence, such a hierarchical DHT nat-
urally adapts to the proximity of physical network.

− Hierarchical storage and retrieval. Compared with the flat DHT, the hierarchi-
cal design of a DHT offers more alternatives for content storage. When a node
inserts content to the network, it can use domain information to store the con-
tent into a specific domain. As a result, the retrieval can be limited within a
particular domain and other nodes outside this domain never need to be ac-
cessed.

2.3.5 Skip Graph: A Probabilistic-Based Structured Overlay

From the perspective of the network topology, there are two main ways in which
P2P systems are structured: using DHT and using skip-lists. Distributed Hash Ta-
ble (DHT) provides a basis for distributing data objects (or just indices) as evenly
as possible over nodes in the underlying node space. Well-known systems in this
class include Chord [173], CAN [266], Pastry [275], and Tapestry [349]. Though
DHT-based systems can guarantee data availability and search efficiency on exact
key lookup, they cannot support complex queries (e.g., nearest neighbor or range
queries) as hashing destroys data locality. To solve this problem, Aspnes et al. [31]
have proposed a novel structured P2P overlay named Skip Graph, which preserves
data locality and has the potential capability of supporting complex queries. Typical
P2P systems based on Skip Graph are SkipIndex [348] and SkipNet [154].
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Fig. 2.7 A Skip List with 5 nodes. The arrow lines show the process of search node 41 from head,
through node 26 and node 30, to node 41

Before presenting the general ideas of Skip Graphs, let us first review the Skip
List. A Skip List [260] is a randomized balanced search tree where nodes are orga-
nized to a set of sorted linked lists, each of which corresponds to a level of the tree.
The list at the lowest level of the tree (level 0) contains all nodes in the Skip List
sorted increasingly by the nodes’ keys. The list at level l > 0 contains a subset of
nodes in the list at level l − 1 in which each node in the list at level l − 1 appears in
the list at level l with a fixed probability p and independently on other nodes. In this
way, the density of nodes in lists decreases with the increasing of the lists’ level, i.e.,
high level lists are more sparse than low level lists. The purpose of high level links
is to provide a jump over a large number of nodes in query processing. In particular,
to search the node with a specified key, the nodes in the top level are first traversed,
while not overshoot the node compared with the search key. Then the search repeat-
edly drops down to the lower levels till the desired node is found. Figure 2.7 shows
a Skip List with 5 nodes and the process of search node with key 41.

A Skip Graph consists of a set of Skip Lists. Because a fixed probability p is used
to determine which level a node will belong to, we thus classify Skip Graphs into
probabilistic-based structured P2P overlay. Like the Skip List, in the lowest level of
a Skip Graph, all nodes are also organized as a linked list in increasing order with
respect to the identifier or key of each node. However, unlike the Skip List, in a Skip
Graph each node belongs to several Skip Lists and the list a node x participates in
is determined by its membership vector m(x). That is, at each level i > 0, there are
many linked lists and each node takes part in one of these lists. The highest level of
a Skip Graph is the level where each node belongs to a separate list. In other words,
the number of lists in the highest level of a Skip Graph is equal to the number of
nodes in the Skip Graph.

To build a P2P system based on the skip graph, each resource is assigned to a
node and all nodes are ordered according to their resource key. Figure 2.8 shows a
skip graph with 7 nodes. Now, we give a formal description of membership vector to
determine, for each level i > 0, which list a specific node should belong to. Suppose
that membership vector m(x) is an infinite random word over some fixed alphabet.
Then the membership vector of any list is defined by some finite word w, and any
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Fig. 2.8 A skip graph with 7 nodes, where level 0, 1, 2, and 3 contain 1 list, 2 lists, 4 lists, and
7 lists, respectively. For example, in level 1, there are 2 lists and their membership vectors are
m(x) = 0 (node 7, node 23, node 30, and node 57) and m(x) = 1 (node 12, node 26, and node 41)

node x in the list labeled by w if and only if w is a prefix of m(x). That is, at i th

level, any node in a list has the same prefix of its word w and the length of the
prefix equals to i. For example, in Fig. 2.8, level 1 includes two lists m(x) = 0 and
m(x) = 1. In the list m(x) = 0, node 7, node 23, node 30, and node 57 have the
same prefix “0” whose length is 1, while in the list m(x) = 1, node 12, node 26, and
node 41 have the same prefix “1”.

Since insertions and deletions in a Skip Graph can be supported in the same
way as search operations, i.e., locating the node holding a particular key to insert or
delete data, we only introduce how to locate the node with a particular key (to see
details how insertion and deletions are executed please refer to [31]). Like search
in a Skip List, the search begins at the highest level of the node issuing the query. At
any step in the search process, it travels along the same level without overshooting
the key. In cases the search cannot go further in a level, it travels to the next lower
level until it reaches level 0. Since nodes are ordered according to their key, Skip
Graphs can support range queries that retrieve all nodes whose key is between x

and y. To this end, the query node needs only to search the first node whose key is
less than or equal to x and then traverses all nodes in level 0 sequentially, till any
node whose key is greater than y.

2.3.5.1 Properties

Skip Graph has the following properties:

− Efficiency and cost of ownership. As a kind of distributed search tree structure,
Skip Graphs guarantees to find all nodes with desired answers in O(logN) steps
using O(logN) messages, where N is the number of nodes in the system. Sim-
ilarly, inserting a node in a Skip Graph is expected to incur O(logN) messages
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in O(logN) time. The cost of ownership of Skip Graphs is measured by the
number of neighboring nodes and with high probability, is Θ(logN).

− Locality preservation. Since no hash function is used, similar resources are
stored at adjacent nodes in a Skip Graph. As such, resource locality will be pre-
served. This property benefits some applications such as pre-fetching of web
pages, enhanced browsing and efficient searching.

− Support of complex queries. Preserving data locality in a Skip Graph is especially
useful for database communities to design the novel P2P system that can support
range queries, i.e., locating resources whose keys fall into a specified range of
values. Further, based on the range search, nearest neighbor queries can also be
implemented. Indeed, many subsequent refinement and proposals have used Skip
Graph as part of their design.

− Fault tolerance. Since each level of a Skip Graph contains several linked lists, the
chance that any individual node takes part in a search is not big. Thus, neither
single points of failure nor hot spots should exist. Furthermore, all nodes in a
Skip Graph are still interconnected even under the circumstances of removal of a
large number of nodes selected at random. In particular, if we randomly select an
O(1/ logN) fraction of the nodes in a Skip Graph to remove, most of remaining
nodes still interconnect.

− Scalability. In DHT-based P2P systems, it is necessary to know the size of the
system to determine the namespace of nodes. On the contrary, a Skip Graph does
not need to have this constraint. As a result, a Skip Graph can be inflate or deflate
at will with respect to the number of nodes in the network.

2.4 Hybrid P2P Systems

Hybrid P2P systems draw advantages from the other types of P2P architectures, i.e.,
centralized and fully distributed ones, while distinguish themselves from the other
two types by their elegant auxiliary mechanisms that facilitate resource location.
In some P2P systems of hybrid architecture, there are some peers possessing much
more powerful capabilities and having more responsibilities than other peers, which
are usually referred to as “super” peers (or supernodes). These supernodes form an
“upper level” of a hybrid system, which provides similar services for the ordinary
peers as the central server does in a centralized P2P system. The common peers, on
the other hand, can enjoy much more services from the supernodes in the “upper”
layer, especially in the process of resource location. Though supernodes share some
similar features to the central server in centralized P2P systems, it is easy to distin-
guish one from the other based on the following metrics: (i) A supernode is not as
powerful as the central server of a centralized P2P system, and it is only in charge
of a subset of peers in the network. (ii) A server as in Naspter, just helps peers to
locate desired files without sharing any file by itself; however, a supernode has to
not only coordinate the operations among the peers under its supervision, but also
perform the same operations by itself and contribute its own resources as the com-
mon peers do. Interestingly, the determination of a supernode and its connections to
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other peers are very similar to contacts between persons in human society. For ex-
ample, in human society, some sociable persons always keep more knowledge and
connections than the common persons (e.g., professors, mentors). If one person has
some problem, he or she can seek the help of these “mentors”. The probability for
these latter individuals to settle the matter is greater than that of the average persons.

In some other hybrid P2P systems, there exist some components as their “up-
per” level. For example, BestPeer [234] has a relatively small number of location
independent global names lookup servers (LIGLOs), which serve as the “upper”
level of the system. Obviously, the LIGLOs are also distinct from the central serves
in centralized P2P systems. Since a LIGLO just generates a unique identifier for
the peers under its management, it helps common peers to recognize their neigh-
bors in spite of their dynamic IP, and facilitates peers to dynamically reconfigure
their neighbors based on certain metrics (e.g., MaxCount and MinHops). However,
a LIGLO is never involved in the resource location of a peer. In such a system,
when a peer joins the network for the first time, it can randomly choose a set of
nodes as its neighbors and issue queries for desirable information or answer queries
from other nodes. With the feature of self-reconfiguration, each peer in a hybrid
P2P system manages to directly connect to those that can potentially benefit its later
queries. Note that any node can also be chosen as neighbor by other peers. As time
passes, queries can probably be answered more efficiently and more precisely due to
dynamic reconfiguration. In summary, hybrid P2P systems have many advantages,
such as optimizing network topology, improving response time and saving system
resource consumption, and avoiding a single point of failure as well. Hence, there
are plenty of research focusing on hybrid P2P systems and corresponding applica-
tions of such P2P systems in real life, including current Gnutella, BestPeer, PeerDB,
PeerIS, CQBuddy.

In the following sections, we introduce a self-configurable P2P system—
BestPeer, which exhibits essential features of hybrid P2P systems. Furthermore,
BestPeer combines mobile agents and P2P technology into a unified framework
gracefully. From the discussions on BestPeer, we can obtain a good understanding
of the desirable features of hybrid P2P systems.

2.4.1 BestPeer: A Self-Configurable P2P System

BestPeer is designed as a generic platform to develop P2P applications. Compared
to other P2P systems, BestPeer has four distinct features:

1. BestPeer employs mobile agent technology. The system uses mobile agents that
contain executive instructions to allow peers to execute operations locally. In
this way, raw data can be processed directly at its owner node, and hence the
system utilizes network bandwidth efficiently. Furthermore, since agents can be
customized, new applications can be extended on BestPeer easily.

2. BestPeer allows peers in the system to share not only data but also computational
resources. It is because mobile agent technology can allow a peer to process a
request on behalf of another peer.
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Fig. 2.9 BestPeer network

3. BestPeer uses a dynamic method that allows a peer to keep peers having a high
potential of answering its queries nearby, and hence the system can reduce the
query response time. This feature is actually similar to human behavior.

4. BestPeer introduces a concept of location independent global names lookup
(LIGLO). The system uses LIGLO servers to identify peers independently of
their IP address. In this way, even though a peer can change its IP address each
time it joins the system, the system still recognizes it as a unique peer.

There are two types of nodes in a BestPeer system: peers and LIGLO servers, and
a majority of node in the system are peers. As in Fig. 2.9, which shows an example
of a BestPeer system, each peer participating the system can share a portion of its
data and a peer can only access the sharable data of other peers. A typical procedure
of a node joining BestPeer network, accessing sharable resources of other nodes,
and rejoining BestPeer network is as follows:

− Joining BestPeer system. For the first time when a peer joins the system, it needs
to register itself with a LIGLO server. When a LIGLO server receives a registra-
tion request from a peer, it creates a global and unique identifier BPID (BestPeer
ID) for that peer. This BPID is then returned to the new node. Additionally, the
LIGLO server also returns to the new node a list of BPID and IP address of cur-
rent online peers registered to the server. The new peer can communicate with
peers in this list directly without going through LIGLO servers. However, since
a peer can leave the system anytime without notifying the server, the IP address
of a peer may be incorrect. In this case, the peer simply removes the unreachable
peer from the list. To avoid this case, LIGLO servers often check IP address of
their registered peers and discard offline peers from the list. Note that a peer can
register to multiple LIGLO servers.

− Accessing sharable resources. When a peer is in the system, it can query and ac-
cess shared data from other peers. The basic idea of query processing in BestPeer
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is similar to that in Gnutella. In particular, when a node wants to issue a query,
it simply broadcasts the query to its neighbor peers, which in turn forward the
query to their neighbor peers, and so on. When a peer receives a query request,
if it contains the queried data, it returns the result directly to the query initiator.

− Rejoining BestPeer network. When a node rejoins the system, i.e., it is not the
first time the node joins the system, the node sends its IP address together with
its BPID to the LIGLO server it has been registered before. If this IP address is
different from the previous registered IP address, the LIGLO server updates the
new IP address for the node.

As discussed above, BestPeer can be distinguished from other P2P systems based
on four main features. In the following part, we analyze in detail the effect of these
features on the performance aspects of BestPeer such as fault resilience, security,
anonymity, scalability and so on.

− Fault resilience. The use of LIGLO servers helps BestPeer to avoid a single point
of failure phenomenon in centralized P2P systems. The main purpose of LIGLO
servers is to provide peer registration and auxiliary mechanism for recognizing
rejoining nodes. Thus, if a node finds its registered LIGLO server is down, it can
still exchange sharable data with others through his neighbors. Additionally, the
failure of a LIGLO server does not affect other LIGLO servers or peers registered
to these servers. This is essentially different from the centralized P2P architec-
ture, e.g., in Napster a failure at the central server will disrupt all communication
between peers. As a result, BestPeer is immune to a single point of failure and
has high fault-resilience.

− Security and trust. Thanks to combining agent-based technology with P2P com-
puting technology, BestPeer can transform security and trust problems of infor-
mation exchanging between peers into a secure agent-based routing issue. Pang
et al. [251] have discussed two security agent-based routing approaches. One
is a parallel dispatch model, the other is a serial dispatch model. In the former
model, the route of a mobile agent is predefined, encrypted, and signed at the
first step. After that, the agent is dispatched to each new peer to collect infor-
mation. While in the later model, the peer with which a mobile agent needs to
communicate is determined independently by the agent itself and information is
collected dynamically when the agent visits peers. For each model, different at-
tack types are considered and the corresponding solutions are discussed. As far
as typical attack is concerned, mobile agents can work on behalf of their owner
more autonomously, and system scalability, security and performance as a whole
can be improved greatly.

− Scalability. By use of mobile agent technology, scalability of BestPeer is better
than that of the centralized P2P system. Since mobile agents can execute op-
erations locally at peers, agents can be customized for different purposes. As a
result, several applications can be deployed on BestPeer easily. Furthermore, an
application can provide different functions. For example, an agent can be cus-
tomized to search files based on file names, another agent can be customized to
search files based on file content. On the other hand, BestPeer can easily add a
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new LIGLO server or remove an existing LIGLO server without affecting the
existing system environments.

− Self-reconfiguration. BestPeer provides a mechanism that lets each peer keep
some most promising peers as close as possible without additional information
exchange. In detail, BestPeer employs two approaches: MaxCount and MinHops.
The former guarantees that a peer with such neighbor deployment strategy can
obtain maximum number of objects from its direct neighbors. In other words, a
peer tends to choose those peers that may contain maximum number of potential
answers of its queries. While the latter, MinHops, connects peers in a way that
minimizes the number of hops for query processing. This indicates how far the
query answering peers from the request peer. Through the two strategies, any
node in BestPeer network can reconfigure his neighbors in a dynamic manner,
which will reduce bandwidth cost for broadcasting queries and return desired
answers as quickly as possible. Note that the self-reconfiguration mechanism is
irrelevant to the presence of LIGLO servers. Thus, in contrast to static peers
network that a peer’s neighbors will not change automatically during runtime,
BestPeer can adjust peers’ neighbors automatically to make good use of existing
bandwidth efficiently.

− Novel applications and extensibility. Like any infrastructure, it is important for
a P2P platform to be able to support a variety of new applications effectively
and efficiently. By far, five prototype systems have been developed on Best-
Peer to enhance peer data management (PeerDB [235]), information retrieval
(PeerIS [196]), continuous query processing (CQBuddy [236]), Web caching
(BuddyWeb [330]) and OLAP application (PeerOLAP [169]). PeerDB provides
relational data management in P2P environment, while PeerIS combines infor-
mation retrieval technology with P2P framework to offer high-efficient message
routing and resource location. In order to process online analysis processing
queries, PeerOLAP, a distributed cache system, is established to facilitate simi-
lar queries from different nodes nearby each other. BuddyWeb aims at improving
the effectiveness and efficiency of Web searching through applying data caching
technology in P2P network, and CQBuddy copes with distributed continuous
queries processing in P2P environment. Moreover, to further improve security of
BestPeer platform and guarantee privacy and anonymity during data exchange
between peers, high security routing issue is studied in agent-based P2P system.

− Efficiency and effectiveness. The former refers to the system performance (e.g.,
response time), while the latter deals with the quality of the answers(e.g., rele-
vant degree). For example, a request peer can receive answers from other peers
quickly after initiating query message, which means a good efficiency. On the
other hand, the number of answers may be very few and some of them are ir-
relevant to query, which means poor effectiveness. Because BestPeer employs
MaxCount and MinHops strategies to choose peers’ neighbors, Ng et al. [234]
have proved that any peer in BestPeer network can obtain a better quantity and
quality of answers than Gnutella and traditional client-server architecture.

Notwithstanding, being a system that supports agents, BestPeer has to provide
the environment for agents to operate on. While agents bring with them their own



36 2 Architecture of Peer-to-Peer Systems

definitions and actions such as a new query processing strategy, they also bring
problems to the operating environment. As a result, agents increase the complexity
of the system, and hence they are not supported in BestPeer 2.0.1

2.5 Summary

From the birth of Napster to the current prolific deployment of P2P-based applica-
tions, great efforts have been made to address various specific issues of P2P comput-
ing. In this chapter, we presented a summary of architectural issues of P2P systems,
such that researchers, developers, and users are able to see clearly the potential mer-
its of different P2P systems, identify the key architectural factors that decide the
system performance, and make appropriate implementation decisions.

In terms of the degree of decentralization, the architectures of P2P systems can
be generally classified into three categories: centralized P2P systems, decentralized
P2P systems, and hybrid P2P systems. On one extreme, the centralized P2P systems
are supported by one or more centralized servers, where key operations are managed
by the servers. On the other extreme, fully distributed P2P systems are completely
decentralized. Between these two extremes are hybrid systems where nodes are or-
ganized into two layers. The upper layer, such as “super” nodes or other distributed
mechanisms (e.g., LIGLO), provide services for the lower layer nodes. The features
that distinguish one category from the others are summarized as follows:

− Centralized P2P systems inherit centralized features from the client-server archi-
tecture, which are composed of one or more central servers and a great number of
“clients” (peers). The major point distinguishing it from the client-server model
lies in the fact that these P2P servers do not perform sharing operations by them-
selves or even contribute to the sharing resources. Specifically, in the application
of data sharing, the servers never store sharable files and are not involved in the
file trading between peers. They only manage resource location by building up
metadata index of sharable files. When a peer searches a file, its query is first sent
to the central server, which in turn replies to the query initiator with the location
of peers that contain desired files. At last, the requestor directly interacts with the
answer contributor, without the involvement of the central server. Due to the lim-
ited capability of the central server, this type of P2P systems lacks scalability and
is vulnerable to malicious attacks and a single point of failure. The most impor-
tant contribution of centralized P2P systems, such as Napster and SETI@home,
is that they arouse great interests from wide application areas, and further incur
a wave of research and deployment of the brand new Internet-based applications
to make the P2P-based applications successful in real life.

− Even though fully decentralized P2P systems can be further divided into sub-
classes according to either their structure: flat and hierarchical or their topology:

1http://www.bestpeer.com.

http://www.bestpeer.com
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structured and unstructured, the latter classification is often used. The differ-
ence between structured P2P systems and unstructured P2P systems is whether
the sharable objects are precisely mapped to their locations or not. In an un-
structured P2P system, each peer stores files at will and utilizes heuristic routing
strategies, such as routing indices, to facilitate looking up expected files from
others. However, these systems might be weak in scalability, since their network
might be flooded with query messages if they do not adopt effective search-
ing schemes. In structured P2P systems, such as Chord, CAN, Tapestry, Pastry
and Viceroy, peers only contain the sharable objects related to their identifiers,
which can be efficiently located through key-based routing (KBR) strategies.
Indeed, thanks to the features of the distributed hash tables employed in struc-
tured P2P system, queries can reach the locations of the desired objects within
O(logn) or O(dn1/d) hops. In addition, it is also advantageous in scalability,
fault resilience, anonymity and security over either centralized P2P systems or
unstructured P2P systems. However, in structured P2P systems, since the data
placement are tightly controlled, their cost to maintain the structured topology is
very high, especially in a dynamic environment.

− Different from the other two P2P architectures, a hybrid P2P system consists of
two kind of nodes and forms a hierarchy of two tiers, where the upper tier serves
the processing of the lower one. Actually, hybrid P2P systems can also be con-
sidered as a special type of hierarchical unstructured P2P systems. In the current
Gnutella, its supernodes form an upper layer, which provides similar services to
the ordinary peers as the central server in a centralized P2P system. The common
peers, on the other hand, can enjoy much more services from the supernodes, es-
pecially in the process of resource location. As aforementioned, the supernodes
are different from the servers in client-server systems. In BestPeer and various
applications implemented upon it, the upper tier is made up of LIGLOs, which
generate an unique identifier for their peers, facilitate peers to recognize and
further dynamically reconfigure their neighbors. These desirable functionalities
are helpful for peers to naturally evolve into interest communities. In short, hy-
brid P2P systems combine advantages of both fully distributed and client-server
systems.

Besides outlining the categories of P2P system architectures, analyzing their fea-
tures and comparing their advantages and disadvantages, we have studied how peers
in different architectures define their neighbors, i.e., statically or dynamically, and
figured out the mechanism supporting dynamic self-reorganization and peers evolv-
ing into interest communities.



Chapter 3
Routing in Peer-to-Peer Networks

One of the key operations in a peer-to-peer (P2P) network is the routing of messages
or requests. To locate desired resources, each peer should be able to forward queries
to a subset of neighbor peers that are closer to the destination than any other peer. As
such, the design of routing protocols is perhaps one of the most widely researched
issues. To some extent, the key differences between the various schemes lie in the
amount of information (metadata) that is maintained at each peer, and how this
information is organized (see Fig. 3.1). Essentially, if no metadata is maintained
at all, then there is really no way in which one can locate information except to
broadcast the request to one’s neighbors; if the request is met, then the answer can
be returned, otherwise, the request may be further routed to the neighbors’ neighbors
and the process repeats. This is indeed the mechanism adopted in Gnutella [133].
Moreover, given that there is no metadata, the topology of the network is inherently
unstructured. On the other hand, one can follow the design of a centralized system
that has perfect information. This is exactly what was done in Napster [226]. Such
a system is highly (an extreme form) structured. Every peer knows exactly where
to turn to look for what they want. Now, depending on the kinds of data that are
maintained, we have a continuum of protocols. In this chapter, we focus on the
issue of routing in P2P networks. There are three main approaches in which routing
is performed in terms of the structure and metadata property of the P2P networks.
We, respectively, introduce them as follows.

− In Sect. 3.2, we introduce routing strategies in unstructured P2P networks. The
routing strategies in this type emerge from the earliest P2P systems, such as
Gnutella and FreeNet. After examining the basic routing strategies, we discuss

Fig. 3.1 An information-oriented perspective of routing protocols
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variants of these basic methods that have been invented to enhance their effi-
ciency, bandwidth utilization and so on. Some of these include iterative deepen-
ing, expanding ring, and routing indices.

− In Sect. 3.3, we describe routing approaches in structured P2P networks. In this
kind of P2P systems, both network structure and data placement are tightly con-
trolled. Each peer uses semantic-free index to forward lookup queries to the peer
that is numerically closest to the destination. The most prominent advantage of
the structured P2P system is that a theoretical routing bound can be given even
in the adverse case. In particular, we discuss in details three categories of struc-
tured P2P systems: distributed hash based systems, skip list based systems, and
tree-based systems. We also present several well known structured P2P systems
including Chord [173, 266, 275, 349], etc.

− Finally, in Sect. 3.4, we discuss routing methods used in hybrid P2P systems.
This type of P2P systems combines the advantages of both structured P2P sys-
tems and unstructured P2P systems, but avoids their disadvantages.

3.1 Evaluation Metrics

Before we examine the various routing protocols, we shall look at some of the met-
rics that can be used to compare and evaluate the effectiveness and efficiency of a
routing scheme. Some of these include security, anonymity, scalability, reliability,
coverage, usability, storage, and efficiency. In this chapter, we shall focus on just
the following ones:

− Storage. Each peer may need to incur some storage space for maintaining meta-
data that are used in directing the search space. Clearly, storing more metadata
also implies that it is more costly to keep these data up-to-date.

− Efficiency. A system is efficient if it can locate the resource quickly. One metric
of efficiency is the response time, which can be measured by the average query
path length.

− Usability. This reflects the ease of use, and the types of queries that can be sup-
ported. For example, depending on the metadata maintained, one system may
support complex queries, while another can only perform an exact match.

− Coverage. By coverage, we refer to whether the search space contains the an-
swers. A scheme with a higher coverage is certainly more useful.

− Scalability. The scalability of a system is important for it to be useful in large-
scale environments. One measure of scalability is the number of messages that
need to be routed in order to locate information. For systems that require trans-
mitting a huge amount of messages (e.g., broadcast-based systems), the band-
width consumption will be high, rendering the system unscalable.

3.2 Routing in Unstructured P2P Networks

The earliest P2P systems are unstructured and peers in these systems are fully au-
tonomic. This means that there is no fixed topology for nodes in these systems. In
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an unstructured P2P system, each peer typically stores its own data objects and self-
maintains a set of links to other nodes (called neighbor nodes) so that the backbone
of the system is formed. When a node wants to join the system, it simply contacts an
existing node inside the system and copies links of that node to form its own links,
which are then maintained at the new node independently on the contact node. The
advantage of this type of P2P systems is that the systems allow high autonomy at
nodes and hence incur low maintenance cost. However, this advantage comes at the
high cost of query processing—since no peers have global knowledge of data place-
ment, queries may be flooded over the entire network. Consequently, the scalability
of unstructured P2P systems remains an issue of concern. To alleviate the problem
that the system may be flooded with query messages, most unstructured P2P sys-
tems attach a Time-to-Live (TTL) value to each query. Based on the TTL value, the
system is able to delete the query when a predefined time or a predefined number of
search steps has passed. The challenge now is how to optimize query processing in
the limited number of search steps constrained by TTL. Several routing strategies
have been proposed to target this challenge. In particular, Li et al. [193] have done a
survey of existing routing strategies. In this section, we first introduce the two basic
routing strategies: Bread-First Search and Depth-First Search. After that, we discuss
some outstanding heuristic-based routing schemes.

3.2.1 Basic Routing Strategies

3.2.1.1 Breadth-First Search

BFS (Breadth-First Search) is a simple and straightforward search technique for
unstructured P2P networks, such as the original Gnutella [133]. The search depth is
specified by a predefined system parameter D, which denotes the maximum TTL of
a message during query traversal or search. When a node receives a query message,
besides processing the query, it simply forwards the query to all its neighbors except
the sender. This process repeats until the length of the query path of the message
reaches D. The original Gnutella network is a fully decentralized P2P network and
the details could be found in Chap. 2.

3.2.1.2 Depth-First Search

In DFS (Depth-First Search) search scheme, a system-wide search depth D is also
specified to denote the maximum TTL of a query message. However, instead of
sending a query to all neighbors, each node selects the most promising neighbor
that can answer the query and sends the query to only that node. After that, if the
node does not receive a reply within a certain period of time or answers of the query
cannot be found, the node selects the next promising neighbor to send the query.
This process repeats until either the node satisfies with the query result or the node
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Algorithm 1 : FreeNet_Search (Node x, Key k, TTL t )
1: result = Local_Search(k)
2: if result = found then
3: return result to the requester node
4: else
5: if t = 0 then
6: return “not found” to the requester node
7: else
8: repeat
9: pick a neighbor node y in the routing table of x that has the nearest key

to k and has not been searched before
10: result = FreeNet_Search(y, k, t − 1)
11: until result = found or all neighbors have been searched
12: return result to the requester node
13: end if
14: end if

has no more neighbors to send the query. When a node has an answer for the query,
it returns the answer back to the query initiator along the reverse query path and
each peer in the query path will cache the answer locally.

FreeNet [3] is an information storage and retrieval P2P system based on the DFS
scheme. The system is designed to address the problem of privacy and scalability.
In FreeNet, each peer maintains a data repository and a routing table. While the data
repository holds shared data, the routing table keeps information of neighbor nodes
such as IP Address and keys of shared data possibly stored at these nodes for routing
purpose. To limit the use of storage, which is constrained by most nodes, FreeNet
employs the Least Recently Used (LRU) replacement policy to discard old shared
data and neighbors. In FreeNet, all files are stored and searched with keys. To search
a file whose key is k, the query initiator, node x, first searches the key in itself. If
k is found, the node retrieves the file and the search process terminates. Otherwise,
the node sends the query to a neighbor node y in its routing table that has the nearest
key to k. Upon receiving the query, y also first performs a local search for k. If k

is found, y returns the result to x and the search process terminates. Otherwise, y

continues to send the query to a neighbor z that has the nearest key to k and so on.
This search process repeats until the TTL value of the query equals to 0 or the query
is satisfied. In general, the search algorithm of FreeNet is described in Algorithm 1.

Figure 3.2 shows an example of query processing in FreeNet. In this example,
Peer 1 queries the file with key k that is actually stored at Peer 4. Peer 1 first sends k

to Peer 2 that has the nearest key in terms of k. Peer 2 then sends a failure message
back to Peer 1 since there is no target file in Peer 2 and Peer 2 has no other neighbors
except Peer 1. Upon receiving the failure report from Peer 2, Peer 1 sends k to the
second best neighbor Peer 3. Peer 3 relays the query to Peer 4 since Peer 4 is its
best neighbor with respect to key k. The target file is found at Peer 4. Peer 4 returns
the file to Peer 1 along the reverse path of request. Note that during the return of
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Fig. 3.2 An example of
query routing in Freenet

the query result, the information of the key k is also cached (stored) in the routing
tables of Peer 1 and Peer 3.

3.2.2 Heuristic-Based Routing Strategies

3.2.2.1 Iterative Deepening

Iterative deepening is a searching technique widely used in many areas more or
less related to Artificial Intelligence. Yang et al. [343] applied this technique in P2P
searching. In iterative deepening, the query is initiated with a sequence of multiple
traditional BFS searches by enlarging search radius gradually. The search process
terminates when either the maximum depth is reached or the results for the query
satisfy the user’s requirement.

In iterative deepening, a system policy P must be provided to specify the se-
quence of the depths at which the iteration happens. Formally, the policy should be
like this: P = {D1,D2, . . . ,Dn}, where D1 < D2 < · · · < Dn. In addition, the time
period for each iteration, W , should also be determined. In the following, we would
give a specific example to explain the use of P and W during query processing.

Suppose we have a policy of three iterations, P = 2,4,7 and W = 5 seconds.
Under this policy, the source node S first sends a query message to the network via
BFS search of depth 2. The nodes that are within 2-hops away from the source node
would receive the message. These nodes then evaluate this query message locally
and return the results to S. In the meantime, the query would be temporarily stored
on the nodes that are 2-hops away from S. After W seconds, S would terminate
the query if the results satisfy the user. Otherwise, S issues another resend query
message with a BFS depth of 4, whose query ID is the same as the query ID of
the previous query message. Upon receiving this resend query, the nodes that are
less than 2-hops away from the query node would do nothing but forward the query
to their neighbors. This process repeats until the resend query message reaches the
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nodes, where the previous query terminates, i.e., the nodes 2-hops away from S. At
these nodes, the previous query that has been temporarily stored before is retrieved
and forwarded to their neighbor nodes with the new TTL of 4–2. The query mes-
sage is then processed in the same way as the query message in the first iteration.
Similarly, the search for depth of 7 is processed next. However, when the depth of
7 is reached, the messages are not temporarily stored on nodes that are 7 hops away
from S since this is the last iteration. S will not issue another resend message even
if the results do not satisfy the user’s requirement.

3.2.2.2 Directed BFS and Intelligent Search

The difference between BFS and directed BFS [343] is that in BFS each node sends
the query to all of its neighbors, while in directed BFS each node only queries a sub-
set of its neighbors. Those neighbors that receive the query from the source node,
then forward the query by using the standard BFS technique. The key point in di-
rected BFS is how to intelligently choose “good” neighbors that would potentially
contribute more relevant results for the query. To achieve this goal, each node main-
tains some statistics of its neighbors such as the number of times previous queries
can be answered through a neighbor node, the number of results obtained for the
queries and the latency in receiving the results. Based on these statistics, the node
can choose the neighbors “intelligently”. Some heuristics include:

− Choose neighbors that returned the largest number of results previously.
− Choose neighbors that incurred the least hop-count messages previously.
− Choose neighbors that forwarded the largest number of messages previously.
− Choose neighbors that have shortest message queues.

The advantage of directed BFS is that since a node only sends the query to a
limited number of neighbors instead of all neighbors, the number of query messages
in the network is greatly reduced. In the meantime, if a node is able to choose “good
neighbors” to send the query, the quality of query results can be maintained.

One disadvantage of this technique is that the statistics each node stores of its
neighbors are too simple. These statistics do not contain the information related
to the content of query. To alleviate this problem, Kalogeraki et al. [170] have pre-
sented a similar but more complex approach called intelligent search. In this method,
each peer ranks its neighbors based on their relevances to the query and only routes
the query to those neighbors that have high relevances. To implement this technique,
two components are presented in the paper, one is the profile mechanism, the other
is the Relevance Rank function.

− In the profile mechanism, the peer builds a profile for each neighbor. The profile
contains the most recent queries processed by its neighbors along with the num-
ber of query hits. To limit the use of storage, the peer employs the Least Recently
Used (LRU) replacement policy to discard old cached queries.

− In the Relevance Rank (RR) function, the peer pl performs an online ranking of
its neighbors to choose the nodes the query q should be forwarded to. To compute
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the rank of each neighbor pi , pl collects the information from the profiles and
computes the relevance of pi and q as follows:

RRpl
(pi, q) =

∑

j=queries answered by pi

Qsim(qj , q)α ∗ S(pi, qj ). (3.1)

In the above equation, Qsim(qj , q) represents the similarity between queries qj

and q , which is the cosine of the angle between the representative vectors of
these two queries. S(pi, qj ) is the number of results returned by pi for query qj .
In addition, α is a configurable parameter that is used to add more weight to the
most similar queries. This equation is based on the intuition that those nodes that
returned more highly similar results should have higher relevances.

Intelligent search provides a more exact ranking of peers than directed BFS since
it takes the content of the query into account. It has good performance in networks
that exhibit a high degree of query locality. The problem associated with intelligent
search is that the search space might be limited to a small part of the network and
thus fails to explore other parts of the network. To address this problem, a small
amount of random peers are also added into the set of high-relevance peers to for-
ward the query.

3.2.2.3 Local Indices Search

In the local indices search method [343], each node creates indices for both its local
data and the data on neighbor node that are within a radius of k hops from it (if k = 0,
this method is similar to BFS search, since each node only indexes its own data).
In this way, the result returned by processing a query with data indices at a node is
the same as the result returned by processing the query with local data at all nodes
within a radius of k hops from the node. The purpose of this method is to reduce
the number of nodes processing a query while still getting the same result as BFS
search. In particular, this method processes queries based on a global policy P that
specifies a list of depths in the search tree where the query is processed. When a node
receives a query, if it is located at the depth specified in P , it processes the query.
Otherwise, it simply forwards the query to its neighbor nodes without processing it.
The search process terminates when the specified maximum depth in P is reached.
For example, if global policy is P = {1,4,7}, queries should be processed at nodes
located at the depths 1, 4, and 7 in the search tree and be forwarded at nodes located
at the depths 2, 3, 5, and 6, and the search terminates at nodes located at depth 7.

In this method, the indices of a node need to be updated when a new node joins
the system, an existing node leaves the system, or when there are changes in the
data stored at neighbor nodes within a radius of k hops from it. In particular, when
a new node joins the system, it creates and broadcasts its data indices to all neigh-
bor nodes within a radius of k hops from it so that these neighbor nodes can add
new data indices for the new node. Additionally, when a node receives a data index
message from a new node, it also replies the new node its data indices. Based on
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replied indices, the new node then constructs its own data indices. In cases of node
departure, when a node realizes the absence of a node, which has left the system or
failed, it simply removes data indices from that node. In cases of data update, when
a node modifies its data, it needs to broadcast the modification to all nodes within a
radius of k hops from it so that these nodes can update their data indices to reflect
the modification.

It is important to note that while the local indices approach reduces the processing
cost by limiting the processing to fewer nodes, it incurs a higher storage cost since
more indices need to be stored at a node and a higher update cost for these indices.
Furthermore, due to the dynamics of the network, the indices may be obsolete or
inconsistent.

3.2.2.4 Routing Indices-Based Search

In routing indices (RI) search [88], documents are classified into topics and each
peer stores information about topics and the number of documents in each topic that
can be retrieved through its neighbors. During query processing, this information is
used to guide the search. This type of search is actually similar to intelligent search
in the sense that both methods use the indexed information about neighbors to direct
the search. But the information of neighbors in these two methods are different. In
intelligent search, each peer stores the statistics about past queries answered by each
of its neighbors, while in routing indices search the information is about the number
of documents that can be found through each neighbor on each topic. There are three
specific types of RI search, as follows.

− Compound RI (CRI). In this type of RI, each node keeps both the total number
of documents and the number of documents in each topic that can be retrieved
through each neighbor. Using this information, the “goodness” of a neighbor i

for a query could be evaluated by the number of documents NUMi that could
be found through neighbor i. With the assumption that document topics are in-
dependent, the value of NUMi could be estimated by the following formula:

ni × ∏
j

CRI(nij )

ni
, where CRI(nij ) is the number of documents on topic j that

could be found through neighbor i and ni is total number of documents that
could be found through neighbor i. During query processing, each peer com-
putes the goodness for each neighbor with the above formula and forwards the
query to the “good” neighbors. The CRI uses the following strategy to create the
indices. When a node x connects to another node y, each of them summarizes its
RIs and sends aggregated indices to the other one. When either of them receives
the other’s indices, it creates a new RI, and updates their other neighbors accord-
ingly. The mechanism of CRI update and deletion are similar to the creation of
CRI.

− Hop-count RI (HRI). A weakness of CRI is that the indexed information only
contains the number of nodes that can be retrieved through each neighbor node.
This information does not reveal how many hops that are required to find docu-
ments. The HRI aims to address this limitation by incorporating the hop count.



3.2 Routing in Unstructured P2P Networks 47

In this method, each node stores a CRI for each hop going through a neighbor
node from 1 to h, where h is the horizon of the index, i.e., the maximum num-
ber of hops in query processing. In particular, a HRI of a neighbor node at a
node consists of a set of CRI, each of which specifies the number of documents
that can be retrieved though the neighbor after a number of hops. Given a query,
the goodness of the neighbor to a query is evaluated by not only the number of
the returned documents for the query per message, but also the number of hops
required to find such number of documents.

− Exponentially aggregated RI (ERI). A disadvantage of the HRI is that it incurs
high storage and transmission costs. Additionally, each peer becomes “blind”
for those nodes beyond the horizon. The ERI alleviates these shortcomings by
scarifying the accuracy of indices. In particular, the method accepts some incor-
rectness in the indices by applying the regular-tree cost formula to HRI.

3.2.2.5 Random Walk

The basic idea of a random walk algorithm is that when a peer issues or receives
a query, each randomly selects a neighbor to send or forward the query and this
process repeats until the search result is found. The query message in this case is
called a “walker”. The advantage of this algorithm is that it significantly reduces
the network communication cost since it uses only one message each time. The
disadvantage, however, is that it incurs a long delay in query processing. Moreover,
if TTL is applied, the search result may not be found. To alleviate this problem,
authors of [210] suggested that the query initiator could send k query messages to
its neighbors instead of one, each of which is a walker. It means that when a node
receives a query message, it just follows the basic random walk to randomly select
a neighbor to forward the query. To distinguish the basic random walk algorithm
from this variant random walk algorithm, the former is called 1-walker random walk
algorithm while the later is called k-walker random walk algorithm. The expectation
of k-walker algorithm is that it can reach the same number of nodes after H hops as
1-walker after k × H hops. In this way, the network delay in 1-walker is cut down
by a factor of k. The experimental results in the [210] confirm this expectation.
There are two mechanisms that are applied to terminate a query in the random walk
algorithm: time-to-live (TTL) and “checking”. Similar to other methods, in TTL
mechanism, each query message is attached a TTL that limits the searching scope.
In “checking” mechanism, each walker periodically refers to the query source and
checks if the query should be terminated before it walks to the next node.

Another search method, called random breadth first search (RBFS) [170], is very
similar to the k-walker random walk algorithm. In this method, the query initiator
first randomly selects a subset of its neighbors to send the query. Each of these
neighbors then randomly selects a subset of its neighbors to forward the query. The
process repeats until the termination condition is satisfied, e.g., TTL is expired or the
result is found. The main difference between the k-walker random walk algorithm
and the RBFS is that as search progresses, the number of messages as well as the
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number of visited nodes in the k-walker random walk algorithm increase linearly
while those in the RBFS increase exponentially, and hence RBFS has a higher query
success rate than the k-walker random walk algorithm.

3.2.2.6 Adaptive Probabilistic Search

The adaptive probabilistic search (APS) [321] is a search method that combines
techniques of both k-walker random search and probabilistic search. This method
is based on an assumption that both the storage of objects and the number of the
queries follow a certain distribution, which cannot be affected by the query process.
The main difference between APS and random walkers method is that given a query
random walkers method sends the query randomly to neighbor nodes while APS
sends the query to neighbor nodes based on some probabilities. In particular, in
APS, each peer contains a probability for each neighbor with respect to each object.
The probability of a neighbor node to receive a query from a node is determined
from past results returned to the node via that neighbor node. The higher the number
of cases a query is successfully processed when it is forwarded through a neighbor
node, the higher the probability of that neighbor node is, and the higher the change
that neighbor node is selected to send a query in the future. Initially, the probability
associated with each neighbor and each object is the same. There are two approaches
to update the probabilities as follows.

− Optimistic approach. In this approach, the system proactively increases the prob-
abilities for selected neighbors associated with the queried object along the
search path and decreases their probabilities only if the walker passing through
them terminates with a failure.

− Pessimistic approach. In this approach, the system proactively decreases the
probabilities for selected neighbors associated with the queried object along the
search path and increases their probabilities when the walker passing through
them terminates with a success.

To further improve the performance of APS, Tsoumakos et al. [321] have pre-
sented two optimization techniques: swapping-APS (s-APS) and weighted-APS
(w-APS). In s-APS, each peer swaps between optimistic method and pessimistic
method based on the observation of the ratio of the successful walkers for each ob-
ject. The w-APS takes into account the location of objects when probabilistically
selecting neighbors.

3.2.2.7 Bloom Filter Based Search

In attenuated bloom filter based search [270], each peer uses the attenuated bloom
filter to summarize the names of nearby documents and then forwards the query to
the nodes that potentially have matching documents. To some extent, this approach
is similar to the Routing Indices-Based Search presented in Sect. 3.2.2.4. In this
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method, each peer stores an attenuated bloom filter for each neighbor. An attenuated
bloom filter of depth d consists of d regular bloom filters from level 1 to level h, h

is the horizon of the index. The i th bloom filter in the attenuated bloom filter at node
x for neighbor y summarizes the documents that can be retrieved though y after a
number of i hops. The accuracy of the information in the bloom filters is attenuated
from the lowest level to the highest level. Similar to the Hop-count Routing Index
scheme (HRI), a limitation of this method is that it cannot find documents, which
are far away from the query initiator (>h hops in distance). Another limitation of
this method is that it can only support title-based search rather than content-based
search.

PlanetP [92] is an information retrieval P2P system based on gossiping the global
state in the form of bloom filters. Specifically, each peer uses the bloom filter to
summarize its local inverted index and distributes this bloom filter into the network.
The global index is obtained by gossiping the bloom filters of different peers in
the network. Given that each peer has the bloom filters from other peers, it can
forward the query to the nodes that potentially have more answers. Upon receiving
the query, these peers perform the local search using the vector space model. Even
though PlanetP does not suffer from the two problems associated with attenuated
bloom filter search, it is not scalable since the gossiping protocol is used.

3.2.2.8 Interest-Based Shortcuts

Sripanidkulchai et al. [301] have introduced a method where each peer adds ad-
ditional links on top of existing searching network (e.g., Gnutella) to improve the
search performance. The additional links are links connecting two peers having a
similar interest. The basic idea of this method is based on an observation that if a
peer x is interested in some contents of a peer y, with high probability x is also inter-
ested in other contents of y. These additional links are called interest-based short-
cuts since they represent interest-based locality for content search. The main advan-
tage of this method is that using shortcuts, the method improves not only the search
performance but also the scalability of the system. In the meantime, the method still
retains the good nature of Gnutella. Figure 3.3 shows an example of interest-based
shortcuts used by nodes in a system.

When a peer issues a query, it first employs interest-based shortcuts to forward
and process the query. After this step, if the peer satisfies with the returned results,
the search is terminated. Otherwise, the peer continues to process the query by using
the normal query processing algorithm over the Gnutella overlay. Shortcuts of a peer
in the system are constructed in the following way. At first, when a peer joins the
system, it has no shortcuts. After each successfully processed query, the peer adds
shortcuts to peers providing answers for the query. Due to space constraint, each
peer only stores a limited number of shortcuts that have the highest utility.
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Fig. 3.3 Interest-based shortcut

3.3 Routing in Structured P2P Networks

Even though the unstructured P2P systems are the most popular ones because they
are simple and easy to deploy they suffer from the problem of low efficiency, i.e.,
the systems cannot guarantee that a result of a query is found even if it exits in the
system. This problem inspired the development of Structured P2P Systems. Unlike
unstructured P2P systems, participant nodes in a structured P2P system are required
to organize into some fixed topologies such as a ring as in Chord [173], a multi-
dimensional grid as in CAN [266], a mesh as in Pastry [275] and Tapestry [349], or
a multiple list as in Skip Graph [31]. This means that in a structured P2P system,
when a node joins the system, it has to follow some strict procedures to set up its po-
sition in the system according to the topology the system adopts. The advantage of
this requirement is that based on a fixed topology, the system is able to index data in
some order so that the data can be found easily later. As a result, the system can pro-
vide an effective and efficient search. In particular, the system can guarantee that if
a result of a query exists in the system, it has to be found. Moreover, most structured
P2P systems can provide an answer for a query within O(logN) steps where N is
the number of nodes in the systems and each step takes exactly one message. This
result implies that the problems of search in unstructured P2P systems are totally
eliminated in structured P2P systems. Nevertheless, the disadvantage of structured
P2P systems is that the need for a network topology incurs high maintenance cost.
In general, we can classify existing structured P2P systems in three main categories
based on their overlay network structure: distributed hash table based systems, skip
list based systems, and tree based systems.

− Distributed hash table based systems use distributed hash tables (DHTs) [35] to
organize nodes and index data. In this kind of systems, each participant node is
responsible for a range of values and each data item is assigned a single value
obtained by a uniform hashing function such as SHA-1 [16]. As a result, these
systems can support exact match query efficiently. Moreover, by employing uni-
form hashing, these systems inherit good properties from this kind of hashing,
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such as uniform load distribution among nodes in the systems, and hence their
good performance is ensured. Several existing P2P systems belong to this cat-
egory. These systems are based on a variety of structures such as a ring as in
Chord [173], a multi-dimensional grid as in CAN [266], a Plaxton mesh [258] as
in Tapestry [349] and Pastry [275], a butterfly as in Viceroy [213], de Bruijn
graphs as in Koorde [175], or a XOR-based metric topology as in Kadem-
lia [218]. The weakness of these systems, however, is that they cannot support
range query since uniform hashing destroys the ordering of data. To solve this
problem, variants of the distributed hashing methods such as locality sensitive
hashing [141, 281] and locality preserving hashing [29] have been proposed.

− Skip list based systems including Skip Graph [31], Skip Net [154], and Skip
Index [348] utilize the skip-list structure, which is a multiple sorted double linked
list. However, different from Skip List, these systems have many lists at a level
and a node participates in a list at each level. By preserving the order of data in
the list structure and partitioning data into ranges of values, these systems are
able to support both exact match queries and range queries.

− Tree based systems employ different types of trees to index data. The purpose of
using tree structures is to support range queries efficiently. P-Grid [17], which
employs a binary prefix tree structure, can be considered as the first P2P system
building on a tree structure overlay network. Later, there are proposals of us-
ing an arbitrary multi-way tree [194], a balanced tree structure (BATON [166]),
a B+-tree structure [86, 87], and an R-tree [167, 192, 225].

Even though different structured P2P systems employ different topologies to or-
ganize and connect nodes, [262, 265], and [207] have observed that most of them
have Cayley graphs as their static architecture. These abstract algebra graphs have
been studied in the late 1980s and early 1990s in the context of parallel comput-
ers (processor interconnection networks), but properties that are considered im-
portant in that context, like planarity—the possibility to arrange the nodes with-
out intersecting the edges, are not relevant in P2P overlays. Lupu et al. [207] have
proved that by choosing different sets of generators and operations, we can form
different Cayley graphs corresponding to different structured P2P systems. For ex-
ample, by applying two different generating sets S1 = {2i , i = 0, . . . ,m − 1} and
S2 = {±2i , i = 0, . . . ,m−1} with the same binary operation + (mod 2m) over same
the group of positive integers smaller than 2m, we form two Cayley graphs cor-
responding to two structured P2P systems: Chord [173] and Skip Net [154]. Fur-
thermore, even if a structured P2P system is not generated from a Cayley graph,
by adding some limited extra nodes and connections, it can form a Cayley graph.
As an example, Lupu et al. [207] have shown that even though BATON [166] is
a structured P2P system not generated from a Cayley graph, by adding just one
node and corresponding connections to that node, the tree structure can be easily
converted to a Chord ring, which is in a form of a Cayley graph as in Fig. 3.4.
Since so many structures can be represented as Cayley graphs (e.g., Chord, CAN,
Viceroy, SkipNet) and others can be mapped to them (e.g., Pastry, BATON) it is
worth while studying the architecture of these underlying graphs (how to connect
nodes and how to route messages between them) in order to obtain good estimates
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Fig. 3.4 Mapping BATON (a) to a Cayley graph (b)

of the performance of the networks in terms of query success rates [207]. A common
conclusion of these works is that hamiltonicity (i.e., the existence of a hamiltonian
cycle) is an important property of the structures. This is mainly because it provides
a “default” route in the network. [207] goes a bit further with the analysis of the
properties of these networks and identifies the node bisection width (the number
of nodes that need to be removed to split the network in equal subnetworks) as a
significant measure of quality for the underlying structures. Through extensive tests
over the different networks mentioned above in this section, [207] shows that the
higher the node bisection width of the underlying graph, the higher the success rate
of the queries.

In the remaining part of this section, we introduce some well-known systems
of the above three categories. These systems include representative systems from
the first category: Chord [173], CAN [266], Tapestry [349] and Pastry [275],
Viceroy [213] and Crescendo [126]; typical systems of the second category: Skip
Graph [31], Skip Net [154]; and outstanding systems of the third category P-
Grid [17], P-Tree [86], and BATON [166].

3.3.1 Chord

Chord is one of the most widely known structured P2P systems in the P2P liter-
ature. The system uses a one-way consistent hash function to map each node and
data item to an identifier in a single-dimensional identifier space. In particular, the
hash function uses the node’s IP address to generate an identifier for a node and
uses the data item (or the key of the data item) to generate an identifier for a data
item. For example, if we use the SHA-1 [16] algorithm, the identifier of a node
IP = “202.120.224.102” is SHA-1(202.120.224.102) and the identifier of a data
item “12345” is SHA-1(12345). An important characteristic of this system is that
the identifier space must be chosen large enough so that the probability of assigning
the same identifier to different nodes is negligible.
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Fig. 3.5 An identifier circle based on consistent hashing

Chord orders identifiers of nodes and data items in an identifier circle modulo 2m

i.e., the identifier space is a circle of numbers from 0 to 2m − 1. This is the reason
why we call Chord a ring structure. The system assigns a key k to the first node n

whose identifier is equal or follows the identifier of k in the circle space. In other
words, k is assigned to the first node clockwise from k. In this case, n is called
the successor node of k, denoted as n(k). Figure 3.5 shows a graph representing a
Chord ring where two keys K6 and K18 are assigned to the same node identifier
N30 obtained by hashing the IP address “202.120.224.102”; Key K56 obtained by
hashing the word “Sailing” is assigned to node identifier N70; Key K100 is assigned
to node identifier N105; Two nodes N42 and N100 store no data items.

Simple Lookup Algorithm. In this algorithm, each node in the system only needs
to know its immediate successor node to perform lookup operations. When a node
receives a query request, it first checks its local storage to see if it holds the queried
data item. If yes, it returns the result to the query requester. If no, it forwards the
query to its immediate successor node. Note that in a special case where the node
does not hold the queried data item while the identifier of its immediate successor
node exceed the identifier of the queried data item, that queried data item does not
exist in the system. Since this algorithm forwards a query step by step through suc-
cessor nodes, the complexity of the algorithm is O(N), where N is the number of
nodes in the system. For example, assume that node N30 wants to lookup for key
K56 stored at node N70 as in Fig. 3.6. Since node N30 does not hold the key, it first
sends the query request to node N42. Then, since N42 also does not hold the key,
it forwards the query to node N70. Finally, when N70 receives the query request,
since it holds key K56, it returns the result to node N30 along the reverse of the path
followed by the query.

Scalable Lookup Algorithm. To expedite lookups, instead of maintaining only
one immediate successor node, each node can maintain additional routing informa-
tion. In particular, each node identifier n maintains a finger table consisting of m

successor nodes and an immediate predecessor node. Each entry i in the finger table
of a node n contains information of the identifier and IP address (and port number)
of the first node whose identifier succeeds or equals n + 2i , where 0 ≤ i ≤ m − 1
(all arithmetic is modulo 2m). Before presenting the scalable lookup algorithm, let
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Fig. 3.6 The query path from
node 30 for key 56

Algorithm 2 : Chord_Lookup (Node n, Key-Id k)
1: for i = m down to 1 do
2: n′ = n.routingtable.get(i)
3: if n.id < n′.id < k then
4: Chord_Lookup(n′, k)
5: return
6: end if
7: end for
8: n′ = n.successor
9: if n.id < n′.id < k then

10: Chord_Lookup(n′, k)
11: else
12: result = Local_Search(k)
13: return result to the query issuer node
14: end if

us consider an example that will help clarify the meaning of entries in the finger
table. Consider the network (logically) and the finger table shown for node N7 in
Fig. 3.7(a), where the identifier space is [0,127]. The first entry in this finger ta-
ble contains information of node N30 since node N30 is the first node that succeeds
(7+20)mod 27 = 8. Similarly, the last entry in this finger table contains information
of node N81 since node N81 is the first node that succeeds (8 + 26)mod 27 = 72.

Now we present the lookup algorithm in Chord with finger tables as in Algo-
rithm 2. The procedure is executed when a node n wants to find the key-id k. At
first, node n searches its finger table for a node n′ with highest node identifier that
satisfies the condition n.id < n′.id < k. If such a node exists, n asks n′ to find the k,
recursively. Otherwise, n asks its immediate successor to find k. The basic idea of
this algorithm is that the closer n′ is to k, the higher possibility n′ contains k or
knows the node holding k. As an example, assume that node N7 wants to search
key K117 as in Fig. 3.7(b). At first, node N7 searches its finger table to find the
farthest node that precedes K117 in the identifier space. Since node N81 is such the
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Fig. 3.7 Scalable lookup
algorithm

node, node N7 asks node N81 to resolve the query. In turn, node N81 determines
node N105 as the farthest node in its finger table that precedes K117 in the identi-
fier space. As a result, N81 forwards the query to N105. Node N105 then discovers
that its immediate successor, node N120, succeeds key K117, and hence it continues
to forward the query to N120. Finally, since N120 holds the queried key, it returns
the result to node N7. It is shown that the expected number of routing hops in this
search algorithm is O(logN) steps, assuming accurate finger tables and no recent
node failures.

System Construction. In Chord, when a new node n joins the system, it needs to
(1) find its position in the Chord ring and obtains keys it is responsible for, (2) initial-
ize its finger table and (3) update finger tables of other nodes to reflect the presence
of the new node. To do the first task, n needs to know an existing node x in the sys-
tem and sends a request to find its immediate successor to x. x then uses the lookup
algorithm to find the immediate successor y of n. Upon finding y, n is put between
y and its predecessor z and y passes to n keys n should be responsible for. Now,
n replaces y to become the new immediate successor of z and replaces z to become
the new predecessor of y. When a node has set up its position in the system, the sec-
ond task can be done simply by sending lookup requests to find successor nodes of
specific finger table entry values. However, the third task cannot be done easily. It is
because the new node does not know which nodes should update their finger tables
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Fig. 3.8 The node joining process in the Chord

due to the presence of the new node. The given solution is that each node in the sys-
tem needs to periodically run a stabilization protocol that updates Chord’s successor
pointers and finger tables. As a result, soon after a new node joins the system, finger
tables of affected nodes should be updated. This stabilization protocol also makes
it easy for node departure. When an existing node leaves the system, it needs to do
nothing. The changes in finger tables of nodes that are affected by the departed node
are corrected later by the stabilization protocol. As an example, Fig. 3.8 illustrates
the join procedure of a new arrival node N50.

3.3.2 CAN

CAN [266] (Content Addressable Network) is a structured P2P system built on a
virtual d-dimensional Cartesian coordinate space. The system partitions the coordi-
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Fig. 3.9 A two dimensional
space CAN system with 5
nodes

nate space into different zones, each of which is assigned to a node. Each node in
the system stores all data items belonging to the zone it is responsible for. To insert
a new data item, the system uses a uniform hash function to map the key value of
the data item to a point p in the coordinate space and finds the node n whose zone
covers p to store the new data item. To process a query, the system also uses the
same hash function to map the query to a point p′ in the coordinate space and find
the node n′ whose zone covers p′. If the query’s result exists, it should be stored
at n′. To find a node whose zone covers a point, the system starts at the requester
node and follows immediate neighbor nodes step by step until it reaches the destina-
tion node. As a result, for routing purpose, each node in CAN needs to maintain the
information of its neighbor nodes that are nodes holding adjacent coordinate nodes
to the node’s zone. Information of a node’s neighbor nodes forms the routing table
of that node. Figure 3.9 shows an example of a CAN system with 5 nodes in a two
dimensional space.

Routing in CAN. Basically, CAN routes query messages in the system by fol-
lowing the most direct path through the Cartesian space from the source node to
the destination node. As mentioned above, each node in CAN has a routing table
storing information of its neighbor nodes in the coordinate space. The information
of a neighbor node includes the IP addresses of the neighbor node and the coordi-
nate zone that node in charge of. In a d-dimensional coordinate space, two nodes
are neighbors if they share the borders at all d dimensions but 1 dimension. Based
on routing tables of nodes, a system can forward a message between two arbitrary
points in the coordinate space. In particular, similar to CHORD, CAN employs a
simple greedy forwarding algorithm that always routes the message to the neighbor
having the closest coordinate zone to the destination zone. Algorithm 3 displays the
search algorithm of CAN.

It is shown that in a system of N nodes in a d dimensional space, the aver-
age routing path length between two arbitrary points is (d/4)(N1/d) steps and each
node maintains approximately 2 · d neighbors. The later result implies that the rout-
ing table size of nodes in CAN is independent of the network size, i.e., in a fixed
dimensional space, the number of nodes in CAN can be increased without increasing
the routing table size. Furthermore, since there are many different routes between
two points in the coordinate space, CAN provides strong fault tolerance: even if one
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Algorithm 3 : CAN_Lookup (Node n, Point p)
1: if n.zone covers p then
2: result = Local_Search(p)
3: return result to the query issuer node
4: else
5: find a neighbor node n′ whose zone is closer to p

6: CAN_Lookup(n′, p)
7: end if

or more neighbor nodes of a node fails to work, the node can automatically selects
the next best available path to route the message.

System Construction. In CAN, when a new node joins, the system must find
the location for the new node and set up neighbors for that node. The join process
operates in three steps as follows.

1. Retrieving existing nodes in the system. In this step, the new node sends a re-
quest to the system’s bootstrap node to find an existing node in the system. The
bootstrap chooses an arbitrary existing node and returns this node to the new
node.

2. Finding a location: When the first step is done, the new node randomly chooses
a point in the coordinate space and sends a JOIN request towards the node n

holding this point using the routing algorithm. Upon receiving the JOIN request,
n splits its zone into two parts. It keeps one part and assigns the other to the new
node.

3. Setting up the routing table: After setting up its position in the coordinate space,
the new node needs to construct its routing table. To do this, the new node just
copies the routing table of node n in the previous step. The set of neighbor nodes
in the routing table of the new node is a subset of nodes in the copied routing
table and node n. Besides, node n and neighbor nodes of the new node also
needs to update their routing table to reflect the existing of the new node.

3.3.3 PRR Trees, Pastry and Tapestry

In this subsection, we will first introduce PRR trees [257] followed by two schemes
based on PRR trees: Pastry and Tapestry. We will describe how to route message in
Pastry and handle the node joining and leaving a Pastry network. After that, we will
present routing and object location in Tapestry.

Plaxton, Rajaraman, and Richa introduced PRR trees in 1997. They were inter-
ested in object sharing in a distributed network, where several copies of each object
may exist at any given time. Their goal was to ensure both fast access to the objects
and efficient utilization of network resource based on a probabilistic algorithm for
accessing shared objects that satisfy each access request with a nearby copy. They
used a novel mechanism to maintain and distribute information about object loca-
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Fig. 3.10 Neighbors of a
node under PRR

tions, and their scheme requires only a small amount of additional memory at each
participating node. But PRR tree was designed only for static networks and had no
existing implementation. Later, two P2P networks have been proposed, based on
PRR trees: Pastry and Tapestry. Both extend to support dynamic node membership
and have several implementations.

The Basic Idea. In PRR scheme, each node is assigned a unique t-bit identifier
(nodeID) randomly from identifier space (below we denote it as ID-Space). We can
divide the nodeID into l levels of w = t/ l bits each; let w bits represent a digit and
b = 2w be the basis of node identifier. Each node i has (b − 1) logN neighbors
l = logN levels of 2w neighbors each, such that each level k, 0 ≤ k ≤ l, will have
nodes with identifiers as follows: k common digits with i’s identifier, followed by all
possible 2w values for the (k + 1)st digit, and any of the 2w possible values for each
of the remaining digits. These sets of neighbors form a routing table. An example of
routing table is given in Fig. 3.10. In the figure, at level L1, 3AF2 has one neighbor
3C57 (these two nodes share the common first digit), and at level L3, 3AF2’s two
neighbors (3AF1 and 3AFC) share the same first three digits. For each node i in the
ID-Space, we define closest(i) as the node whose nodeID is “closest” to i, where
the definition of “closest” varies, but subject to the ID-Space.

Routing in PRR Tree. It is essential to find closest(i) of each node i. In general, we
can find closest(i) from node with identifier j by greedily forwarding the message
to a node k in the routing table of j that (1) has the longest matching prefix with
i among neighbor nodes and (2) has the longer matching prefix compared to the
matching prefix between i and j . In the case where k does not exist, j is the closest
node (root) to i. The routing algorithm is described in Algorithm 4. To see how
to route message in PRR trees, we consider an example like the one depicted in
Fig. 3.10. In this example, for node 3AF2 to search for 47E2, it first searches its
routing table to locate a node closest to 47E2. In our example, this node is 443E.
When node 443E receives the message, it continuously resolves the second digit by
routing to another node with 47 ∗ ∗ (where * denote any digit), which in turn routes
to 47E∗ and finally reaching 47E2.

In a network of N nodes, routing takes logb N time for exact matches. How-
ever, for inexact match, it is unclear how it works. Let’s consider the example in
Fig. 3.11(a). Suppose we are looking for owner of node identifier 3701. Now, sup-
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Algorithm 4 : PRR_Routing (Node j , Node i)
1: find a neighbor node k having the longest matching prefix with i

2: set p = length of matching prefix between i and j

3: set q = length of matching prefix between i and k

4: if q > p then
5: PRP_Routing(k, i)
6: else
7: j as the closest node to i

8: end if

Fig. 3.11 Routing in PRR and Pastry

pose that the network is well formed (i.e., every routing table spot that can be filled
is filled, and can route to all node identifiers). If the query starts at node 1000, it will
be routed to node 3800. On the other hand, if the query starts at node 2000, then it
will be routed to the node 3600.

Intuitively, what we want is that every node/key has a unique closest node. That is
we must have a way to resolve inexact matches. In what follows, we will introduce
the method used in Pastry (where every node chooses numerically closest node) and
Tapestry (where every node chooses next highest match on per digit basis).

Pastry. Pastry is an application layer service that provides object location and
routing services. The system architecture is a mix architecture of a PRR tree and a
Chord-like ring. The special design of Pastry compared to other P2P systems is that
Pastry considers the network locality in message routing. The purpose of this design
is to minimize the network distance of messages in traveling in terms of proximity
metrics such as the number of routing hops via different IP zone. To achieve this
purpose, Pastry employs a prefix-based scheme where each node has a unique 128-
bit node identifier and maintains a routing table consisting of:

− A set of leaf nodes. Leaf nodes are nodes having identifiers numerically closest
to the node identifier in which half of them have identifiers smaller than the node
identifier and half of them have identifiers greater than the node identifier. This
set of nodes plays an important role in routing messages.

− A set of PRR-style neighbor nodes. Neighbor nodes are nodes sharing the same
prefix with the node identifier at different degrees and are organized in a structure
that is very much like the finger table in Chord [173]. Together with leaf nodes,
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neighbor nodes are used in routing messages. However, they are only used if the
search key cannot be found at leaf nodes.

− A set of neighborhood nodes. Neighborhood nodes of a node are nodes that are
closest to the node according to some proximity metrics. Neighborhood nodes
are used in complementary with leaf nodes and neighbor nodes in routing mes-
sages. In particular, they are employed to select the closest nodes among satisfied
nodes to forward the query. This case happens when replication is applied in the
system, and hence given a query, there may be multiple routes to different repli-
cation sites.

Routing in Pastry. Similar to other PRR-based systems, when a node receives a
query message, it selects a neighbor node whose identifier is the closest num-
ber to the key and forwards the query to that neighbor node. In particular, the
routing algorithm works as follows. Given a query message received at a node,
the node first checks to see whether the search key can be found in the set of
leaf nodes. If so, it then chooses the numerically closest node and forwards the
message directly to that node. Otherwise, if there exists an appropriate PRR-
style neighbor having a common prefix with the key longer than the common
prefix between the node and the key by at least one digit, that neighbor node
is selected to forward the query. Finally, in the very rare case if a neighbor in
the above case does not exist or it is unreachable, the node forwards the query
to a neighbor having the same common prefix length with the key as itself or
a node whose identifier is numerically closer to the key than the node identi-
fier. This routing procedure ensures that the routing always converges, though
not necessarily efficiently. It is because in each routing step, the query is always
forwarded to a node whose identifier is numerically closer than the current node
identifier. Note that to give Pastry strong robustness, each node can stores up k

predecessors and k successors instead of just 1 predecessor and 1 successor as in
Chord. To see how Pastry routing algorithm works, we consider an example like
the one depicted in Fig. 3.11(b). In the figure, the PRR neighbors are depicted
by the lighter lines, while the leaf set neighbors are in bold arrows. Now we will
see that the closest node of 3701 is well defined. From node 1000, it will resolve
the first digit routing to 3800. After that at 3800, we are done because it is nu-
merically closer than 3600. On the other hand, if the query starts at node 2000,
it will resolve first digit routing to node 3600. Then at node 3600, it checks to
see that 3701 is in leaf set because 3701 is in the range 2000–3800. Now node
3600 will route the message to the numerically closer node, 3800.

Tapestry. The Tapestry network [349] is another peer-to-peer overlay routing in-
frastructure, which is based on PRR Trees just like Pastry network. Both Pastry
and Tapestry can maintain locally optimal routing table to reduce routing stretch.
The main difference between them is the method of dealing with inexact match.
Pastry chooses numerically closest node when routing identifier in the overlay.
In contrast, Tapestry chooses the next highest match node on per digit basis.

Routing and Object Location in Tapestry. There is a global identifier space in the
Tapestry, which can be represented as a PRR trees based overlay network. Every
node is assigned an identifier and every object has a unique identifier in the same
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identifier space. Tapestry maps each object identifier to a unique live node dy-
namically, which is called the object’s root. It is the same with Napster, Gnutella,
and DNS, that the root maintains a mapping from the object’s identifier to its
host instead of storing the object itself. To deliver messages to or find the object
in the overlay network, each node maintains a routing table containing informa-
tion about identifiers and IP addresses of its neighbors. Messages are forwarded
across neighbor links to the object’s root node.

The structure of Tapestry’s routing table called neighbor maps is similar to the
longest prefix routing scheme that is used by Classless InterDomain Routing (CIDR)
IP address allocation. There are several levels in the neighbor maps of a node, de-
noted as L1,L2, . . . ,Lb (b is the basis of identifiers). Each level has many link
entries pointing to the node’s neighbors. All the neighbors in Li share i − 1 prefix
digits with the node identifier, and the j th link entry of the i th level points to a closest
node that the i th position of that node’s identifier is j . There are variant definitions of
closest node, such as the node with lowest latency or highest next digit. Figure 3.10
shows some link entries of the neighbor maps of a single node in Tapestry net-
work, where the node 3AF1 is the first entry of the fourth level for node 3AF2. All
the neighbor maps of a node construct a routing table. In a real implementation of
Tapestry, each link entry may have several backup links for performance and avail-
ability. For the purpose of maintaining Tapestry’s integrity, each node also keeps
reverse references(backpointers) to other nodes that have a link entry pointing to it.

The mechanism of object location used in Tapestry is DOLR (Distributed Ob-
ject Location and Routing), which service model is: route_to_ object(ID, message)
and publish(ID). DOLR can be implemented based on simple owner service. How-
ever, the main problem of this method is not taking network distances into account,
which will cause bad performance in some situations, e.g., even if a object is stored
nearby, it’s owner node might be far away. A message sent to the object may be
routed through the diameter of the network. In Tapestry, the closest nodes provide
the locality property to reduce routing stretch.

Given an object identifier Oid, node N routes it to its root node. Let p is the
length of prefix digits shared by Oid and ID of N , Tapestry searches the (p + 1)th

level neighbor map of N for the best matched link. Let n is the digit at Oid’s p + 1
position, if the nth link entry is not empty, node N routes Oid to the node pointed
by the link. Otherwise, Tapestry chooses a closest link entry for routing. It is called
surrogate routing, where every identifier is mapped to a live node. For the identifier
that has no exactly matched node ID, a similar node ID is chosen as its root. Fig-
ure 3.12 gives an example of Tapestry network including three nodes: 0700, 0F00,
and FFFF. Node 0F00 is defined as the closest to node FFFF. For identifier 0000,
node 0700 is its root node.

In Tapestry network, both objects and nodes have identifiers and each identifier
has a unique root node. An object O is stored in node S, whose identifiers are Oid
and Sid, respectively. The root node of identifier Oid is node R, whose identifier is
Rid. A publish message of object O is routed from node S to node R periodically, it
will pass through several nodes that construct a publication path. To improve routing
performance, each node in the publication path stores a reference to object O . For
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Fig. 3.12 A simple example
of Tapestry network

example, in Fig. 3.12, node FFFF is the host of object 0000, so the routing path is
also the publication path. Node 0F00 is an intermediate node of the publication path,
which has a reference to 0000’s host (node FFFF) indicated by the dashed line. If
there are several replicas of object O on different nodes, each node publishes its own
copy independently. Tapestry nodes can store references to object O according to
network latency from their perspective. To locate object O in the Tapestry network,
a client routes a message to object O’s root node R to get the reference to O . If there
is a reference to object O in a node of the routing path, the message is redirected to
node S.

3.3.4 Viceroy

Viceroy [213] is a multi-level DHT-based routing network approximating to a but-
terfly network. In Viceroy, every node maintains five outgoing links besides linking
to its predecessor and successor on the ring, which is formed like Chord. For a node
in level l, it holds a down-right edge and a down-left edge that are linked rigidly to
the close-distance node and 1/2l away node of level l + 1, as well as a “up” link to
a close-by node at level l − 1 and two “level-ring” links to the next and preceding
nodes of the same level. The routing procedure of a message consists of three steps
as follows.

1. Going up: the system forwards the message to a level-1 node using “up” links. In
some cases, the system may forward the message to the root by repeatedly going
up.

2. Going down: the system routes the message downward low levels of the tree
using the down links. In particular, depending on whether the destination is at a
distance more than 1/2l or not, the system follows either the link to the close-by
down link or the far-away down link to forward the message. This process repeats
until the system reaches a node with no down links, which should be adjacent to
the target.

3. “Vicinity” search: the system uses the ring and level-ring links to find the desti-
nation node (which may not be a leaf in the tree).

It is shown that in a random network construction, the whole routing process is
bounded by O(logN) steps with high probability. Figure 3.13 depicts an ideal
Viceroy network and a routing path from node A to node B . To route to node B ,
node A first climbs up to its up node C of level 2. Then node C gets down along its
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Fig. 3.13 Viceroy network and the routing path

down-right link to node D. At last node D issues a “vicinity” search to the destina-
tion node B using its level-ring link.

3.3.5 Crescendo

Canon [126] is a kind of hierarchical DHT schemes for structured P2P overlay,
and Crescendo is a canonical version of Chord. The members of Crescendo system
form a conceptional hierarchy that is constituted by multiple domains in different
levels. In each level of the hierarchy, all nodes in one domain maintain a Chord-
like ring and add links to outside nodes. In addition, two separate Chord rings in
low level can be merged into a large Crescendo ring of upper level according to the
following conditions that, besides retaining all its original links each node n in one
ring establishes a link to node m in the other ring iff: (a) m immediately succeeds n

at least distance 2i away for some 0 ≤ i < N (the space size is N -bit), and (b) m is
closer to n than any node in n’s ring.

For the example shown in Fig. 3.14, node 0 holds the links to nodes 2, 6 and 12 in
standard Chord protocol in its local ring (real arrows). When its local ring is merged
with the other ring in which nodes 1, 10, and 14 exist, node 0 creates links to node 1
and node 10 (dashed arrows) following above conditions, for that node 1 and node
10 are closer than its original successor node 2 and node 12 for least distance 20 and
23, respectively.

As in Chord, Crescendo also adopts a greedy clockwise routing policy. In detail,
if a node requests for a destination d , it first routes the query to the closest pre-
decessor p of d in the ring of its lowest level. Then p is responsible for looking
for d by switching to the higher ring in which routing is continued. Such routing
proceeds from a lower level to an upper level, switching from small ring to merged
ring continuously until arriving at d . Back to the example in Fig. 3.14, if node 0 re-
quests the resource at node 10, it would first route along its ring of the lowest level
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Fig. 3.14 Merging two rings in one Crescendo ring

to node 6. Then node 6 switches routing to the merged ring of the next higher level
of the hierarchy, and in turn routes to node 10 using the greedy clockwise algorithm.

3.3.6 Skip Graph

Skip Graph is based on the well known Skip List [260] structure, which is a multiple
sorted double linked lists. However, unlike Skip List, which has only one list at each
level, a Skip Graph has many lists at a level. In Skip Graph, each node in the system
participates in a list at each level. The system controls the lists in which a node
belongs to by a randomly membership vector that is created when the node joins the
system. In this way, a Skip Graph can be considered as a set of many skip lists all
of which share the same lowest level. As an example, a Skip Graph with 6 nodes is
illustrated in Fig. 3.15. Note that this Skip Graph has one list at level 0, two lists at
level 1, and 4 lists at level 2.

When a node x joins a Skip Graph system, based on its membership vector m(x),
x joins the lists of nodes whose membership vector shares the same prefix with
m(x) at different lengths. In particular, x first joins the list at level 0 in which x

links to nodes containing keys closest to the node’s key. For level i ≥ 1, x links to
the closest node y satisfying the condition: m(x)i = m(y)i , where m(x)i and m(y)i
are, respectively, the prefix of length i of the membership vectors of x and y. The
insertion process continues until x cannot be inserted into any list. At this point x

creates its own list.
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Fig. 3.15 Skip Graph

Algorithm 5 : SkipGraph_Search (Node n, Key k)
1: l = the highest level of n

2: while l ≥ 0 do
3: find a neighbor node n′ at level l that is closer to k

4: if n′ exists then
5: SkipGraph_Search(n′, k)
6: return
7: end if
8: l = l − 1
9: end while

10: result = Local_Search(k)
11: return result to the query issuer node

Searching in Skip Graph is based on the same principle as searching in Skip List
except with a minor difference. Instead of sending a search query from a low level
node to a high level node, in a Skip Graph, when a node issues a query, the search
process always starts at the highest level of that node. At each step, if there is a
neighbor node at the same level that keeps a closer value to the search key, the node
forwards the query to that neighbor node. Otherwise, the node continues the search
process at a lower lever. The destination node containing the result is found when
the search process reaches the bottom level. The search algorithm of Skip Graph is
shown in Algorithm 5. As in Skip List, it takes approximately O(logN) steps to
process a query in an N node system.
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Fig. 3.16 Level rings of SkipNet and the routing table

3.3.7 SkipNet

SkipNet shares the same underlying inspiration with SkipGraphs [31] that originates
from the SkipList structure. As its novelty, SkipNet combines two separate but re-
lated address spaces: string name ID space and numeric ID space, which endow
nodes uniformly distribution in address space as well as the organizational cluster-
ing. Nodes in SkipNet are arranged into address rings of multiple levels rather than
lists, and each node maintains a two-direction routing table (R-Table) storing 2 logN

(N is network size) pointers to the neighbors in different levels. There are two kinds,
i.e., “perfect” SkipNet and “probabilistic” SkipNet being partitioned based on the
different fashions of nodes participating in the rings. E.g., the SkipNet in Fig. 3.16
is a “perfect” SkipNet containing 8 nodes, in which every node maintains a R-Table
pointing to the neighbors bidirectionally. As node C’s R-Table indexes the neigh-
bors in clockwise and anticlockwise directions of 3 levels, of which each level h

entry points exactly to 2h away nodes.
Routing either by name ID or by numeric ID follows a search path advancing

to the node whose name/numeric ID is the closest to the destination using R-Table
from level 0 to top level, i.e., from coarse granularity to fine granularity. Because
R-Tables are bidirectional, a node can use the left or right pointers depending on
whether target ID is smaller or larger than local when routing. For the example in
Fig. 3.16, if node C searches name ID F, it forwards the query to node E using the
pointer in level 1 of clockwise direction for F is greater than C in name ID. Then
node E routes to node F in its level 2 ring. Such a Chord-like routing mechanism
achieves O(logN) search time as well as the tolerance to uncorrelated and indepen-
dent failures, that is detailed in [154] as a salient property.

3.3.8 P-Grid

P-Grid is based on a virtual binary tree structure in which each peer maintains a
leaf node of the tree. In the tree structure, for each connection between a node and
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Fig. 3.17 P-Grid

its child, the system labels a binary value. Based on labels, the system assigns each
peer an identifier, which is the binary bit string representing the path from the root
to the leaf node of which the peer is in charge. Each peer is responsible for all data
items whose prefix is equal to the peer identifier. An example of a P-Grid with 6
peers is shown in Fig. 3.17. In this example, since the binary bit string representing
the path from the root to A is 00, the identifier of A is 00. As a result, A stores
data items, whose prefix is 00. Note that the peer identifier is not unique. For fault-
tolerance purpose, multiple peers can be assigned the same identifier, and hence they
are responsible for the same position in the tree structure. As in Fig. 3.17, nodes
A and B have the same identifier 00. For routing purpose, each peer maintains a
routing table. For each level from the root to the node, the routing table contains at
least a reference to a peer that is in the other size of the tree rooted at the internal
node at that level. For example, the routing table of A in Fig. 3.17 contains two
entries: one points to D, which is located in the other side of the root; the other
points to C, which is located in the other side of the tree rooted at the middle level.

Based on the tree structure, an exact match query is processed as in Algorithm 6.
The algorithm can be explained as follows. When a peer n receives an exact match
query with key k, if its identifier n.id is a prefix of k, the peer is in charge of k, and
hence it searches its local storage to find the result. On the other hand, the peer looks
up its routing table to find a closer neighbor node to forward the query. Since each
time the query is forwarded from a node to another node, the length of the common
prefix between the node identifier and the search key increases by at least one, the
maximum number of search step is bounded by the height of the tree, which is
log2 N , where N is the number of nodes in the system. For example, assume node A

in Fig. 3.17 issues a query whose key is 11. Since A is not in charge of the key, it has
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Algorithm 6 : PGrid_Search (Node n, Key k)
1: if n.id ⊆ k then
2: result = Local_Search(k)
3: return result to the query issuer node
4: else {find a closer neighbor node to forward the query}
5: find l such that Prefix(k, l) = Invert(Prefix(n.id, l))
6: n′ = a randomly selected node from Routing(n) at level l

7: PGrid_Search(n′, k)
8: end if

to forward the query to D, which is a neighbor node at level 1 since Prefix(11, 1) =
Invert(Prefix(A.id, 1). After that, D continues to forward the query to F , which is
the destination node. To support range query, in addition to having a routing table,
each node also has an adjacent link to its adjacent node, which is a node maintaining
the range of values next to the node’s range of values [97]. In this way, a range query
is processed simply by finding a node containing a data item belonging to the search
range. After that, adjacent links are followed to retrieve remaining results. The cost
of query processing now is log2 N + T , where T is the number of nodes containing
the query’s result. Note that by not mapping peers to the root and internal nodes
while using routing table for query processing purpose, P-Grid is not potential to
the bottleneck problem at the root in the tree structure.

3.3.9 P-Tree

Different from P-Grid, which is based on a virtual binary tree and the balance of the
tree structure cannot be guaranteed, P-Tree is based on a virtual balanced B+-Tree
built on top of a Chord ring (or in other words, the Chord ring forms the base of the
P-Tree). The key idea of P-Tree is that each peer maintains a Chord node, which is a
leaf node of the tree structure, and a semi-independent B+-Tree, which is a part of a
fully independent B+-Tree in the view of the peer. A fully independent B+-Tree at
a peer is a B+-Tree, where the value stored at the peer is considered as the smallest
value in the Chord ring. A semi-independent B+-Tree contains all nodes in the left-
most root-to-leaf path of the corresponding fully complete B+-Tree. An example
of a P-Tree with 8 nodes is shown in Fig. 3.18 in which Fig. 3.18(a) displays semi-
independent B+-Trees maintained at nodes in the system while Fig. 3.18(b) displays
the fully independent B+-Tree in the view of node A. Note that to make it easy for
maintenance, ranges of B+-Tree nodes can be overlapped. As in Fig. 3.18(a), the
root node of the B+-Tree at node C has four sub-trees in which the first and the
second sub-trees have overlapping ranges because the first sub-tree covers values in
the range of 13–30 while the second sub-tree covers values in the range of 29–42.
This is in contrast to the traditional B+-Tree.

Query processing in P-Tree is similar to that of B+-Tree except that when a query
traverses from a level to the next level, it actually jumps from a peer to another
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Fig. 3.18 P-Tree

peer. When the query comes to the lowest level of the tree, it follows the successor
lists of peers in the Chord ring to reach the destination node. The query process-
ing algorithm is displayed in Algorithm 7. As an example, consider a range query
30 ≤ value ≤ 35 issued at peer A in Fig. 3.18. At A, there exists a node E at the first
level, second position, whose value falls in between A’s value and the query’s lower
bound. As a result, the query is forwarded from A to E. At E, a similar process is
conducted and the query is continuously forwarded from E to F . Since F contains
the value 30, which falls in the search range, F returns the result to A, the query ini-
tiator. Additionally, F also forwards the query to its immediate successor node G.
The search process terminates at G since the value of the immediate successor node
of G does not fall in the search range.
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Algorithm 7 : PTree_Search(Node n, Range_Query q)

1: Find a neighbor node n′ at the lowest level l and the maximum number j such
that n′.value ∈ (n.value, q .lowerBound)

2: if n′ exists then
3: PTree_Search(n′, q)
4: else
5: if n covers the search key then
6: result = Local_Search(q)
7: return result to the query issuer node
8: end if
9: n′ = successor of n

10: if n′.value ∈ (n.value, q .upperBound) then
11: PTree_Search(n′, q)
12: end if
13: end if

3.3.10 BATON

While P-Tree constructs a balanced tree structure bottom up from a Chord ring,
BATON [166] builds a balanced tree structure top down. The overlay network in
BATON, however, is different from the standard tree structure by two main fea-
tures. On the one hand, in the network, data is stored at both leaf nodes and internal
nodes. On the other hand, in addition to parent and child links, nodes in the network
also have adjacent links and neighbor links. An adjacent link is used to connect a
node to an adjacent node, which is a node maintaining an adjacent range of val-
ues of the range of values the node is maintaining while a neighbor link is used to
connect a node with a selected neighbor node at the same level in the tree structure
having a distance 2i , i ≥ 0, from the node. The purpose of these links is to avoid the
bottleneck problem at the root of the tree structure in query processing. As a result,
each node in the network stores a link to its parent, a link to each of its children,
a link to each of its two adjacent nodes, and a link to each of its neighbor nodes.
Note that neighbor links pointing to nodes on the left side of the node is stored in
a left routing table while neighbor links pointing to nodes on the right of the node
is stored in a right routing table. BATON maintains the tree structure balanced by
forcing each node to have both its left and right routing tables full before it has a
child node. Figure 3.19 shows an example of BATON.

In BATON, when a node x processes a query, if the searched key does not fall
into the range of values managed by x, x forwards the query to the farthest neighbor
node in the routing table that is nearer to but not overshooting the searched key. In
particular, if the searched key is greater than x’s upper bound, x forwards the query
to the farthest neighbor node, whose upper bound is still less than the searched key.
Similarly, if the searched key is smaller than x’s lower bound, x forwards the query
to the farthest neighbor node, whose lower bound is still greater than the searched
key. In cases such neighbor node does not exist, x forwards the query to either a
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Fig. 3.19 BATON

Algorithm 8 : BATON_Search(Node n, Key k)
1: if n covers the search key then
2: result = Local_Search(q)
3: return result to the query issuer node
4: else
5: if there exists a neighbor n′ of n that is closer to k then
6: BATON_Search(n′, k)
7: else
8: if there exists a child n′ of n that is closer to k then
9: BATON_Search(n′, k)

10: else
11: n′ is an adjacent node of n that is closer to k

12: BATON_Search(n′, k)
13: end if
14: end if
15: end if

child (if it exists) or an adjacent node of x in the search direction. In a special case,
if x is a leaf node without a full routing table on the search direction, x always
forwards the query to its parent node for processing. The overall search algorithm
of BATON is shown in Algorithm 8.

It is important to note that the search request is always forwarded via neighbor
nodes or child nodes. The request is only needed to forward to higher level nodes in
two cases: the higher level node contains the searched value, or the processing node
does not have two children (a leaf node or a node near the leave). This property helps
the root to avoid receiving more requests than other nodes. For example, assume that
node H wants to search for a data item that is stored in node C and whose value is
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Fig. 3.20 Query processing in BATON

74 as in Fig. 3.20. Since the searched value is greater than H ’s upper bound, H first
sends the query to L, the farthest neighbor node nearer to but not overshooting the
searched key. Similarly, L then forwards the query to M . Since there is no neighbor
node of M whose upper bound is less then the searched key, M continues to forward
the query to its right child W . Finally, following right adjacent link from W to C,
the query is forwarded to the destination node.

3.4 Routing in Hybrid P2P Networks

Though unstructured and structured P2P systems are fully decentralized, both repre-
sent two completely different extremes. The former does not put any control on both
network structure and data placement, and peers are fully autonomic for selecting
their neighbors and storing data objects, while the latter puts tight control on both
network structure and data placement, and peers are in a semi-autonomic state. The
difference between them results in two extremely different routing efficiency and
effectiveness, i.e., unstructured P2P network floods user queries blindly to most of
peers, while structured P2P network always locates destinations within limited hop
bound.

To overcome their shortcomings and make better use of their advantages, hybrid
P2P systems have been invented. In this section, we will discuss the design phi-
losophy of hybrid P2P networks and introduce the basic routing scheme of typical
systems.

3.4.1 Hybrid Routing

In a real-life P2P network, peers are of heterogeneity in terms of computational and
bandwidth resource and storage capacity. However, traditional P2P systems treat all
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peers equally and overlook these differences. For the purpose of making better use
of heterogeneity of peers, both academic and industry communities have invented
hybrid P2P systems that beautifully combine the advantages of both unstructured
and structured P2P system together. The hybrid P2P systems take heterogeneity of
peers into consideration and organize all peers into a hierarchical network, where
powerful peers lie in high level and common peers lie in the lower level. These
powerful peers are called superpeers or supernodes and all of them are organized
as a small P2P network. Each common peer, also named client peer, belongs to a
supernode and does not connect with any other common peer that does not belong
to the same supernode. Typical hybrid P2P systems include KaZaA network [200],
BestPeer [234], Edutella [228, 229], and related research work include search in
power-law network [20], structured superpeers [224] and designing superpeer net-
works [344].

Since a supernode will answer queries on behalf of its client peers, the routing
scheme in a hybrid P2P network is very simple and straightforward. In general, the
routing scheme in a hybrid P2P network follows four steps. First, a client peer sends
a query to its supernode. Second, the supernode searches its directory to determine
which client peer or supernode has the desired answers. Third, the query is sent to
the supernode that may have the desired answers, and the supernode will use its
directory of all its client peers to answer the query. Last, the IP address of the client
peer having the desired answers is returned to the query peer and the query peer will
exchange resources with that peer.

From the above description, the detailed network structure among supernodes
is not given. This reason is that either unstructured or structured network overlay
can be used for the supernodes network. For example, Edutella uses HyperCuP as
its supernodes network, while KaZaA organizes its supernodes arbitrarily. Another
point we should notice is that the selection strategies of the supernodes, i.e., which
peers can be selected out as supernodes for the remainder peers. There are two ways
to address this problem: static and dynamic. As for a static superpeer selection, once
a peer is chosen as supernode, its role will not change any more. As for a dynamic
supernode selection, a few of heuristics are used, such as, sufficient online duration,
sufficient bandwidth, free of firewall and so on. In this section, we do not touch this
topic.

In what follows, we discuss three typical hybrid P2P systems with different de-
sign philosophy. The first one is Edutella, which is a RDF- and Schema-based P2P
system and its supernode network is organized as a HyperCuP. The second one is
Ultrapeers, which aims at solving the scalability of the original Gnutella network by
using supernodes. The last one is built upon the well-known Chord network and all
supernodes are also organized as another ring in the center of the whole network.

3.4.1.1 Edutella

Edutella [228, 229] is a RDF and Schema-based P2P system based on JXTA [10]
project. All educational organizations in the Edutella network publish their informa-
tion and resources (including documents, papers, and videos) via their defined RDF
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Fig. 3.21 The Edutella
network structure. Query
routing in Edutella is first
directed to superpeers in
HyperCuP, where
suffix-based routing scheme
could be employed

schema. As such, all organizations can use the standard query language RDF-QEL-i
to find their desired resources and process raw materials for their further purposes.

The core Edutella network is a HyperCuP [286] network that is composed of
superpeers. All common peers will select one of superpeers as their access point for
the whole network. In order to route queries on behalf of client peers, each superpeer
is also responsible for indexing its client peers’ RDF schemes, which is defined as
superpeer-peer routing indices. To route queries among superpeers, all superpeers
then exchange these indexed RDF schemes to build a high level index, which is
defined as superpeer-superpeer routing indices.

Based on the above statement, the Edutella supports three types of query routing
schemes: semantic-free, semantic-based, and broadcast. As for scheme-free rout-
ing scheme, the HyperCuP structure is used for routing user queries. For example,
Fig. 3.21 shows a typical Edutella network with 8 superpeers that construct a Hyper-
CuP network. To route a user query with a specific identifier, the query peer needs
only send the query to its superpeer, and then the superpeer will be responsible for
routing the query to the desired superpeer in terms of the query identifier. For exam-
ple, if a superpeer “000” wants to locate a superpeer with identifier “101”, it relays
the query to its neighbor “001” and then the superpeer “001” relays the query to the
destination “101”.

As for the semantic-based query routing scheme, both superpeer-peer and
superpeer-superpeer routing indices will be used. In this case, the query peer will
send its query to its superpeer, then the superpeer searches both routing indices to
determine which directions the query should be forwarded to. Note that in this case,
the RDF schemes in the routing indices are used to decide the direction of query
traversal, and hence we refer this scheme as semantic-based query routing.

Last, different from the query flooding in unstructured P2P networks, broadcast
in the Edutella network only involves N − 1 messages, where N is the number of
superpeers. The broadcast algorithm works as follows: Each link between super-
peers is tagged with the dimension. A node can broadcast the query message to all
its neighboring superpeers and each broadcasting message is tagged with the label
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of the link, along which the message is traversed. Any node receiving the broad-
casting message only forwards the query message to its neighboring superpeers
whose links’ label values are greater than the current one. For example, if the super-
peer “000” broadcasts a message, then the broadcast paths are 000 → 011 → 111,
000 → 001 → 101, 000 → 100 and 000 → 001 → 010 → 110. Another advantage
of this scheme is that the last nodes are reached after logN forwarding steps.

3.4.1.2 Ultrapeers

The original Gnutella [133] blindly floods user queries in the whole network for
desired answers. Though this search scheme is efficient in terms of query response
time, it wastes a lot of valuable bandwidth at peers. Hence, the scalability is prob-
lematic. Further, the lack of considering heterogeneity of peers aggravates this prob-
lem. To alleviate this problem, Anurag et al. [295] have proposed a method by
splitting the peers into two levels by taking peers’ capabilities into account. The
peers, named ultrapeers, in the high level have faster computational and bandwidth
resources and storage capacity. The peers, named leaf peers, in the low level are
thought of as equal capability. For example, Fig. 3.22 shows a typical hybrid net-
work with ultrapeers, where ultrapeers lie in the center of the network and leaf peers
are around ultrapeers.

In the ultrapeer network, all ultrapeers form an unstructured P2P network. To
locate desired resources, a leaf peer should send a search query to its ultrapeer. The
ultrapeer will propagate the query to all neighboring ultrapeers and each neighbor-
ing ultrapeer then propagates the query to its neighboring ultrapeers and so on. Once
receiving the query, the ultrapeer will search the query with its reflector indexing to
locate which leaf peer has the desired resources. If a leaf peer is found, then the
IP address of the leaf peer will be returned to the query peer. Here, we notice the
concept of “reflector indexing”, which is a kind of index for meta data of shared

Fig. 3.22 The modified
Gnutella network with
ultrapeers. Suppose that the
resources requested by peer
C12 is at the peer C9. The
peer C12 first requests its
ultrapeer U4, then U4 floods
the query to U2 via U1. U1
searches its reflector index
and finds C9 has the desired
answers, then it sends the IP
address of C9 back to C12



3.4 Routing in Hybrid P2P Networks 77

files of its leaf peers. That is, when a leaf peer joins the network, it first chooses a
ultrapeer and then sends all metadata of its shared files to its ultrapeer. The ultrapeer
will construct an index (similar to Napster) according to these meta data of its leaf
peers, in order to facilitate resource location.

3.4.1.3 Structured Superpeers

Structured superpeers [224] combines the well-known Chord protocol and the con-
cept of supernodes together to design a constant-time lookup P2P system. Structured
superpeer network considers the heterogeneity and chooses k most powerful peers
as superpeers to speed up query routing (to some extent, the concept of superpeer
here is similar to the concept of ultrapeer mentioned in the previous subsection). As
such, given an N peers Chord network, there are k superpeers at the center of the
network and the left N − k peers form a Chord ring. Figure 3.23 shows a typical
structured superpeer network with 13 peers, where 4 superpeers form an “inner-
ring” and the other 9 peers form an “outer-ring”.

Each common peer maintains its predecessor and successor, which are the same
as those of Chord protocol. Each superpeer also keeps its successors, which refers to
the first peer within the range that the superpeer controls. For example, peers P1 and
P5 are the successor of the superpeers S0 and S1 respectively and each common peer
maintains a pointer to its superpeer and each superpeer maintains a superpeer table
that records the range partition of all superpeers. These invariants are maintained by
superpeers and common peers respectively in terms of node arrival, departure and
failure.

To locate the peer with a specific key, the query peer first requests its superpeer
and the superpeer checks whether the key falls into its own range. If so, the query
peer will use the Chord protocol to locate the peer. Otherwise, the lookup key will
be forwarded to the superpeer whose range contains the key, by using the super-
peer table. Last, the superpeer sends the lookup query to its successor and then the
successor uses the Chord protocol to locate the desired peer.

Fig. 3.23 The structured
superpeers. The superpeers
S0, S1, S2, and S3 control
ranges (0,4], (4,8], (8,12], and
(12,0], respectively. If the
peer P1 requests key = 10, it
first sends the lookup key to
S0. S0 relays the key to S2
since S2 controls the range of
(8,12] that contains 10. Last,
S2 passes the key to its
successor P9 and then P9 uses
Chord protocol to locate P10
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3.5 Summary

In this chapter, we only focus on the typical routing protocols of current P2P sys-
tems. We do not emphasize on the properties of these P2P systems because the other
chapters (e.g., Chap. 2) also refer to the related content of these P2P systems. From
the perspective of network structure, we classify the typical routing protocols into
three types: unstructured, structured, and hybrid.

In unstructured P2P networks, there is no global control on both network overlay
(i.e., neighborhood among peers) and data placement. As such, the maintenance of
network overlay is simple and easy since each peer only needs to update its routing
table by adding new neighbors and/or removing offline peers. This type of P2P
systems is very suitable for the transient Internet users to share content with each
other. However, the flexibility of unstructured P2P systems brings inconvenience of
locating desired resources in such a dynamic environment. That is, since every peer
has no global knowledge of data placement, locating desired resources becomes a
big problem. To solve this problem, academic community has invented dozens of
heuristics to facilitate the resource location in order to make such P2P systems more
scalable in terms of bandwidth consumption during query traversal among peers.

On the contrary, structured P2P systems make a tight control on both network
structure and data placement. In this way, peers cannot share arbitrary data objects
as they like, but have to store the predetermined data objects according to the global
knowledge. The advantage of structured systems is that they provide a simple and
efficient way to locate the peers with desired answers within a theoretical bound.
In general, there are three categories of structured P2P systems: distributed hash
table (DHT) based systems, skip list based systems and tree based systems. While
systems in the first category can only support exact match queries well, systems
in the two remaining categories can support both exact match and range queries.
However, by employing DHT, systems in the first category are better than those
in other categories in terms of load balancing. The disadvantage of structured P2P
systems is that they incur high cost in maintaining routing tables.

The hybrid P2P systems take advantages of both structured P2P systems and un-
structured ones. On the one side, the hybrid P2P systems locate desired resources
more efficiently than those used by unstructured P2P systems, which makes them
more scalable than before. On the other side, the hybrid P2P systems loose the con-
trol of data placement and network structure compared with structured P2P systems,
which makes them more adaptive to real applications. Furthermore, with the help of
both agent technology and network reconfiguration, the performance of hybrid P2P
systems can be improved greatly and the network resources (e.g., bandwidth and
computational resources) can be made better use of.

We can observe a common idea in all the routing methods across different types
of peer-to-peer networks: an attempt to “jump” as much as possible and as long as
you can, and then go with finer steps towards the exact destination. This is explicit
in some routing methods, like the one used in Chord (i.e., use the furthest pointer
that does not overshoot the target), or it is one way in which we can see others. For
instance, we might consider the prefix-based routing in Pastry as a version of the tra-
ditional phone number resolution: the first few digits give you a country code—so
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you have the largest “jump” resolving those, then an area code—a smaller “jump”
and so on. The same point of view may be taken in the case of hybrid P2P sys-
tems: a regular peer contacts a super-peer, which then contacts another super-peer.
This higher level can be regarded as a way to by-pass large areas of the [virtual]
space. Translated into graph theory, maintaining these sets of “hyper-jumps”, either
in structure or hybrid networks, means maintaining a low diameter of the underly-
ing graph. For unstructured networks, the underlying graph may be thought of being
that of a random graph.1 In this case, the diameter is statistically low. In conclusion,
we summarize features of existing routing methods employed in P2P systems in
Table 3.1.

Table 3.1 Summary of existing routing methods in P2P systems

System Overlay network Routing table Routing method

Gnutella Unstructured,
Random
topology

Random neighbors Breadth First Search with
Time-to-Live

FreeNet Unstructured,
Random
topology

Random neighbors Depth First Search with
Time-to-Live

Chord Structured, Ring
topology

Neighbors at
distances 2i in the
ring

Repeatedly jump to the
farthest node in the routing
table whose id is still less
than the search key

CAN Structured, Mesh
topology

Neighbors at
adjacent positions in
the mesh

Repeatedly travel through
the neighbor that is closer to
the destination

Pastry & Tapestry Structured, PRR
tree topology

Neighbors sharing
common prefix
identifier at different
levels

Repeatedly forward the
message to the neighbor
having the longest matching
prefix identifier

Viceroy Structured,
butterfly
topology

Five neighbors: one
at the upper level,
two at the lower
level, and two at the
same level

Three steps: going up, going
down, and vicinity search

Crescendo Structured,
hierarchical ring
topology

Chord-like
neighbors at
different ring levels

A combination of Chord-like
routing and the routing
between rings at different
levels

1Though in general that is not the case: it has been shown that unstructured networks more often
have a “small worlds” structure, where highly connected subgraphs are sparsely interconnected.
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Table 3.1 (continued)

System Overlay network Routing table Routing method

Skip Graph Structured,
multiple linked
lists topology

Neighbors sharing
common prefix
membership vector
at different lengths

Travel from the highest to
the lowest level of the list. At
each level, jump to the
neighbor closer to the
destination if such a
neighbor exists

SkipNet Structured,
hierarchical ring
topology

Neighbors are
predecessors and
successors at
different ring levels

Skip Graph-like routing,
traveling from the highest to
the lowest level of the ring.

P-Grid Structured,
binary tree
topology

A neighbor at the
other side of the tree
rooted at each
internal node from
the root to the leaf

Travel from the root to the
leaf. At each level, jump to
the neighbor closer to the
destination

P-Tree Structured, a
combination of a
B+-Tree and a
Chord ring
topology

Neighbors are nodes
in the left-most
root-to-leaf path of
the B+-Tree

Travel from the root to the
leaf. At each level, jump to
the neighbor closer to the
destination

BATON Structured,
balanced tree
topology

Neighbors are
parent, children and
Chord-like
neighbors at the
same level

If not having full routing
tables, go to parent.
Otherwise, go to the
neighbor or the child closer
to the destination

Edutella & Ultrapeers Hybrid, a
combination of
structured and
unstructured
topology

Neighbors exist
only at superpeer
level. At client side,
each client peer
connects to a
superpeer

A client peer always routes
its requests to its superpeer
while routing at supper peer
level depends on the
topology employed at that
level



Chapter 4
Data-Centric Applications

In this chapter, we discuss different types of data sharing applications that run on
P2P networks. The basic and most popular data sharing applications are file shar-
ing applications. This type of applications enables users to find and download files
shared by other users in the network. There have been numerous commercialized
P2P systems supporting file sharing over the Internet such as Morpheus, Kazaa,
Gnutella, and BitTorrent. In these systems, various files (textual documents, movies,
songs, etc.) are shared as a whole and the typical type of queries is to look up files
in the network based on their names (i.e., given the name of a file, the systems find
the peer nodes storing the file). The challenge of processing these type of queries is
just on how to locate the queried files. This is actually the problem of how to route
queries from the source node to the destination node, which has been discussed in
Chap. 3. However, since people may want to issue queries at finer granularities, a
bigger challenge in query processing is to look up files based on file description or
file content (content-based search).

In file sharing applications, files are often described by a set of attributes. The
challenge for supporting search on file description is actually the problem of how
to index file attributes and process queries from these indices. A straight-forward
solution to this problem is to use multiple indices for a file; each index is for a
descriptive attribute. In other words, the system indexes each descriptive attribute
independently. As a result, queries can be processed from indices of any attribute.
Alternatively, the challenge of supporting search on file description can be consid-
ered as a problem of supporting search in multi-dimensional space if we consider
each descriptive attribute as a dimension in a multi-dimensional space. In Sect. 4.1,
we will present solutions for both of these approaches. Additionally, we will also
discuss skyline query, a related type of queries in multi-dimensional space, and its
solutions in P2P systems.

In general, the challenge for supporting content-based search is the problem of
either textual information retrieval (for textual files) or multimedia information re-
trieval (for multimedia files). Textual information retrieval focuses on the problem of
keyword search in textual files. For example, given a keyword, a set of keywords or
even a whole sentence, the system needs to find nodes storing the file having queried
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keyword(s) or sentence. Multimedia information retrieval deals with the problem of
similarity search in multimedia files, i.e., given an image/song/movie, the system
needs to find nodes storing the image/song/movie or similar images/songs/movies.
A basic solution for content-based search is to consider it as a search in multi-
dimensional space in which the content of each file is summarized as a feature vec-
tor in the space. However, the dimensionality of feature vectors is often very high,
and it is a challenge is how to index data in high-dimensional space efficiently. Sec-
tion 4.2 discusses solutions for this challenge. Additionally, we dedicate Sect. 4.3 to
address a different class of techniques for textual information retrieval.

In addition to unstructured data, there is also a need to share structured data, such
as relational databases or semi-structured data such as XML documents, in P2P net-
works. Supporting structured data sharing applications poses more difficulties than
supporting the previous type of applications because there often exist plenty of struc-
tural and data heterogeneities among data sources residing at different, autonomous
peers. Although the problem of data or schema mapping is not new, the decentral-
ization and dynamism requirements of P2P paradigm make it especially tough, and
consequently traditional approaches cannot be directly applied. In Sect. 4.4, we will
describe current state-of-the-art techniques for modeling and building schema map-
pings between the databases shared by different peers. After that, we will present
various query processing methods for both keyword queries and structured queries
by exploiting the built schema mappings.

4.1 Multi-Dimensional Data Sharing

While most existing file sharing P2P systems can only support queries on file ti-
tles, it is desirable to support queries on file descriptions. To explain why this desire
exists, let us consider an example of a music file sharing system where a song file
may contain description about the title of the song, the singer performing the song
and the album of the song. Since different people may name the same file with dif-
ferent names while the file description remains relatively similar, a search on the
file description can return a better result than a search on the file title. Additionally,
compared to file title, file description contains more information and describes the
content of file better. Intuitively, we can support search on file description by two ba-
sic approaches. On the one hand, we index values of each descriptive attribute to the
overlay P2P network separately and process queries from indices of any attribute
(multi-attribute index based approach). On the other hand, we consider each de-
scriptive attribute as a dimension in a multi-dimensional space and process queries
as multi-dimensional queries in this multi-dimensional space (multi-dimensional in-
dex based approach). In the subsequent subsections, we will present how to support
multi-dimensional index and multi-attribute index in P2P networks.

− Multi-dimensional index: CAN [266], which has been discussed in the previous
chapter, can be considered as the first P2P system supporting multi-dimensional
index, although the original intention of the system is to hash data uniformly
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into multi-dimensional space such that a certain degree of fault tolerance can be
guaranteed. Even though CAN can support multi-dimensional point queries well,
by employing uniform hashing, CAN cannot support multi-dimensional range
query. Being a structure that resembles the kd-tree [42] and grid-file [156], CAN
can be used to directly index multi-dimensional data in its natural space. Fol-
lowing CAN, subsequent systems also adapt traditional multi-dimensional index
tree structures such as the R-Tree [145], X-Tree [44], or M-Tree [77] to support
multi-dimensional index. In particular, Skip Index [348] utilizes the kd-tree [42]
to partition the data space, and then maps the data space into Skip Graph overlay
network by encoding it into a unique key. The P2PR-Tree [225] proposes a tree
structure, which integrates the R-Tree. The VBI-Tree [167] and DP-Tree [192]
are designed as frameworks that can employ different types of index structures
such as the R-Tree, X-Tree, M-Tree and their variants. In employing tree struc-
tures in P2P systems, it is important to avoid the potential bottleneck occurred
at the root or nodes near the root. The basic solution used by these systems is
to assign each peer node to a leaf node and let the leaf node keep information
about all internal nodes from itself to the root for routing purpose. To some ex-
tent, this technique is similar to the technique used by the P-Tree [86], which
was discussed in the previous chapter.

− Multi-attribute index: MAAN (Multi-Attribute Addressable Network [61]) sup-
ports multi-attribute index simply by indexing all attributes to a Chord [173]
ring. This means that given a data item having m attributes, the system simply
creates m indices corresponding to values of these attributes. To process a query,
the system needs to choose a dominate attribute of the query and processes the
query based on constraints on that attribute. For constraints of other attributes,
they are still carried along query processing, but they are only used for filtering
purpose. Different from MAAN, where the same Chord ring is used to index all
attributes, in Mercury [49], each attribute is indexed to a separate Chord ring
called a routing hub. In this way, a data item needs to be sent to all routing hubs
for indexing while a query is always forwarded to the routing hub corresponding
to its dominate attribute for processing.

To enhance the quality of retrieval, data may be retrieved based on ratings pro-
vided by other users. Such features are common in social network and community
based systems. For example, in addition to maintaining descriptive information of
the file content, a description of a song file may contain information about ratings
of the song in different aspects from listeners. In this case, users may be interested
in searching for songs, which are not “dominated” by any song. A song is domi-
nated by another song if it is not better than that song in any aspect. This special
type of queries is called skyline query. To support skyline queries in P2P systems,
SkyPeer [323], a super-peer based P2P network, proposes that subspace skyline
queries can be effectively answered by storing and scanning the super-set of sky-
line whose attribute set is the super-set of all subspace skylines. The system uses
a threshold based algorithm to optimize local skyline computation at peers and re-
duce the amount of unnecessary data transmitting on the network. Alternatively,
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DSL [337] parallelizes the search for skyline and progressively returns skyline an-
swers by enforcing a partial order on query propagation based on CAN. In this way,
the succeeding nodes have to wait for preceding nodes’ completion to start their
computation. As a result, it slows down the query response time. Furthermore, since
the query search boundary is not refined, DLS incurs unnecessary return overhead.
To alleviate these problems, SSP [329] proposes a solution where the search space
is first defined at the most dominant node whose local results are guaranteed to be in
the final skyline. After that, in each processing step, the system partitions the search
space into subspaces adaptively. These subspaces are then searched in parallel.

In the next part, we will present concrete systems supporting multi-dimensional
index (VBI-Tree [167]), multi-attribute index (Mercury [49]), and skyline queries
(SSP [329]).

4.1.1 VBI-Tree

VBI-Tree [167] is a framework that can adapt different types of multi-dimensional
index tree structures including R-Tree, X-Tree, SS-Tree, M-Tree, and their variants.
The system is based on a binary tree structure where each peer manages a pair of
adjacent tree nodes: one leaf node and one internal node (the leaf node is the left
adjacent node of the internal node in the in-order traversal of the tree). The leaf node
is a data node that is in charge of holding indices of data belonging to a specific
multi-dimensional region. The internal node is a routing node that has associated
a region that covers all regions managed by its children. For routing purpose, in
addition to parent and child links, the internal node also keeps links to other nodes
in the tree structure. In general, each internal routing node has five types of links.

− Parent link: pointing to the parent node of the internal node.
− Child links: pointing to child nodes of the internal node.
− Adjacent links: pointing to adjacent nodes of the internal node in the in-order

traversal of the tree.
− Neighbor links: pointing to neighbor nodes at the same level having distances 2i

from the internal node in both left and right directions.
− Upside links: pointing to ancestor nodes of the internal node in the tree.

Note that these links maintain not only pointers to destination nodes but also
information about multi-dimensional regions covered by these nodes. An example
of a VBI-Tree is shown in Fig. 4.1 where nodes with the same name are maintained
at the same peer. Based on this tree structure, when a peer issues or receives a query,
it checks if the region in charged by its corresponding routing node n intersects with
the searched region. If this is true, the peer checks child links of n and forwards
the query to n’s children that are in charge of regions intersecting with the searched
region. Additionally, n finds the nearest ancestor a that is in charge of a region that
totally covers the searched region. If such an ancestor a exists, for each ancestor
a′ in the path from n to a (including a), n forwards the query to a neighbor node
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Fig. 4.1 VBI-Tree structure

that is in the other side of the tree rooted at a′. In this way, VBI-Tree can search all
nodes whose region intersects with the searched region without causing bottle neck
at the root or nodes near the root. Algorithm 9 displays the basic search algorithm
of VBI-Tree. It is important to mention that (1) to avoid search loop, the system
keeps track the search path and (2) to avoid frequently update of upside links due to
changes in covered regions at ancestor nodes, VBI-Tree proposes a new concept of
discrete data. Discrete data are data that are stored at internal nodes and do not fall
into any regions covered by children of internal nodes.

For example, assume that node H wants to search data in the shaded region as
in Fig. 4.2. At first, H executes the query locally since the region it is in charge
of intersects with the searched region. After that, H tries to forward the query to
other nodes. Since the nearest ancestor of H , which is in charge of a region totally
covering the searched region, is A, H needs to forward the query to all nodes in the
other side of the tree rooted at D, B , and A, i.e., I , e, and J . However, H actually
forwards the query to only I and J . In the case of node e, since it is not a routing
node, H just forwards the query to its parent D. Thereafter, D forwards the query to
E, J forwards the query to G though F . Finally, at destination nodes I , E, and G,
the query is forwarded to data nodes b, a and l. Furthermore, since discrete data
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Algorithm 9 : VBI_Search(Node n, Region r)
1: if n.region intersects r then
2: if n has no children then
3: result = Local_Search(r)
4: return result to the query issuer node
5: else {n has children and hence it is a routing node}
6: if n.left_child.region intersects r then
7: VBI_Search(n.left_child, r)
8: end if
9: if n.right_child.region intersects r then

10: VBI_Search(n.right_child, r)
11: end if
12: end if
13: end if
14: find the nearest ancestor a of n whose region totally covers r

15: for each ancestor a′ of n in the path from n to a do
16: let n′ be a neighbor node in the other side of the tree rooted at a′
17: VBI_Search(n′, r)
18: end for

may exist at internal nodes, nodes E and J also forward the query to routing nodes
B , C for discrete data search.

We observe that even though discrete data is introduced as a solution to reduce the
cost of updating upside links, this cost is still high in dynamic systems where data
is frequently inserted or deleted. Furthermore, while the bottom-up search strategy
helps to avoid the potential bottle neck problem at high level nodes, it incurs a high
cost in query processing since the system always needs to check a large number of
leaf nodes once the searched region intersects with a region covered by a high level
node.

4.1.2 Mercury

To support multi-attribute index, Mercury [49] distributes nodes in the system into
hubs each of which is in charge of indexing data values for an attribute. Each peer
joining in the system participates in one or more hubs. Nodes in a hub are arranged
in a circular form, which is similar to Chord [173]. However, instead of setting
neighbor links of a node to nodes at distance 2i as in Chord, Mercury nodes set
up neighbor links in their routing table by using a harmonic probability distribution
function. Additionally, for routing purpose among hubs, each node in a hub needs to
hold an cross-hub link to a node in each of remaining hubs. In other words, a node
in Mercury maintains two types of links.
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Fig. 4.2 Query processing in VBI-Tree

− Intra-hub links: connecting to nodes in the same hub.
− Cross-hub links: connecting to nodes in different hubs.

In Mercury, when a data item is inserted to the network, for each attribute a of
the item, its attribute value is indexed to the hub Ha . As an example in Fig. 4.3, the
data item (x = 160, y = 80, z = 470) is inserted to three hubs Hx , Hy and Hz at
corresponding nodes C, F and L. Mercury processes query by selecting an attribute
as the dominant attribute and executes the query on the hub correspondent to the
dominant attribute. Since every node of a hub has links to nodes in all other hubs,
it takes only one step to forward the query to the hub in charge of the dominant
attribute. After that, the query is executed locally within the hub according to the
search algorithm of the Chord ring. As in Fig. 4.3, query q involves three attributes
x, y, and z. However, only the hub Hx correspondent to the attribute x executes
the query. In this case, the conditions on attributes y and z are used to filter results
found on Hx . It is important to note that in this method the selection of the dominant
attribute affects to the performance of query processing. If the search on dominant
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Fig. 4.3 Mercury

attribute produces a lot of results, the system performance degrades significantly.
Therefore, it is important to choose the dominant attribute wisely.

The disadvantage of Mercury is that it incurs a high cost in data insertion and
deletion especially when the number of index attributes is big. It is because when a
new data item is added to the system, it is inserted to all hubs corresponding to index
attributes. Similarly, when an existing data item is deleted, all hubs are checked to
delete the corresponding data item.

4.1.3 SSP

Skyline Space Partitioning, SSP [329], is a method for supporting skyline queries
over P2P networks. The basic idea of this method is to partition the multi-
dimensional space into multi-dimensional regions each of which is in charge by
a peer node. Peer nodes in the system are arranged in BATON [166], a P2P sys-
tem supporting one-dimensional index, according to the positions of their covered
regions ordered by the z-curve method. For routing purpose, in addition to informa-
tion of links to other nodes in BATON, each node also needs to maintain information
of the region it is in charge of. This information includes:

− Region Number: a 0–1 string that identifies the position of the region in the z-
curve order.

− Data range: the range of values covered by the region.
− Split history: a list of entries of split value and dimension from the start to the

creation of the region.
− Next partition dimension: the next dimension that will be split when the region

is partitioned.
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Fig. 4.4 Mapping nodes on BATON

An example of a system with 10 nodes using SSP method is shown in Fig. 4.4.
In this figure, we can realize that the in-order traversal of the tree structure is corre-
sponding to the z-curve order of regions in the multi-dimensional space.

In SSP, a skyline query is processed in four steps.

− At first, the system finds the node whose local results are guaranteed to be in the
final skyline. This node can be found by searching the most dominating point
that dominates all other points in the data space such as points (0.0, 0.0), (1.0,
0.0), (0.0, 1.0), or (1.0, 1.0) in a two-dimensional space. Let this node be the
STARTER node.

− Once the STARTER node is reached, it computes local skyline results and se-
lects the most dominating point pmd that has the largest dominating region. The
skyline search space is then determined by pruning the region that is dominated
by pmd.

− After that, the STARTER node routes the query to nodes covering the search
region. These nodes compute their local skyline points and return the result to
the query initiator.
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− Finally, the query initiator computes global skyline points from the local skylines
points had been returned.

A weakness of SSP is that the query processing speed depends much on the
STARTER node. As a result, when the STARTER node has not been reached or pmd
has not been found, any bad thing happening at the STARTER node will decrease
the speed of query processing.

4.2 High-Dimensional Indexing

File description can provide some information of the file content. However, it can-
not completely represent the file content. As a result, it is still desirable to provide a
search at a finer granularity: content-based search. As discussed before, the general
solution to support content-based search is to construct feature vectors for shar-
ing files and index these vectors to the system. However, since the dimensionality
of feature vectors is often very high, conventional multi-dimensional index struc-
tures such as the R-Tree [145] may not be efficient due to high overlap of boxes in
high-dimensional spaces. Consequently, new mechanisms have been proposed for
indexing high-dimensional space data, and they can be broadly classified into three
categories: mapping-based approach, distance-based approach, and hashing-based
approach.

− In mapping-based approach, high-dimensional objects are mapped to a lower di-
mensional space (usually one-dimensional space) before being indexed. Multi-
dimensional queries are also transformed to this space for processing. In par-
ticular, many systems [29, 190, 287, 293] use space filling curves (SFC) [278]
such as Hilbert curve or Z-curve (Z-order) to map multi-dimensional data to one-
dimensional data. After that, an overlay network supporting single-dimensional
query search is used to index that one dimensional data. For example, CISS [190]
and the work of Schmidt and Parashar [287] share the same idea of using Hilbert
curve to convert data in a multi-dimensional data space to a single-dimensional
value, and then index the resulted values on a Chord ring while ZNet [293] uses
Z-curve as the mapping method and Skip Graph as the overlay network. Besides
SFC, other solutions such as Pyramid [43] and iMinMax [245] can also be used
to map multi-dimensional data into one-dimensional data for indexing and can
also be adapted for P2P systems.

− Different from mapping-based approach, distance-based approaches such as the
VP-tree [345] and iDistance [165] index high-dimensional objects directly to the
system based on their distances to a predefined set of points called reference
points where each point has a unique index value. The index value of an object
is calculated as the summation of the distance between the object and the near-
est reference point and the index value of that reference point. As discussed in
iDistance, the system can choose reference objects in different ways either uni-
formly or accordingly to data distribution. Examples of P2P systems employing
this index approach are mChord [240] and SimPeer [112].
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− In cases where a system can suffer a small error rate of the search results, it can
apply locality-sensitive hashing (LSH) scheme [160] for indexing data objects.
The basic idea of this hashing-based approach is to hash similar objects to the
same place (index bucket). In this manner, a search query can be processed by
searching indices around its hashing value. Even though this approach cannot al-
ways return the exact search results, the error rate of search results is guaranteed
to be within a predefined ε value. LHS Forest [39] is a P2P system applying this
approach.

In general, P2P systems can apply techniques that have been well studied in cen-
tralized systems, to support high-dimensional data indexing. The systems, however,
need to adapt these techniques to suit the properties of distributed P2P environment.
For example, a typical centralized algorithm to process a kNN query is to first esti-
mate an initial radius for a range query. The system then executes the range query to
find results. If there are not enough k objects in the returned results, the system itera-
tively increases the radius of the range query and re-executes the query. This process
stops when at least k objects are returned from the query. The final k nearest objects
are selected from these results. Nevertheless, this algorithm cannot be applied di-
rectly in P2P systems because it incurs a high cost in query processing due to high
number of query messages (this problem does not happen in centralized systems
where the search process is done locally at a computer). In other words, this kNN
algorithm should be modified for P2P environment. In the following subsections,
we will introduce five P2P systems supporting high-dimensional indexing, namely
CISS [190], ZNet [293], mChord [240], SimPeer [112], and LHS Forest [39].

4.2.1 CISS

To support high-dimensional indexing, CISS [190] employs the idea of using Hilbert
Space Filling Curve (SFC) [278] to map data points in a multi-dimensional space
to data points in a single-dimensional space, and then index these one-dimensional
data points in Chord [173]. The system first encodes each dimension value to a set
of bit keys, and a multi-dimensional data point is represented by sets of bit keys.
The system then uses Hilbert SFC to convert these sets of bit keys to a single key
value. Finally, the system indexes this single key value to Chord. An example of the
conversion process is shown in Fig. 4.5(a). This example shows a two-dimensional
system where each dimension is encoded by three bits. Using Hilbert SFC, the point
in the shaded region is converted to a single value 33. The point is then indexed to
the Chord node identifier 40.

To process a query, the system first needs to convert the multi-dimensional
searched value to a one-dimensional value. After that, this one-dimensional value is
searched from indices in Chord. Note that since there are some regions in the Hilbert
Space where nearby points are not mapped to nearby values in one-dimensional
space, a multi-dimensional query may be converted to one or more segments of
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Fig. 4.5 CISS

values in one-dimensional space. As an example, Fig. 4.5(b) shows a query corre-
sponding to the shaded region in the Hilbert space. This query is converted to three
different search segments in the one-dimensional index space. This is indeed a com-
mon problem with the use of curves in data mapping. In particular, the higher the
dimension is, the higher the possibility of having more search segments in query
processing is and hence the higher the cost of query processing is.

4.2.2 ZNet

To map multi-dimensional data to one-dimensional data, instead of using Hilbert
curve as in CISS [190], ZNet [293] employs Z-curve. In this system, the whole
data space is recursively partitioned in a quad-tree like manner to subspaces, each
of which is assigned a unique address corresponding to its position in the Z-curve
ordering and the level of subspace partitioning. Each node in the system is in charge
of a subspace and indices of data belonging to the subspace. The system arranges
nodes in a Skip Graph structure where the position of a node is determined by the
address of the subspace it is maintaining. In other words, the position of a node
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Fig. 4.6 ZNet

in a Skip Graph structure is determined by the position of its holding subspace in
the Z-curve ordering. An example of ZNet structure is shown in Fig. 4.6, where the
partition of the data space is displayed in Fig. 4.6(a) and the positions of ZNet nodes
in a Skip Graph structure are displayed in Fig. 4.6(b).

When a node issues or receives a query from another node, it needs to find the
address of the subspace containing the search data and forwards the query towards
the node maintaining that subspace. Even though in some cases a node may not
be able to fully resolve the address of the destination subspace due to incomplete
knowledge about space partitioning, it is still able to know the prefix of the address.
In these cases, the node forwards the query to a neighbor node maintaining a sub-
space closer to the destination subspace. This node should be able to further resolve
the address of the destination subspace. As a result, the address of the destination
subspace will be refined after each routing step. Algorithm 10 illustrates the search
algorithm of ZNet. As an example, assume that node A wants to look up a data be-
longing to the subspace maintained by node F in Fig. 4.6. Since A only knows that
the address’s prefix of the destination subspace is 01, it forwards the query to either
C or D (assume that D is chosen). Since D maintains a subspace that is partitioned
in the same level with the destination subspace, it should be able to fully resolve the
address of the destination subspace, which is 0111. As a result, D simply forwards
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Algorithm 10 : ZNet_Search(Node n, Search_Space s)
1: if n.subspace covers s then
2: result = Local_Search(r)
3: return result to the query issuer node
4: else
5: resolve the address a of the destination search space
6: if a can be fully resolved then
7: let n′ be a neighbor node whose subspace is closer to a

8: ZNet_Search(n′, s)
9: else {a cannot be fully resolved}

10: compute the longest prefix address l of a

11: let n′ be a neighbor node whose subspace is closer to l

12: ZNet_Search(n′, s)
13: end if
14: end if

the query to E, which is a closer node to the destination node. Finally, E forwards
the query to F , the destination node.

4.2.3 M-Chord

M-Chord [240] is a P2P system supporting similarity search in high-dimensional
metric spaces. The system is built on top of the Chord [173] overlay network. M-
Chord employs two steps to index multi-dimensional data.

1. The system uses iDistance [165], a distance-based method, to map high-
dimensional data to one-dimensional data. The basic idea of iDistance is to use
a set of globally known reference points to divide the entire data space into
partitions and index data by the distance between them and their nearest parti-
tion/reference point.

2. The one-dimensional value returned in the first step is indexed to the Chord ring.

In particular, based on iDistance method, the system needs to pre-partition the
data space into a set of partitions S = {P1,P2, . . . Pn}. Each partition Pi is repre-
sented by a reference point Oi and a radius ri . A constant c is selected so that each
partition Pi(Oi, ri) is mapped to a nonoverlapping range of values [i · c, i · c + ri]
(keyOi

= i · c is the one-dimensional mapping value of Oi ). When a data object D

is indexed to the system, M-Chord first finds the nearest reference point Oj to the
data object. The index value of D is then computed as j · c + dist(D,Oj ), where
dist(D,Oj ) is the distance between D and Oj . Finally, this one-dimensional index
value is inserted to the Chord ring. For example, as in Fig. 4.7, the index value of
data object A, whose nearest reference point is Oi , is keyA = i · c + d1, where d1
is the distance between A and Oi . Similarly, the index value of data object B is
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Fig. 4.7 M-Chord

keyB = j · c + d2. These two index values, keyA and keyB , are inserted to corre-
sponding positions in the Chord ring.

To process a range query QR(o, r), where o and r are the center and the radius
of the search region, M-Chord follows the algorithm of iDistance. At first, the sys-
tem determines partitions that intersect with the search region. After that, for each
intersecting partition Pi(Oi, ri), the system creates a one-dimensional range query
q[keyOi

+ dist(Oi, o) − r,max(keyOi
+ dist(Oi, o) + r, keyOi

+ ri)] and sends the
query to the Chord ring for execution. Finally, the results returned from executing
one-dimensional range queries are filtered to retrieve final results.

To process a kNN query QkNN(o, k) where o and k are the center and the number
of wanted nearest objects, the algorithm of iDistance is not suitable for P2P environ-
ment because the repeat of executing range queries with increasing of radius incurs
a high number of query messages in the system. Instead, M-Chord employs a dif-
ferent algorithm that aims to save the network communication cost. This algorithm
consists of two steps as follows.

1. The system uses a low-cost heuristic to find k objects that are near o. The maxi-
mum distance δ between these k objects and o is computed.

2. The system executes a range query QR(o, δ) and selects the k nearest objects
from the returned results.

A weakness of M-Chord is that if the number of objects in the system is large, it
incurs a high cost of indexing because the system needs to index objects separately.
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4.2.4 SIMPEER

To avoid the high cost of indexing every object, SIMPEER [112] proposes that peers
should summarize their objects before indexing and only index these summaries in
the system. In this way, the system can significantly reduce the cost of indexing.
SIMPEER is a super-peer based system utilizing a three-level index structure as
follows:

− At the lowest level, each peer indexes its sharing objects. Additionally, the peer
clusters its own objects to create cluster summaries and sends these summaries
to the super-peer in charge of it.

− At the super-peer level, on the one hand, each super-peer indexes summary clus-
ters submitted from its client-peers. On the other hand, it clusters these sum-
mary clusters to create hyper-clusters and broadcast these hyper-clusters to other
super-peers.

− At the highest level, each super peer builds routing indices from its own hyper-
clusters and hyper-clusters received from other super-peers.

In this structure, when a peer issues a query, it sends the query to the super-peer
that is in charge of it. At the super-peer, based on local indices of summary clus-
ters and hyper-clusters, the query can be forwarded to client-peers who may hold
the query results or to other super-peers, which will continue to forward the query
to other client-peers. To index summary clusters, SIMPEER generalizes the idea
of iDistance [165] for distributed environment. The basic idea of indexing sum-
mary clusters using iDistance is to index the clusters based on special points of the
clusters. In particular, like iDistance, SIMPEER uses a set of globally known ref-
erence points that divide the entire data space into partitions. To index a summary
cluster Cx , SIMPEER first assigns this cluster to a partition Pi—the one whose ref-
erence point is closest to the center of the cluster. It then maps the farthest point of
Cx to a one-dimensional index value based on the reference point Oi of partition Pi .
To process a range query, for each partition Pi that is formed by a reference point
Oi and intersects with the query, SIMPEER has to search from the nearest point
of the query to Oi to the boundary of Pi . An example of SIMPEER’s range query
processing based on iDistance is illustrated in Fig. 4.8.

There are two disadvantages of SIMPEER. First, since the search space of SIM-
PEER depends on the nearest point of the query to reference points of intersecting
partitions, if the nearest point of the query is close to reference points, the system
always needs to search a large space no matter how big the query size is. Second,
since partitions need to be enlarged to encompass the furthest point (the index) of
each cluster, large overlaps among data partitions may be generated, incurring a
bigger search space, and hence a higher search cost.
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Fig. 4.8 SIMPEER

4.2.5 LSH Forest

LSH Forest [39] is an index structure containing a set of l LSH Trees, each of which
is a prefix tree. For indexing purposes, the system uses a family H of locality sen-
sitive hash functions. In this index structure, each inserted object O is indexed l

times to l LSH Trees. At each LSH Tree, O is assigned a variable length x-digit
identifier, which is the concatenating result of {h1(O),h2(O), . . . , hx(O)}, where
h1(O), . . . , hx(O) are hashing functions chosen from H. This identifier determines
the position of O in the LSH Tree where O is a leaf node and each digit in the iden-
tifier of O represents a part of the path from the root to O’s position. An example of
a LSH Tree containing 4 objects is shown in Fig. 4.9 where the identifiers of these
objects are 00, 01, 110, and 111. It is important to note that the length of object
identifiers should be long enough so that each object can have a distinct identifier,
and hence a distinct position in the LSH Tree.

To process a similarity search query, LSH Forest first uses hash functions se-
lected from H to generate the identifier of the query point. This process is actually
similar to the process of assigning an identifier for an inserted object. After that, the

Fig. 4.9 A LSH Tree
containing 4 objects



98 4 Data-Centric Applications

Algorithm 11 : LSH_Similarity_Search(Query q)
1: generate the identifier qId of q

2: initiate two empty sets S and R

3: for each LSH Tree t do
4: find a leaf node n of t that has the largest prefix match with qId

5: S.add(n)
6: R.add(n.object)
7: end for
8: while R.size < M do
9: initiate an empty set S′

10: for each node n in S do
11: let n′ be parent of n

12: S′.add(n′)
13: for each descendant leaf node d of n′ that has not been reached do
14: R.add(d.object)
15: end for
16: end for
17: S = S′
18: end while
19: retrieve the top nearest objects from R

system searches l LSH Trees top-down to find leaf nodes having the largest prefix
match with the query identifier. From these leaf nodes, the system travels LSH Trees
bottom-up step by step synchronously to collect similar objects, which are descen-
dant leaf nodes of the reaching internal nodes. This iteration process stops when the
system returns at least M objects. Finally, from these M objects, the top nearest ob-
jects to the query object are retrieved. Algorithm 11 illustrates the similarity search
algorithm over LSH Trees.

To support similarity search on P2P systems, assume that LSH Trees in LSH
Forest are binary trees, i.e., hash functions in H return only two values: either 0
or 1. In this case, LSH Forest can be implemented in P2P systems naturally by
employing P-Grid [17], a binary prefix tree structure where each peer maintains a
leaf node of the tree and each connection between a node and its child is represented
by a binary value (details of P-Grid are discussed in Chap. 3). The only variation
is that LSH Forest is built on a set of l P-Grid overlay networks, one for each LSH
Tree. Note that if the domain of hash functions in H has more than two values, a
P-Grid like structure can be implemented to support LSH Forest in P2P systems.

4.3 Textual Information Retrieval

Content-based search in centralized systems has been extensively studied through-
out the literature of Information Retrieval (IR). Several methods have been proposed
to support this type of search. Most methods use the Vector Space Model [336] to
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represent documents as term vectors [283] in the Cartesian Space. Each element
of a term vector is associated with a term t and has a weight w(t) = tf (t) · idf (t),
where tf (t) is the term frequency of t in the document and idf (t) is the inverse docu-
ment frequency reflecting the general importance of t in the entire corpus. Basically,
inverse document frequency decreases the weight of terms that occur in many doc-
uments, and hence they have a low discriminating value (these terms are called as
popular terms). However, it is not straightforward to employ these methods in P2P
context since it is difficult to maintain global knowledge of existing terms in the
whole system to calculate inverse document frequency of terms. A popular solution
for global knowledge management is to rely on a set of super peers (or centralized
servers) as a directory service. Alternatively, gossiping algorithms can be used to
propagate global knowledge among all nodes in the system. Another difficulty in IR
in P2P systems is that since the number of terms in shared files in P2P systems is typ-
ically very large, there is a need of building an effective and scalable indexing struc-
ture for them. According to the way global knowledge is managed and term indices
are constructed, we can classify IR methods in P2P systems in three main categories.

− In the first category, P2P systems manage global knowledge locally at each node
in the system [91, 92, 306]. As a result, every node can process queries based
on its own global knowledge. To keep global knowledge at nodes up-to-date,
these systems often employ gossiping algorithms to propagate new information
among nodes. The main difference between these systems, however, is in the
way they design gossiping algorithms to avoid message flooding so that they can
keep the cost of data update as low as possible. Even though variants of gossip-
ing algorithms have been proposed, since a change at a node will eventually be
propagated to all nodes in the system, the cost of maintaining global knowledge
is still high.

− In the second category, P2P systems manage global knowledge in a hierarchical
summary index tree structure where global knowledge is accumulated from the
leaf to the root of the tree. In particular, in the summary index tree structure, each
leaf node, which is a peer node, first creates a summary index for documents it
is sharing and submits the summary index to the parent node. Each internal node
then creates a summary index from summary indices submitted by its children.
Step by step, summary indices from all nodes in the system are gathered at the
root node to build global knowledge. In this basic structure, since only the root
maintains global knowledge, it poses a potential bottleneck problem. To lever-
age the problem, all methods [201, 202, 208, 268, 290, 320] propose a use of a
super peer network consisting of several connected super peers to work as the
root. In particular, as proposed in Overcite [305], the super peer network can
be built from volunteer peers. Even though the use of a super peer network can
leverage the bottleneck problem, it loosens some properties of P2P systems such
as decentralization and scalability. Furthermore, it incurs a high cost to maintain
the consistency of global knowledge among super peers. It is interesting to re-
alize that most methods [201, 202, 268, 290, 320] only build a summary index
tree structure at two levels: the leaf-peer level and the super-peer level. On the
other hand, in an excepted case, Lupu et al. [208] suggest a use of a multi-level
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binary tree structure where the number of nodes in the system determines the
number of levels in the tree. Nevertheless, summary indices in the binary tree
are constructed and maintained in almost similar fashion as other systems.

− In the third category, P2P systems manage global knowledge in a decentralized
manner by employing P2P overlay networks to index terms extracted from shar-
ing documents. For example, pSearch [311] uses CAN [266] for its index pur-
pose while other methods [269, 310, 351] index terms in a Chord [173] ring.
Additionally, in cases the system supports “AND” keyword in queries, Bloom
filters [53] can be used [269] to improve the efficiency of query processing. Nev-
ertheless, these systems still require some “special” nodes to maintain global
information (e.g., the total number of documents in the system) that is needed
in information retrieval techniques. Alternatively, in Minerva, Bender et al. [41]
suggest to index terms both globally and locally, where global knowledge exists
in the form of global indices. In this system, when a node issues a query, local
indices are used to process the query first. After that, if the returned result is
not good enough, i.e., the result does not satisfy some requirements, the system
will retrieve global indices to process the query. To avoid overlapping in query
processing, the system penalizes peers holding overlapping documents. Along a
different line, Luu et al. [209] propose a solution to reduce the cost of indexing
documents by using only metadata and discriminative keys. While this method
may be able to decrease the index cost, it may also decrease the quality of query
results. Furthermore, it is not easy to identify discriminative keys in highly dy-
namic systems. Along a different line, Sahin et al. [279, 280] assume that they
are able to obtain global knowledge in advance and use this knowledge to first
create global reference vectors. After that, sharing documents are indexed in a
Chord ring based on their similarity to reference vectors. The challenge of using
this method, however, is that, it is not easy to know global knowledge in advance.

In what follows, we should first introduce basic textual information retrieval tech-
niques. After that, we should present applications of IR methods in P2P systems
such as PlanetP [92], Summary Index [290], pSearch [311], and eSearch [310],
for global knowledge management and term indexing for supporting content-based
search in different P2P systems: unstructured, super-peer based, and structured P2P
systems.

4.3.1 Basic Techniques

4.3.1.1 Query and Document Representation

Vector model is widely used in text retrieval systems [33]. Let {ki} be the set of
index terms that are used in information retrieval, {di} be the set of shared docu-
ments, and q be the user query. A weight wi,j is associated with a pair (ki, dj ),
and wi,q is associated with (ki, q). Both wi,j and wi,q are nonnegative. Thus, the
query vector �q and document vector �dj are defined as �q = {w1,q ,w2,q , . . . ,wt,q}
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and �dj = {w1,j ,w2,j , . . . ,wt,j }, respectively, and they are used as representatives
of the query and the document. Note that both �q and �dj are vectors of t dimension-
ality. Here, t is the number of index terms. The similarity between the query q and
a document dj is defined as the cosine of the angle between the vectors �q and �dj ,
i.e.,

sim(dj , q) = �dj · �q
| �dj | × |�q|

=
∑t

i=1 wi,j × wi,q
√∑t

i=1 w2
i,j ×

√∑t
i=1 w2

i,q

.

Therefore, given a query q , all documents can be ranked based on their similar-
ities to the query. The larger the similarity is, the more relevant the document is to
the query.

Many different term weighting schemes exist [33], and the term-frequency and
inverse document frequency (TF-IDF) scheme is the most commonly used. Term

frequency of term ki in document dj is defined as fi,j = freqi,j

maxl freql,j
. Here, freqi,j is

the number of occurrence of term ki in document dj , and maxl freql,j is the max-
imum occurrence of any index terms in the document dj . The inverse document
frequency of term ki is defined as idf i = log N

ni
, in which N is the number of doc-

uments in the corpus, and ni is the number of documents that contain the term ki .
Thus, the weight wi,j according to the (ki, dj ) pair is defined as the product of the
term frequency and inverse document frequency:

wi,j = fi,j × idf i

= freqi,j

maxl freql,j

log
N

ni

.

Furthermore, the query term weights can be defined as

wi,q = (0.5 + 0.5fi,q) × idf i

=
(

0.5 + 0.5freqi,q

maxl freql,q

)

× log
N

ni

.

This vector model is widely used in centralized information retrieval systems
and consequently in P2P systems (e.g., pSearch [311], PlanetP [92], SummaryIn-
dex [290]).

4.3.1.2 Directory Management

Directory management is a key problem in P2P-based IR systems. Different infor-
mation is kept in directories of different systems. Typically, the summary of the cor-
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pus is stored in the directory. Two types of directory management methods adopted
in P2P-based IR systems are as follows:

− Bloom-Filter-Based Approach: PlanetP employs a Bloom filter based approach
for the management of the indexed terms [92]. A Bloom filter is an array
of m bits, and K independent hash functions h1, h2, . . . , hK , each with range
1, . . . ,m. Initially, all the bits are set to 0. For a term k, it is hashed by all the
hash functions. The bits hi(k) are set to 1 for 1 ≤ i ≤ k. To check if a term k

appears in a peer, all bits of hi(k) are checked. The term is in the corpus only
when all these bits are set to 1. Bloom filter produces false positives but it never
causes any false negative. This solution is efficient for summarization of data and
has been widely used in network applications [53, 56].

In PlanetP, each peer generates its own Bloom filter based on the indexed
terms of its corpus. The Bloom filter is then distributed in the whole P2P network
based on a gossiping-based method. A peer may store a Bloom filter from other
peers stand-alone or merge it with some Bloom filters it receives, as a trade-off of
space cost and accuracy. When the peer receives a query, it judges if the keywords
in the query appear in the documents on a set of peers based on the Bloom
filters it stores. It is assumed that the majority of the documents are fully static
and change slowly. Therefore, the Bloom filters do not have to be distributed
frequently. The advantage of distributing the Bloom filters in the whole network
is that even when a peer is temporarily offline, the querying peer may still know
the existence of the potential answer, and may schedule a later visit to the offline
peers.

− Classification Hierarchies: Semantic Overlay Network (SON) is designed for
P2P semantic-based search [90]. SON differs itself from traditional overlay net-
works in that the connection between peers are labeled and peers connected by
the links with same label form a semantic network. Intuitively, a semantic over-
lay network is constructed by a set of peers with documents of similar topic.
A peer may belong to several SONs. Classification hierarchy is used to build
the SONs. First, it is assumed that each document can be classified into at least
one category in the classification hierarchy. A peer can choose the SONs to join
based on the categories its documents belong. When a query comes, it is also
classified into a specific category. Based on the classification, the query is sent
to the related SONs to retrieve the answers. This method assumes that the clas-
sification hierarchy is relatively stable, and hence each peer has a copy of the
hierarchy.

Triantafillow and his colleagues [318] propose a P2P-based system architec-
ture for information retrieval, which is also based on document classification.
However, different from SON, only one level of categories is used. Each peer
maintains a Document Table, which stores the category of each document, a
Document Category Routing Table, which maps each document category to a
cluster identifier, and a Node Routing Table, which maintains the list of peers
belonging to each cluster. For query processing, a query is firstly classified into
one or several categories and is then routed to peers in the corresponding cluster.
As it is in SON, each peer must keep a copy of category list.
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4.3.1.3 Ranking of Results

Traditional IR systems may rank the documents based on their similarity to the
query. However, for some similarity measurement, the TF-IDF-based measurement
introduced in Sect. 4.3.1.1, cannot be applied easily. For example, the information
needs to calculate the similarity is hard to be obtained by the querying peer. Instead,
a general approach is to first rank peers based on the number of documents they have
that is relevant to the query. Based on the ranking list, the query is sent to top relevant
peers for processing. For example, PlanetP [92] presents a two-phase method for
solving this problem [92]. It introduces a new concept: inverse peer frequency (IPF).
IPF is calculated for each indexed term t by using IPFt = log(1+ N

Nt
), where N and

Nt are the number of nodes and the number of nodes containing term t in the system.
Based on IPF, each peer i is assigned a score Ri(Q) = ∑

t∈Q∧t∈BFi
IPFt according

to the query Q, where BF is the Bloom filter of the peer. After that, the peers are
sorted in the order of their Ri(Q) scores, and accessed one-by-one until a peer does
not contribute any of its documents to the top-k documents with highest sim(dj , q)

scores. The final top-k documents in the list ordered by similarity to the query are
returned as the answer with corresponding ranks.

4.3.1.4 Improving the Performance of Information Retrieval

Besides basic information retrieval techniques introduced before, there are two im-
portant techniques to improve the performance of information retrieval: Latent Se-
mantic Index and Peer Clustering.

− Latent Semantic Index (LSI) Approach: Latent semantic index is widely used
for dimensionality reduction [47]. pSearch [312] introduces LSI into P2P-based
information retrieval. pSearch is designed as a text retrieval system over CAN
[266]. It is assumed that documents semantically similar to each other are
mapped to identifiers close in the CAN identifier space. In this approach several
problems exist if the dimensionality of CAN identifier space is set to be equal to
the dimensionality of vectors after LSI processing. First, the vectors are not uni-
formly distributed in the identifier space. Second, the dimensionality of vectors
is typically very high and search in high dimensional space is affected by the so
called curse of dimensionality. Last but not least, global information is needed.

A series of enhanced techniques are applied to overcome the shortcomings
listed above. First, the vectors after LSI processing are transformed so that they
are approximately uniformly distributed in the CAN identifier space. Further-
more, for a newly added peer, its join request is first routed to a peer corre-
sponding to a certain document the added peer contributes. Similarly, a query
is routed to such peer first. However, the query is then flooded in the neighbor-
ing peers. Recall that documents semantically similar to each other are assigned
identifiers close in the CAN identifier space. This approach leads to quite effi-
cient search. To overcome the curse of dimensionality problem, multiple CAN
identifier spaces are used. Respectively, the vectors are partitioned into several
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subvectors, each is located in one CAN identifier space. When a query is issued,
the corresponding vector is also partitioned into subvectors, and they are used to
search in the CAN identifier spaces respectively. The results found in different
CAN identifier spaces are retrieved and ranked by using their original vector.
Finally, it is proposed that the information, e.g., dictionary and IDF, can be com-
puted in advance based on samples. These information can be updated when it
is needed. It is noted that the statistics is relatively stable, so that reexecuting the
computation and the subsequent redistribution of documents rarely happens.

− Peer Clustering: To group the similar peers together, i.e., to connect the peers
with similar documents, can decrease the hops needed to find answers to a spe-
cific query and improve the performance of information retrieval. This is in fact
a peer clustering task. Several P2P-based information retrieval systems share the
same idea of peer clustering [90, 232, 318].

In the work of Triantafillow [318], the clusters are determined based on the
document categories. Each document category can only belong to one cluster.
Each peer is assigned to the clusters corresponding to the categories its docu-
ments belong to. Furthermore, to achieve high performance, the system should
satisfy inter-cluster load balancing, intra-cluster load balancing, and global
load balancing. Here, load means the number of requests served by a peer stor-
ing the documents. Inter-cluster load balancing ensures a fair distribution of
document categories to different clusters, intra-cluster load balancing causes the
peers in one cluster approximately having the same load while global load bal-
ancing tries to balance the load of each peer as uniform as possible.

Each SON [90] can be treated as a peer cluster. Similar to the architecture pro-
posed by Triantafillow [318], the peers join the clusters based on the categories
of their documents. When the percentage of documents on a peer belonging to a
specific category exceeds a given threshold, the peer should join the correspond-
ing SON. In this way, with appropriate threshold setting, small size of SON can
be achieved, and the query performance can be improved significantly.

Another peer clustering method suggests a test-and-verify approach under the
assumption that no predefined category is available [232]. Each new added peer
randomly connects to a peer. Then, it finds another set of peers within a cer-
tain hops from the peer it connects, and calculates the similarity between each
of those peers to itself. The most similar one is chosen to be connected by the
new added peer. Different from above two methods, the similarity is calculated
on-demand, and no category information is needed.

4.3.2 PlanetP

PlanetP [92] is an unstructured P2P system supporting content-based search. In
PlanetP, each node creates and maintains a local index of its shared files. This local
index stores information about terms extracted from local shared files. Addition-
ally, a gossiping algorithm is employed to replicate a term-to-peer index to other
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Fig. 4.10 Gossiping Algorithm

nodes in the system so that all nodes can obtain global knowledge of the system.
The gossiping algorithm works in two modes, push and pull, as follows.

− Push: when there is a change in global knowledge at a node x, at interval, x ran-
domly selects a neighbor node y to push this change. If y has known this change
before, it ignores the notification. Otherwise, y updates its global knowledge and
pushes the change to a random neighbor node as x does. The push process at x

stops if none of n consecutive neighbor nodes that are pushed the change from x

needs to update its global knowledge.
− Pull: if n is set to a small value, it is possible that the push process may stop

before its global knowledge is updated at all nodes in the system. As a result, at
interval, a node x also tries to pull new changes from a random neighbor node.
If y has changes that have not been updated at x, x needs to update its global
knowledge with these changes.

The operating of the gossiping algorithm is illustrated in Fig. 4.10. In PlanetP,
since global knowledge is maintained at all nodes in the system, a node can process
content-based search locally in the following steps.

− Let (t → n) denote the existence of a term t at a node n. At first, the node ranks
nodes containing queried keywords in the system according to their similarity
score. The similarity score between a node n and a query q is calculated as:

Ssim(n, q) =
∑

t∈q|(t→n)

IPFt

where IPFt is the inverse peer frequency and is computed as log(1 + N
Nt

), N

is the number of nodes in the system and Nt is the number of nodes having
documents containing term t .

− After that, the node repeatedly sends the query to nodes from the top to the
bottom of the ranking list, m nodes each time (m is a configurable parameter
representing a trade off between parallelism in query processing and the potential
of getting unimportant results). When a node receives a query, it returns a set of
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documents and their similarity score to the query. The similarity score between
a document d and a query q is calculated as:

Ssim(d, q) =
∑

t∈q IPFt · (1 + log(fd,t ))√|d|
where fd,t is the appearance frequency of t in d and |d| is the total number of
terms in d .

− Assume that the user is only interested in top-k documents. When the node re-
ceives a query result, it recalculates the current top-k documents result list and
updates the result list if the new result contains a document having a higher sim-
ilarity score compared to existing documents in the result list. The process stops
when the query results from a number of n′ consecutive nodes fail to modify the
result list.

As we have mentioned before, a weakness of this system as well as other systems
employing the gossiping algorithm is that it always incurs a high cost in broadcast-
ing messages in the system.

4.3.3 Summary Index

Summary Index [290] is a super-peer based indexing system supporting content-
based search. The system employs a two-level tree structure to build a three-level
hierarchical summary index structure. The first level of the tree structure is the leaf-
peer level containing peer nodes that share documents. The second level is the
super-peer level containing super-peer nodes. In Summary Index, each peer node
is attached to a super-peer node while each super-peer node is responsible for a
set of peer nodes. Based on this two-level tree structure, Summary Index builds a
three-level hierarchal summary index structure as follows.

− The first summary index level called document summary level is built at the
leaf-peer level of the tree structure. In this level, each peer node constructs local
indices for its shared documents. These document indices are then summarized
to create a summary index, which is sent to the super-peer in charge of the peer
node.

− Two other summary index levels are built at the super-peer level. In this level,
from summary indices received from peer nodes a super-peer node is in charge
of, the super-peer node first builds indices for these peer nodes. These peer in-
dices form the second summary index level called peer summary level. After that,
the super-peer node creates a summary index of peer indices to exchange with
other super-peers. This summary index together with summary indices received
from other super-peers form the third summary index level called super-peer
summary level at the super-peer node. This summary index level provides global
knowledge of the system.
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Fig. 4.11 Summary Index
Architecture

The tree structure and summary index structure are illustrated in Fig. 4.11. Based
on this summary index structure, when a peer node issues a query, it first sends the
query to its super peer. The super-peer then checks the super-peer summary level
to find super-peers holding relevant indices to the query. These relevant super-peers
are forwarded the query. When a super-peer receives a query from another super-
peer, it checks the peer summary level to find suitable peers to forward the query.
Finally, at peer nodes in the leaf-peer level, document summary level is referenced
to process the query and the results are returned to the query issuer. Algorithm 12
shows the overall search algorithm.

While the three-level hierarchical summary index structure is able to process
queries effectively, the main disadvantage of this structure is that it incurs a high
communication cost among super-peers. It is because super-peers need to com-
municate with each others frequently to maintain up-to-date global knowledge (or
super-peer summary). In particular, any change at a peer will lead to an update at its
super-peer and then at other super-peers.

4.3.4 pSearch

pSearch [311] is a CAN [266] based P2P system supporting content-based search.
In pSearch, the system selects a set of stable and strong nodes to build its search en-
gine. These nodes are organized into an overlay network, which is CAN. For each
shared document of a node, its retrieved terms form a semantic vector, which is a
point in a multi-dimensional space. This point is indexed directly into the overlay
network since CAN supports multi-dimensional data indexing. To process a query,
the node issuing the query first creates a multi-dimensional query point from queried
keywords. This query point is then sent to the overlay network. Finally, since similar
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Algorithm 12 : SummaryIndex_Search(Node n, Document d)
1: if n is a super-peer then
2: if the search request is sent from a normal peer then
3: check super-peer summary level
4: for each super-peer n′ whose summary index is relevant to d do
5: SummaryIndex_Search(n′, d)
6: end for
7: else {the search request is sent from a super-peer}
8: check peer summary level
9: for each peer n′ whose summary index is relevant to d do

10: SummaryIndex_Search(n′, d)
11: end for
12: end if
13: else {n is a normal peer}
14: check document summary level
15: for each document d ′ that is relevant to d do
16: return d ′ to the query issuer node
17: end for
18: end if

Fig. 4.12 pSearch

documents are indexed in nearby regions, the overlay network returns all document
indices with in a radius r from the query point (r is a configurable parameter de-
termined by either the similarity threshold or the number of wanted documents).
A pSearch engine constructed on a 6 CAN nodes is illustrated in Fig. 4.12. Note
that in pSearch global knowledge is created and maintained at each node in the
overlay network. The way global knowledge is managed is independent with the
way documents are indexed.

The biggest challenge in pSearch is to solve the mismatch between the dimen-
sionality of index space created by documents and the dimensionality of index
space which CAN can support. It is because the semantic vector, which is a multi-
dimensional point V = (v0, v1, . . . , vl), created by a document is often in a high-
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Fig. 4.13 A rotation of a 4-dimensional points to two 2-dimensional points

dimensional space while the dimensionality of index space supported by CAN is
much lower. A solution proposed in pSearch to this challenge is to rotate repeatedly
the semantic vector p times. Each time, the semantic vector is rotated m dimen-
sions, where m = 2.3, . . . , ln(n), n is the number of nodes in the system. This rota-
tion process generates a series of p new vectors V i = (vi·m, . . . , v0, v1, . . . , vi·m−1),
i = 0, . . . , p − 1. These p rotated semantic vectors are indexed independently into
p places in the overlay network. Similarly, when a node issues a query q , it also ro-
tates the query point p times to create p rotated queries. These new rotated queries
are processed independently to retrieve results. Since the similarity between two
vectors is measured by their inner product, if a document is satisfied a query, its
rotated semantic vectors should be close to the rotated query points. An example of
rotating a 4-dimensional data point with m = 2 dimensions each time to create two
2-dimensional data points to index in a 2-dimensional CAN is shown in Fig. 4.13.
Even though the solution of rotating data points and queries is able to reduce the
dimensionality of index space to a value that CAN can support, since it creates data
duplications, it incurs a high cost in data insertion, data deletion as well as query
processing.

4.3.5 PRISM

Similar to pSearch, to support content-based search efficiently, the basic idea of
PRISM [280] is to index similar documents to the same node. However, instead
of using CAN as in pSearch [311], PRISM employs a Chord ring for its overlay
network. PRISM indexes documents and processes queries based on a set of ref-
erence vectors R = {R0,R1, . . . ,Rn}, which are created at the system startup time
and are kept for references at all nodes in the system. To index a document, the
system calculates the distances between the document and reference vectors from
which indices are created for the document. Since similar documents usually have
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similar distances to reference vectors, they should be indexed at the same nodes.
Similarly, to process a query, the system calculates the distances between the query
and reference vectors from which nodes holding indices of similar documents are
targeted. The processes of indexing documents and processing queries are described
in details as follows.

− Document indexing: when a node indexes a document to the system, it first com-
putes the semantic vector of the document. After that, the node calculates the dis-
tances between this semantic vector and reference vectors. The reference vectors
are then sorted based on their distance with the semantic vector increasingly. Fi-
nally, the top k reference vectors in the sorted list are selected to create C2

k indices
for the node. For each pair of selected reference vectors, an index is created for
the document by concatenating the binary representations of the two vectors to
create high order bits of the index and setting remaining low order bits randomly.
For example, assume that a set of 4 reference vectors R = {R0,R1,R2,R3} are
used, their binary representatives are 00,01,10, and 11, the sorted list of ref-
erence vectors based on their distance to a document d is R2R0R3R1, the top
3 reference vectors are selected to create indices and each index has 6 bits, the
system will create 3 indices for d : 1000xx, 1011xx, and 0011xx, where xx are
random bits. Figure 4.14 illustrates the three indices of the document in this ex-
ample.

− Query processing: when a node issues a query, it also calculates the distances
between the query vector and reference vectors and sorts reference vectors based
on their distance with the query vector increasingly. After that, the top k refer-
ence vectors in the sorted list are used to create C2

k query points in the same way
as indices are constructed for a document. Finally, these generated query points
are sent to the Chord ring for processing.

Note that in the above processes, k is a configurable parameter and is set depend-
ing on the system. If k is big, more indices are created, and hence more storage is

Fig. 4.14 PRISM
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consumed. However, having more indices can help to get a high recall rate in query
processing because it provides more changes for a query to meet an index. This is
a trade-off. Another important note is that PRISM requires global knowledge for
constructing reference vectors when the system starts. Since such a requirement is
difficult to satisfy, it is a weak point of the solution.

4.4 Structured Data Management

Besides content-based search over unstructured textual documents, it is also im-
portant to support sharing of structured data sources such as relational databases
or XML documents in P2P systems, since there are many emerging online data
sources with rich structures. However, this type of application poses a big chal-
lenge due to the heterogeneity of data sources. Since different data sources may
have different schemes, a local query issued at a data source cannot be executed
at others. As a result, to process a query at different data sources, the query has to
be modified according to the data sources. The most popular solution to solve this
problem is to employ schema mediation that creates mappings between pairs of data
sources. An example of a P2P system employing this solution is Piazza [148, 149,
212, 313]. By using schema mediation, a query can be reformulated to different
queries to execute in different data sources. This basic solution, however, does not
work if schemes of data sources cannot be shared. In this case, an alternative solu-
tion is to create mapping tables from stored values as in Hyperion [30, 178, 180,
273]. These mapping tables can be created by domain experts first and are regen-
erated automatically later. Nevertheless, since this solution requires the availability
of domain experts, PeerDB [235] suggests another solution, where mappings are
inferred automatically from annotations of tables and columns based on informa-
tion retrieval techniques. The only requirement of this solution is to ask users to
input annotations for tables and columns when they are created. In addition to the
mapping problem, it is also a challenge to process queries efficiently across mul-
tiple data sources. PIER [159] proposes to use distributed hash tables to process
equi-join queries across multiple relational databases while Papadimos, Maier, and
Tufte [253] introduce an approach based on distributed catalog to process mutant
query plans across multiple XML documents. In a different approach, to make it
easy for users to issue queries over relational databases without knowing the data
manipulation language and the database schemes, M-KS [346] and G-KS [324] pro-
pose a solution to summarize relationships of keywords locally at each data source
based on the data source’s schema. Using databases’ summaries, these systems are
able to support unstructured keyword queries. In this solution, two keywords hav-
ing a relationship if they are in the same tuple or in different tuples but these tuples
can be connected together in a meaningful way. Based on keyword relationships,
these systems are able to process unstructured keyword queries. Finally, to speed
up query processing, PISCES [339] presents a partial indexing scheme. In the re-
maining part of this section, we first present all these above solutions in detail. After
that, we respectively introduce three well-known P2P projects supporting relational
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database sharing: Piazza [148, 149, 212, 313], Hyperion [30, 178, 180, 273], and
PeerDB [235].

4.4.1 Query Processing in Heterogeneous Data Sources

In this section, we first analyze semantics of queries. After that, we introduce three
popular methods for solving the problem of mapping heterogeneous data sources.
Then we present two basic query processing techniques over relational databases
and XML documents. Finally, we discuss indexing techniques that can be used to
speed up query processing.

4.4.1.1 Semantics

Above all, the semantics of data and queries should be defined. In PIER [159],
the authors introduced the data semantics that is called dilated-reachable snapshot.
Additionally, they define a reachable peer as a peer that can be reached by multicast
of a query. A local snapshot is the data on a peer when a query arrives. A reachable
snapshot is the union of all local snapshots of reachable peers according to the query.
Thus, the correct behavior of the system should be the correct behavior of queries
on reachable snapshots.

In the Hyperion project [179, 181], the semantics issue is discussed based on the
model named Local Relational Model (LRM) [46]. In the LRM model, the rela-
tional space consists of a complete set of local databases DB and a set of mapping
functions specifying the relation between pairs of local databases. This model as-
sumes that different local databases can support different languages and uses Li to
represent the language supported by local database i ∈ DB. In this way, the set of
coordination formulas RF on the family of relational languages {Li}i∈DB is defined
as

RF ::= i : φ|RF → RF|RF ∧ RF|RF ∨ RF|∃i : x.RF|∀i : x.RF

where i ∈ DB and φ is a formula of Li . Given a query on a family of relational
languages {Li}i∈DB, the global answer for this query is retrieved by first executing
it in all local databases and then using mapping functions to recursively compose
and map the local query results.

The Hyperion project implements the mapping functions by using mapping ta-
bles. A mapping table contains pairs of attributes X and Y in two different local
databases, in which each tuple is a mapping associating a pair of values (x, y) where
x is a value in X and y is a value in Y . For a value x of X appearing in the mapping
table, it is called to follow the open-world semantics, if x can be associated with
any possible value y in Y . Otherwise, it is called to follow the closed-world seman-
tics, i.e., x can only be associated with the indicated value y of Y in the mapping
table. For a value x of X being absent in the mapping table, it is called to follow the
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Table 4.1 Alternative
open/closed world semantics Open-world Closed-world

A present of value x Any value y Indicated value y

An absence of value x Any value y No value y

open-world semantics, if x can be associated with any value y of Y , or it is called
to follow the closed-world semantics, if x cannot be associated with any value of Y .
Thus, the alternative open and closed semantics are listed in Table 4.1 [181].

4.4.1.2 Mapping Heterogeneous Data Sources

There are three basic solutions for mapping heterogeneous data sources. The first
solution is based on mapping rules (schema mediation based approach). The sec-
ond solution is based on mapping tables (mapping table based approach). The third
solution is based on annotations of tables and columns (information retrieval based
approach). Three P2P systems employing these three methods are, respectively, Pi-
azza [148, 149, 212, 313], Hyperion [30, 178, 180, 273], and PeerDB [235]. Details
of these three solutions are as follows.

− Using mapping rules: this is a traditional method to integrate and exchange data
between heterogeneous data sources used in Piazza project [148, 149, 212, 313].
In this method, for each pair of heterogeneous data sources, the system defines
a set of mapping rules between the two data source schemes. These rules are
built from two types of views: global-as-view (GAV) and local-as-view (LAV).
In GAV, the schema of the mapping data source (the mediated schema) is defined
as a set of views over the schema of the other data source. On the other hand, in
LAV, the content of the other data source is described as views over the mediated
schema. Based on GAV and/or LAV, the system is able to reformulate a query to
be executed in different schemes of different data sources.

Alternatively, Katchaounov et al. studied the problem of mediation in P2P
systems from another point-of-view, which is named as view expansion [176].
Here, a view can be treated as a shared schema on a peer. A view is called ex-
panded, if it is rewritten according to the remote views. Three different view
expansion strategies, i.e., black-box, full expansion, and selective expansion, are
discussed and compared. Using black-box strategy, remote views are treated as
black-boxes. Thus, a peer only rewrites a local query into a query using the stored
relations and schema shared by neighboring peers. From the point-of-view of
query optimization, this may lead to a suboptimal query plan. When using full
expansion, it is assumed that a peer knows the shared schemes of all peers. Thus,
the peer can rewrite a query to a query using those schemes directly. However, in
a P2P system, the information of all peers is usually not available. Furthermore,
some peers may only share its schema to some trusted peers. When selective
expansion strategy is used, only some views are expanded. Katchaounov et al.
argue that this strategy leads to a trade-off between compilation cost, which is
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the cost to generate the rewritten query plan, and execution plan quality, which
means the efficiency of evaluation of the query plan.

− Using mapping tables: in some cases where database schemes cannot be shared
due to privacy reasons, it is infeasible to set up mapping rules via definitions of
views as in the previous solution. In these cases, using mapping tables may be
a choice. Basically, mapping tables map corresponding identifiers from different
schemes. Based on mapping tables, a local query at a database source can be
translated to a set of queries that can be executed in different database sources. In
general, the mapping tables are first created by domain experts. After that, they
are developed and maintained automatically by the systems. Hyperion project
[30, 178, 180, 273] employs this solution.

− Using annotations: the above two solutions cannot be applied if database
schemes cannot be shared while we have no domain experts to create initial
mapping tables. In this case, we need a more flexible solution. As proposed in
PeerDB [235], a feasible solution is to let users specify metadata in terms of de-
scriptive keywords for tables and columns when they are created. Since matching
tables and columns of different peers should have similar descriptive keywords,
an information retrieval method can be applied to find and match them in query
processing. This solution is implemented by a mechanism called agent assisted
query processing as follows.

In PeerDB, each peer has a master agent. The master agent is responsible
for monitoring statistics and managing the user queries. It may clone and dis-
patch worker agents to neighboring peers, and receive answers. When a query is
issued by a user, it is parsed. Then the local directory is searched and an infor-
mation retrieval method is applied to find related relations to report to the user.
Meanwhile, a relation matching agent is cloned and dispatched to each neigh-
boring peer. The master agent waits for the answers returned by remote peers.
The user can select the relations that are interested from the relations found in
both local dictionary and remote peers. The above process forms the first phase
of agent assisted query processing. For each relation selected by the user, a data
retrieval agent is cloned. If the relation resides on a remote peer, the agent is
dispatched to that peer. If the time-to-live (TTL) threshold has not been reached,
the agent is cloned and dispatched further to neighboring peers. In any cases, the
data retrieval agent reformulates an SQL query according to the schema of the
corresponding relations. Then, the query is executed by the local query engine on
the corresponding peer. The answers are returned to the master agent of the peer
that initiates the query, and presented by the master agent to the user. Thus, the
second phase of the query processing is finished. For searching in both local and
export dictionaries, a simple SQL query is transformed into a triple, constructed
by relation names, attribute names, and conditions. The triple is used to search in
dictionaries in an information retrieval fashion. The result relations are directly
returned to the peer that initiates the query.

This two-phase query processing approach is able to partially solve the prob-
lem of lack-of-schema problem in self-organizing P2P environments. By pro-
viding an interface for users to interact with the process of query executing, the
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agent assisted approach can support the join of data from two or more relations.
To achieve this, in the first phase, i.e., relation selection phase, not only individ-
ual relations, but also related relation combinations are returned to the user. Thus,
the data retrieval agent may reformulate the query according to the relationships
between the relations, so that the join capability is implemented. Currently, the
join of data from more than one peer is not supported by PeerDB. Developing
more intelligent peers that can determine the strategies at runtime, and find rela-
tions with similar schema remain as further research problems [235].

Based on these mapping techniques, a query issued at a node can be reformulated
to be executed at neighbor nodes of the node. In particular, when a query Q is issued
at a node, it is reformulated into a set of queries SQ = {Q1,Q2, . . . ,Qn}, each of
which corresponds to a neighbor node and is rewritten according to the mapping
between the node and that neighbor node. While Q is evaluated locally and queries
in SQ are sent to the neighboring nodes. These neighbor nodes then continue to
apply the mapping methods to transform and forward the query to their neighbors
and so on. The union of their results is the final answer to the query [147]. In fact,
gossiping algorithm is often applied to bring the query to far-away nodes. However,
when the query goes through a long distance, information-loss may occur. Chatty
Web [18] proposes a solution to detect this problem. The solution is based on both
syntactic analysis of reformulated queries and semantic analysis of query results. In
particular, syntactic analysis is done when a query is reformulated along a mapping
cycle. At this point, the system analyzes the syntactic similarity between the original
query and the reformulated query from which the level of agreement among peers
in the cycle is determined. On the other hand, semantic analysis is based on the
comparison of the data dependencies appearing in the query result and the data
dependencies in the local data.

4.4.1.3 Query Processing over Relational Databases

Distributed Hash Table (DHT) based query processing is first proposed in PIER [153],
and detailed techniques are studied under variant environments [129, 141, 159]. The
main function of DHT in query processing is shown in Fig. 4.15. Data objects, sim-
ilar to files in file sharing applications, are hashed into the identifier space, while
peers are hashed to the same space using a different hash function.

Besides locating and routing, DHT is employed in join algorithms implemented
in PIER. Two join algorithms are proposed for P2P-based query processing [159].
DHT-based adaption of pipelining symmetric hash join is designed as a general-
purpose equi-join algorithm. The data to be joined should be rehashed based on the
join attribute, since data objects are hashed first based on resourceID, as it is stated
before. The rest of this join algorithm is similar to traditional symmetric hash join
and it is performed on the querying peer. FetchMatches is another join algorithm
designed for conditions that one of the joining tables has already been hashed on
the join attributes. Suppose S � N is a join operation to be performed on tables
S and N , and S has already been hashed on the joining attributes, FetchMatches
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Fig. 4.15 Matching of the data objects and peers in DHT-based query processing

scans peers containing data in N , and fetches corresponding data in S for each tuple
in N . FetchMatches has the disadvantage that selections on non-DHT attributes
cannot be pushed into the DHT layer [159]. It is because if the selection functions
are integrated into the DHT layer, they may dirtying the DHT APIs. To solve this
problem, two improved algorithms, namely symmetric semi-join and Bloom join,
are studied [159].

Locality sensitive hashing (LSH) is a hash method for locality preserving, which
means for hash function h, it satisfies that Pr[h(A) = h(B)] = sim(A,B) [141].
Min-wise independent permutations are proved to be a family of hash functions
that are locality preserving according to Jaccard set similarity measure [141]. LSH
is suitable for range selection query processing, since similar data objects and
queries have high probabilities to be hashed to the same identifier in the identifier
space.

PeerCQ employs another simple DHT scheme, which is called to be peer aware
and CQ aware [129]. Intuitively, by peer awareness, it means that a peer containing
more data is assigned more identifiers than other peers, so that queries have more
chances to be mapped to this peer. By CQ awareness, it means similar queries have
more chances to be mapped to the same peer. To achieve CQ awareness, the data
source and objects to be queried in a query is hashed standalone, the result of which
forms the first part of the identifier of the query. The second part of the identifier
is obtained by hashing properties of the peer and the query. Thus, the second part
of the identifier can be expected to be uniformly random. The identifier space used
in PeerCQ is organized in a circle. Thus, the larger the first part is, the higher the
probability it has that two similar queries are mapped to the same peer.

4.4.1.4 Query Processing over XML Documents

Papadimos, Maier, and Tufte [253] introduce a multi-hierarchical-namespaces ap-
proach, which is employed to cooperate with mutant query processing. The cate-
gories are organized in several hierarchies. An object belonging to a child category
also belongs to all the parent categories. Each namespace is treated as a dimension.
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Thus, the query can be represented by interested cells that are defined by the cat-
egories in different namespaces. It is assumed that peers take different roles in the
system. Some peers maintain data belonging to specific interested cells, which are
called base servers. Some peers maintain information about base servers and other
peers whose interests or indices are overlapped with its own. These peers are called
index servers. Furthermore, some index servers maintain only the multi-hierarchic
namespace index. They are called meta-index servers. Finally, the peers that main-
tain the detailed information, i.e. the hierarchies, of namespaces are called category
servers.

A mutant query plan is a query plan graph that is capable of using URLs and
URNs as references of resources. The mutant query plans are represented by XML
documents, and are sent from one site to another to resolve the URNs [252]. The
mutant query plan is routed from one peer to another to resolve the URNs or eval-
uate the subplans after which the results are inserted into the corresponding node
in the plan. Thus, to answer a query is to resolve all the URNs in the mutant query
plan. A mutant query plan is evaluated serially by the peers. Therefore, mutant query
processing may be inefficient when it is compared with using other pipelined plans.
Nevertheless, mutant query plan gains more robustness and site autonomy. Further-
more, the plan can be reoptimized on each peer, while the coordination overhead
is saved. Since peers are usually fully autonomous, mutant query processing fits in
with the P2P environment well.

4.4.1.5 Unstructured Keyword Query Processing over Relational Databases

The requirement of knowing both the database schema and the data manipulation
language such as SQL to issue queries limits the use of relational databases to only
advanced users. To make it easy for normal users, M-KS [346] and G-KS [324]
propose a solution to support unstructured keyword query over relational databases.
The basic idea of this solution is to build a summary of keyword relationships for
each relational database in the system and keyword queries are processed based on
the summaries of databases. In this solution, two terms have a relationship if they
are in the same tuple or they are in different tuples but these tuples can be con-
nected in a meaningful way (via Primary Key—Foreign Key relationship). Given
a keyword query, this solution checks the existence of queried keywords and their
relationships in the summaries of databases to select the top-k databases that are
most likely to contribute to results. The query is then sent to only these top-K data-
bases for processing. The main difference between M-KS and G-KS is in the way
these systems maintain summaries of databases. While M-KS employs a matrix for
this purpose, G-KS utilizes a graph. Furthermore, while M-KS simply counts the
number of occurrences of term relationships in database summaries, G-KS employs
information retrieval techniques to weight nodes and edges in summary graphs ac-
cording to their importance compared to other nodes and edges in the graphs.
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4.4.1.6 Indexing Schemes

Data indexing is a popular technique to improve the query processing speed.
A straightforward solution to index relational databases in a P2P system is to index
every tuple of the database (fully indexing scheme). To index a tuple, the system
first creates a set of indices for all indexed attributes in the tuple (a tuple can be in-
dexed on all attributes or a subset of attributes). After that, these indices are inserted
in the system. The problem with this method is that since the accumulate amount of
data from different relational databases is often large, it incurs a significant cost in
creating and maintaining indices. To alleviate this problem, PISCES [339] proposes
a use of partial indexing scheme. This method does not index every tuple. Instead,
it selects a subset of tuples to index based on some criteria such as query frequency,
update frequency, etc. To determine if a tuple should be indexed, PISCES employs
histograms to keep statistics of the system. Furthermore, to support query process-
ing on tuples that are not indexed, PISCES employs an approximate range index
scheme in which each node containing a relational table with an indexed attributed
ai publishes a range index [I (ai)min, I (ai)max], where I (ai)min and I (ai)max are,
respectively, the minimum and maximum values of the attributed ai of the table. In
particular, the system first indexes tuples with the approximate range index scheme.
After that, if some range indices receive a significant number of queries (according
to the histograms), individual indices are created for tuples containing data in these
ranges. To ease the index maintenance, each index is assigned a timestamp and the
system will delete the index when its timestamp is expired.

4.4.2 Piazza

Piazza [148, 149, 212, 313] applies a traditional method to integrate and exchange
data between heterogeneous data sources. In Piazza, each peer maps its schema of
stored relation (local schema) to its neighbors’ schema. Users initiate queries based
on local schema. The query is rewritten according to the schema mapping, and sent
to the neighbors, so that it can be answered by other peers. The query is roaming in
the P2P network and continuously sending result back in its lifetime.

Figure 4.16 shows the architecture of Piazza system [146]. Each peer shares its
data in the form of stored relations. The peer defines its peer schema, according
to which other peers can access its stored relations. The peer maintains two kinds
of schema mapping. The first is the mapping between the stored relations and peer
schema. The second is the mapping between its peer schema and its neighbors’ peer
schema [149].

Currently, it is reported that PIAZZA supports sharing XML/RDF data for sup-
porting Semantic Web applications [147]. Accordingly, the schema is described
using XML-Schema or OWL ontologies [100] for XML data and RDF data re-
spectively. Furthermore, the mapping language and query language is XQuery [54]
based [147]. Note that so far PIAZZA has only reported results that focus on se-
mantic issues in peer data management systems (PDMS). The results on issues such
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Fig. 4.16 PIAZZA architecture

as how to find interested data sources in a large PDMS have not been reported yet
[138, 146, 147, 149].

Piazza creates a language called Peer-Programming Language (PPL) for map-
ping heterogeneous data source schemes. PPL allows users to specify mapping rules
from two types of views: global-as-view (GAV) and local-as-view (LAV). In the fol-
lowing parts, we first present PPL. After that, we introduce the query reformulation
algorithm in detail.

4.4.2.1 Peer-Programming Language

The syntax of PPL focuses on two main concepts: storage description and peer
mapping. While storage description of a peer specifies which data the peer stores
in its relations, peer mapping provides semantic connection between schemes of
different peers. Storage description and peer mapping are described and classified
through the following definitions.

− Equality storage description: appears in a formula of A : R = Q. This formula
describes that the result of a query Q over peer A is stored at relation R.

− Containment storage description: appears in a formula of A : R ⊆ Q. This for-
mula describes that a subset of the result of a query Q over peer A is stored at
relation R.
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− Equality peer mapping: appears in a formula of Q1(Ā1) = Q2(Ā2). This for-
mula describes that the result of a query Q1 over a set of peer Ā1 is equal to the
result of a query Q2 over a set of peers Ā2.

− Inclusion peer mapping: appears in a formula of Q1(Ā1) ⊆ Q2(Ā2). This for-
mula describes that the result of a query Q1 over a set of peer Ā1 is a subset of
the result of a query Q2 over a set of peers Ā2.

− Definitional peer mapping: appears in a formula of a datalog rule whose relations
in both head and body are peer relations. This formula describes that the data
stored in peer relations of the head is equal to the data stored in peer relations of
the body.

4.4.2.2 Query Reformulation Algorithm

Given a query Q, a set of storage descriptions and a set of peer mappings, the
process of query reformulation is a construction of a rule-goal tree where rule nodes
(or internal nodes) are labeled with entities of peer mappings, goal nodes (or leaf
nodes) are labeled with peer relations and links are rules (peer mappings or storage
descriptions). The algorithm starts at the root of the tree, which is Q. It then expands
Q to sub queries Q1,Q2, . . . ,Qn as children of Q. After that, it repeatedly applies
peer mapping rules to expand the existing nodes to generate new nodes until no
nodes can be further expanded. Finally, it uses storage descriptions to generate goal
nodes. The new query is reformulated from these goal nodes. The resultant query is
a union of conjunctive queries over goal nodes (or peer relations). Each conjunctive
query represents a way to get the query result from peers. The query reformulation
algorithm is illustrated in Algorithm 13 and an example of the query reformulation
is illustrated in Fig. 4.17. The goal of the query in the example is to find researchers
who work in the same department of a university and on the same research direction.

Algorithm 13 : Query_Reformulation(Query q)
1: set q as the root node
2: initialize a queue Q containing the root node
3: while not Q.empty( ) do
4: n = Q.pop()
5: if n is expandable by applying a mapping rule R then
6: apply R to expand n to a list L of child nodes
7: add all nodes n′ in L to Q

8: else
9: use storage descriptions to generate goal node n′

10: end if
11: end while
12: set reformulated query q ′ = {}
13: for each goal node n′ do
14: q ′ = q ′ ∧ n′
15: end for
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Fig. 4.17 Reformulation rule-goal tree

4.4.3 Hyperion

Different from Piazza, Hyperion [30, 178, 180, 273] employs mapping tables to
solve the problem of mapping heterogeneous data sources. There are two main is-
sues in this method: how to create mapping tables and how to process queries based
on mapping table. We, respectively, discuss these issues in the following parts.

4.4.3.1 Mapping Table Construction

Mapping tables are first constructed by domain experts. A mapping table needs to
record both the mapping values and the confidence of experts about the mapping.
The confidence of experts can be expressed in four different modes corresponding
to Table 4.2.



122 4 Data-Centric Applications

Table 4.2 Expert confidence
modes A presence of value x An absence of value x

Open-open-world Any value y Any value y

Open-close-world Any value y No value y

Close-open-world Indicated value y Any value y

Close-close-world Indicated value y No value y

− Open-open-world (OO-world): this mode has the lowest confidence. The map-
ping implies that a value x can be associated with any value y whether x exists
in the mapping table. This mode is used when the mapping table creator has no
glue about the mapping at all. Actually, this mode is not interested in practice.

− Open-close-world (OC-world): this mode implies that if a value x does not exist
in the mapping table, there is no associated value y. However, if x exists in the
mapping table, x can be associated with any value y. This mode is used when
the mapping table creator only knows the domain value of X. As a result, it does
not help much in query processing.

− Close-open-world (CO-world): this mode implies that if a value x exists in the
mapping table, it is associated with an exact value y. However, the mapping
table creator does not know the mapping values of missing values. In general,
this mode represents partial knowledge of the domain.

− Close-close-world (CC-world): this mode has the highest confidence. It repre-
sents the complete knowledge of the domain. If a value x exists in the mapping
table, it is associated with an exact value y while if x does not exist in the map-
ping table, there is no associate value y.

Since no experts can have complete knowledge of the domain especially when
the system involves several peer nodes, it is necessary to infer new mapping tables
automatically from existing mapping tables and to check consistency of mapping
tables created by different experts. Basically, new mapping tables can be inferred by
combining existing values in data sources and using mapping tables as constraints to
filter invalid mapping values. On the other hand, consistency of mapping tables can
be checked on the fly from mapping tables and values of related data sources. The
algorithm for generating new mapping tables automatically consists of two phases:
information gathering and computation. Assume that existing mapping tables in the
system appear in a chain P1,P2, . . . ,Pn. The two phases of the algorithm are de-
scribed as follows.

− Information gathering phase: starts at P1 and ends at Pn. In this phase, each peer
computes and sends to the next peer in the chain information about mapping
values. The purpose of this phase is to collect information from peers to reduce
computation in the next phase and to determine which computations can be done
in parallel.

− Computation phase: starts at Pn and ends at P1. In this phase, each peer actually
computes new mapping tables from existing one and check consistency of map-
ping tables as discussed above. The results are sent back to the previous peer in
the chain.
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4.4.3.2 Query Processing

Using mapping tables, a local query at a data source can be transformed to dif-
ferent queries to be executed in other data sources. In particular, when a node is-
sues a query, it first executes the query locally. After that, it uses mapping tables to
transform the query to other queries and sends the transformed queries to its neigh-
bor nodes. These neighbor nodes then execute the query at their data sources and
continue to transform and forward the query to their neighbor nodes. This process
continues until either a prefixed number of execution steps or a prefixed time has
passed. While the algorithm for query processing is straightforward, it is important
to note that query transformation has to be sound and complete according to the two
definitions introduced by Kementsietsidis and Arenas [178] as follows.

Definition 4.1 (Sound Translation) Let q1 = σE(R1 � · · · � Rk), where E is a
selection predicate, be a query over P1 and q2 be a query over P2. q2 is a sound
translation of q1 with respect to mapping table m if for every relation instance r2 of
P2 and t2 ∈ q2(r2), there exists a valuation ρ of m and a tuple t ∈ σE(ρ(m)) such
that πatt(q2)(t) = t2.

Definition 4.2 (Complete Translation) Let q1 and q2, respectively, be queries over
P1 and P2. q2 is a complete translation of q1 with respect to mapping table m if for
every q ′

2 over P2, q ′
2 is a sound translation of q1 with respect to mapping table m,

for every instance r2 of P2, q2(r2) ⊇ q ′
2(r2).

4.4.4 PeerDB

PeerDB [235] is a query processing engine for querying data in P2P environment.
PeerDB is developed on top of BestPeer [234] whose details were discussed in
Chap. 2. Different from Piazza and Hyperion, PeerDB requires neither database
schema sharing nor mapping tables. Instead, the system lets user specify descriptive
keywords for tables and columns when they are created. These keywords are used
to find matching tables for a query in query processing. The basic idea of this so-
lution is to apply an information retrieval method to find tables, whose descriptive
keywords and column descriptive keywords are best matched to queried tables and
columns. Based on retrieved relevant tables, corresponding queries can be created
for execution. The architecture of a PeerDB node is shown in Fig. 4.18. Each peer
in PeerDB has an local Object Management System for management of local data,
which is implemented based on MySQL [235]. The metadata information that in-
clude the schema, keywords, etc. are stored in Local Dictionary, while the sharable
part is also stored in Export Dictionary. The query functions are supported by the
module DB Agent. Furthermore, each peer has a Cache Manager that is in charge
of the caching and replacement policy. Finally, the system provides a graphical user
interface (GUI), so that users may manage the system or issue the queries easily. In
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Fig. 4.18 PeerDB Architecture

the following parts, we will present in details how to find relevant tables (in terms
of measuring the similarity between a table and a query) and how to process a query
in the context of P2P system.

4.4.4.1 Table-to-Query Similarity Measurement

Let T and C, respectively be a set of tables and columns appearing in a query q;
t and c be a table and its columns. The similarity between t and q is calculated as
follows.

Sim(q, t) = (wtt · r) + (wtc · Nmatch(C, c))

wtt + (wtc · N(C))

where wtt and wtc are predefined weights reflecting the importance of matching
table and column names; r is set to 1 if there are some descriptive keywords of t

that match descriptive keywords of tables in T . Otherwise, r is set to 0; Nmatch(C, c)

is the total number of descriptive keywords in c that match queried columns; and
N(C) is the total number of distinct queried columns.

4.4.4.2 Query Processing

In PeerDB, a query is processed in two main steps.

− When a user issues a query, the system first passes the query to extract queried
tables and columns. After that, the system uses a gossiping algorithm with time-
to-live (TTL) to broadcast the query to other nodes in the system. When a peer
node receives a query, if it is not the first time the node receives the query, it just
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discards the query. Otherwise, the node calculates the similarity scores between
its shared tables and the query. Tables whose scores are greater than a threshold
value are considered relevant tables. They are returned to the user.

− From returned relevant tables, the user selects some of them for further process-
ing. In this phase, the query is sent directly to the node holding relevant tables
and queries are created for execution at these nodes. The results of query execu-
tion are returned to the user.

To improve the efficiency and effectiveness of query processing, PeerDB self-
reconfigures the connections between peer nodes so that a node only keeps connec-
tions to nodes that have most recently provided answers. This feature improves the
performance of query processing because if users have a tendency to issue similar
queries (this tendency often happens in practice), with high probability, the results
of subsequent queries can also be found at peers that provide the most answers for
previous queries.

In conclusion, the architecture of PeerDB has several advantages in query
processing in an unstructured P2P network. First, it employs the export dictionary,
which is an analog to the corresponding part in traditional file sharing P2P systems.
Export dictionary enables the similarity-based search in the local database of a peer,
even the detailed schema of the database is unknown. Second, agent assisted query
processing supported by DB Agent provides a facility for executing queries on re-
mote peers. Third, by allowing users to interact with the process of query executing,
the system is able to decrease unnecessary data transmitting. Fourth, with the tech-
nique of query rewriting the join of data from two or more peers can be processed.
Last but not the least, agents implemented in DB Agent monitor the statistics from
the directly or indirectly connected peers. The peers with stable and high-quality
result to the specific queries are maintained as direct neighbors. This feature is es-
pecially important to a data management system over unstructured P2P network,
in which the peers are usually dynamic, and self-organizing of peers can usually
improve both the effectiveness and efficiency of query processing in a number of
factors.

4.5 Summary

In this chapter, we have introduced different techniques to support data sharing at
different granularities. We started with techniques to support searching on file de-
scription including multi-dimensional indexing, multi-attribute indexing, and sky-
line query processing in Sect. 4.1. After that, we introduced techniques to support
content-based search. In particular, since file content is often summarized as a data
vector in a high-dimensional space, the challenge to support content-based search
turns into a challenge of supporting high-dimensional index. This challenge was
addressed in Sect. 4.2. We further presented special techniques for information re-
trieval over text files in Sect. 4.3. Finally, in Sect. 4.4, we introduced techniques to
support structured database sharing in P2P systems.
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The basic solution to support multi-dimensional index in P2P systems is to ap-
ply conventional multi-dimensional indexing structures used in centralized systems
such as the kd-tree [42], R-Tree [145], X-Tree [44]. Several P2P systems such as
CAN [266] and VBI-Tree [167] have adopted such an approach.

Supporting multi-attribute indexing is difficult not only in P2P systems but also
centralized systems. So far, the basic approach to solve this task is to index each
attribute separately. MAAN [61] and Mercury [49] are two P2P systems supporting
multi-attribute indexing along this direction. MAAN uses the same identifier space
to index all attributes while Mercury uses separate identifier spaces or hubs to index
separate attributes.

The challenge of supporting skyline queries in P2P systems is in how to optimize
skyline computing in P2P environment. In particular, proposed solutions optimize
the search space to reduce the amount of hopping and data transmission in the net-
work, and parallelize the search process to reduce the query response time. For
example, both DSL [337] and SSP [329] propose algorithms that parallel the search
process by participating it to subsearch regions. To optimize the search space, SSP
proposes a solution that defines the search space from a point that has the largest
dominating region at the most dominating node.

To support high-dimensional indexing, the popular solution is the mapping-based
approach, which converts data in a high-dimensional space to a lower dimensional
space (usually one-dimensional space) before indexing. Several P2P systems such
as CISS [190] and ZNet [293] employs space filling curves for this purpose. Oth-
erwise, in distance-based approach, high-dimensional data objects are directly in-
dexed to the system based on their distance to a predefined set of referenced objects
(mChord [240] and SimPeer [112]). Finally, in hash-based approach, similar objects
are hashed to similar buckets for query processing (LSH Forest [39]).

Textual information retrieval methods are classified into three main categories
based on the way the systems manage global knowledge (that is used in information
retrieval methods) and the way the systems construct term indices. In the first cate-
gory, global knowledge is maintained at every node in the systems and gossiping al-
gorithms are used to distribute and synchronize information among nodes [91, 92].
In the second category, P2P systems employ a hierarchical index tree structure to
aggregate global knowledge at the root node, which is constructed as a set of super-
peers to avoid bottleneck [201, 202, 208, 268, 290, 320]. Finally, in the third cate-
gory, terms are extracted and indexed directly to the networks [269, 310, 311, 351].

Even though there are several aspects that need to be studied to support struc-
tured data sharing, so far, researchers have focused on the mapping problem be-
tween heterogeneous data sources. Other problems such as how to construct a
query plan to execute the query or how to optimize a query plan are still open.
In general, there are three approaches to solve the mapping problem: using mapping
rules (Piazza project [148, 149, 212, 313]), using mapping tables (Hyperion project
[30, 178, 180, 273]) and using metadata specified by users in conjunction with in-
formation retrieval method (PeerDB project [235]).



Chapter 5
Load Balancing and Replication

In previous chapters, we have presented several designs of Peer-to-Peer systems
to support different kinds of queries. In this chapter, we continue to present two
essential aspects that need to be considered in the design in order to bring efficiency
to query processing: load balancing and replication.

There are two reasons why load balancing is critical in Peer-to-Peer systems:
First, nodes in the systems usually have different resources and hence it is necessary
to distribute load to nodes proportional to their capabilities. Second, if file identifiers
are correlated with the contents of the files, their distribution will often be skewed.
It is necessary then to have more nodes managing a smaller area of the identifier
space. With a good load balancing strategy, the system can reduce the query latency
and avoid the problem of failure due to overloaded nodes. Consequently, a good
load balancing strategy maximizes the throughput the system.

Complementing load balancing, replication deals with the problem of bottleneck
in query processing at nodes keeping popular data items. It makes sense that if
we have a document that is frequently retrieved, we should replicate it on several
nodes to improve access to it. With a good replication strategy, the most impor-
tant benefit is that the system can reduce overloaded nodes. Additionally, repli-
cation improves the performance of query processing since it shortens the rout-
ing path of a query (the result may be replicated to a node near the node that is-
sued the query). By shortening the query path, the system can also reduce the cost
of bandwidth consumed by forwarding queries. Finally, replication increases the
availability of data, essential in the Peer-to-Peer environment, where the system is
often dynamic and unstable due to the fact that nodes can join and leave at any
time.

In general, load balancing and replication are orthogonal and complementary to
each other. They are important aspects to any system. Details of load balancing
techniques are presented in the first part of the chapter, while the second part is used
to introduce replication techniques.

Q.H. Vu et al., Peer-to-Peer Computing,
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5.1 Load Balancing

Load balancing methods try to balance the use of resources (generally, but not only,
storage space) across nodes in the system, such that nodes are neither overloaded
nor underloaded. In particular, if nodes have similar capabilities, the expected load
distribution should be equal to all nodes. On the other hand, if nodes are het-
erogeneous, the load distribution should be proportional to the distribution of the
needed resources. In general, it would of course be desirable to have load balanc-
ing achieved by the data publication process, but even though this is attempted at
the moment when the data is inserted into the network, the appearance and disap-
pearance of nodes may lead to unbalances. We must then trigger a specific load
balancing process.

There are generally two questions needed to be answered for any load balanc-
ing technique: (1) when should load balancing be triggered and (2) how can load
balancing be done amongst nodes in the system. This section will answer these two
questions step by step.

5.1.1 When Load Balancing is Triggered

5.1.1.1 Dynamic Load Balancing

The basic and straight-forward answer for this question is that load balancing should
be triggered when a node becomes overloaded or underloaded. However, the real
question now is how a node knows that it is overloaded or underloaded. To answer
this question, there are three solutions:

− The most popular method is based on the random choices paradigm [132, 174,
182, 264]. In this method, one node periodically asks for the load of a number
of random nodes and compares the received results with its own load. If the
number of queried nodes is large enough, the node can approximate the average
load of the system, and hence it can decide if it needs to do load balancing for
being overloaded or underloaded. Usually, if the node is overloaded, the lightest
loaded node amongst those contacted in the sampling step is selected to share
the load with the current node. On the other hand, if the node is underloaded,
the heaviest loaded node amongst those contacted is selected. An issue of this
method is how to determine the number of nodes to contact in the sampling
phase. If this number is too small, an incorrect decision can be drawn, i.e., a
node is considered as overloaded even though it is not, and hence load balancing
is triggered although it is not necessary. If the number of contact nodes is big,
the cost of querying is high since each contact node incurs a cost equal to the
cost of searching a data item in the network (usually O(logN)). In other words,
the issue of this method is establishing the correct tradeoff between the benefit
of load balancing and its cost.



5.1 Load Balancing 129

− In a different way, Mercury [49] employs histograms to maintain an image of
the load distribution on nodes in the system. However, the construction of these
histograms with load information is similar to the previous method: asking for
the load of a number of random nodes and estimating the load distribution of
other nodes. In particular, each node periodically asks for the load of neighbor
nodes in its vicinity and exchanges the local load information with random far
away nodes to build as well as to maintain histograms. In some sense, Mercury
simply adds “memory” to the sampling process presented before. In this method,
a node determines if it is overloaded or underloaded by comparing its load with
the load information in the histogram. Once load balancing is triggered, load
information in histograms can also be used to find lightly loaded nodes or heavily
loaded nodes for the process.

− The weakness of the above two methods is that they cannot guarantee the balance
of nodes across the system since they are based on the random choices paradigm
for querying node load. In order to control the load balance, Ganesan, Bawa, and
Garcia-Molina [125] use a threshold value. A node is considered to be poten-
tially overloaded if its load is higher than the upper bound of the threshold value.
Similarly, it is considered to be potentially underloaded if its load is lower than
the lower bound of the threshold value. To check if the node is really overloaded
or underloaded, it needs to find the lightest loaded node or the heaviest loaded
node for comparison. If it is true, load balancing is done between the node and
either the lightest loaded node or the heaviest loaded node, which is found. How-
ever, if it is not true, the node needs to adjust its threshold value. In particular,
if the node is not overloaded, it increases its threshold value while if the node is
not underloaded it decreases its threshold value. The issue of finding the lightest
loaded node or the heaviest loaded node is solved by using a separate Skip Graph
to keep the load of every node in the system in order. The disadvantage of this
method is that the cost of keeping a separate Skip Graph is high, especially in
systems with a significant churn rate.

Note that the third method can also be used together with the first method [174].
In this way, instead of periodically asking the load of other nodes, a node only needs
to trigger that process when its load goes out of the threshold value. After getting the
load of other nodes, if the node is overloaded or underloaded, load balancing is done.
However, if the node is neither overloaded nor underloaded, threshold parameter is
adjusted to the new value. Nevertheless, similar to the first two methods, this mixed
method has no guarantee about the balance of the system since it is still based on
the random choices paradigm.

5.1.1.2 Static Load Balancing

Instead of waiting until the system becomes imbalanced to do load balancing, it
could also be done preemptively, to avoid an imbalanced load. Such a technique is
called static load balancing. Static load balancing is usually done at the time a new
node joins the system or an existing node leaves the system. In particular, a new
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node always tries to join next to a heavily loaded node to share a part of the heavy
work load. On the other hand, a departing node always tries to find a lightly loaded
node to pass its current load to. The way in which a heavily loaded node is found
for a new node to join, or a lightly loaded node is found for a departing node to pass
its load is similar to the method used in dynamic load balancing. For example, if a
histogram or a skip graph is maintained inside the system, the node receiving the
first join request from the new node, assists the new node to find a heavily loaded
node based on load information in its histogram or skip graph. On the other hand,
if the random choices paradigm is used, the new node needs to send multiple join
requests to multiple existing nodes in the system and selects the heaviest loaded
node amongst them.

In another approach, Byers, Considine, and Mitzenmacher [58] suggest that static
load balancing can also be done when new data is inserted. In this system, each new
data item is hashed by multiple hash functions to get multiples hash values. Among
the nodes that are in charge of these hash values, the one with the lightest work
load is selected to insert the data item. However, this method incurs a very high cost
in data insertion, data deletion and data search because several nodes need to be
searched/contacted for each of these operations.

5.1.1.3 The Power of Two Choices

In general, since these two methods are complementary to each other [174, 223] they
should be used together to achieve the desired load balance. To further understand
the advantages of combining these two methods, let us consider what may happen
if only one of the two load balancing methods is used.

− If only static load balancing method is used, the system is not strong enough to
deal with the dynamic change in work load of nodes. If a node becomes over-
loaded or underloaded when no new nodes come or existing nodes depart, the
system still becomes imbalanced. Note that even if we accept the high cost of
Byers’s solution [58] that uses multiple hash functions to avoid overloaded at
nodes when data is inserted, this solution still cannot avoid underloaded at nodes
when data is deleted. As a result, dynamic load balancing is needed to solve this
problem.

− If only dynamic load balancing method is used, let us consider a case where a
new node comes and joins next to a lightly loaded node. In this case, with high
probability, these nodes become underloaded, and hence, sooner or later, load
balancing has to be triggered for them. Since it takes some cost for doing load
balancing, it would have been better if the new node could have joined next to
a heavily loaded node. In this way, the new node could have taken some load
of the heavily loaded node and consequently the probability of needing another
load balancing process would have been decreased.

In general, Algorithm 14 shows the combination of the two methods: static load
balancing and dynamic load balancing.
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Algorithm 14 : Static_And_Dynamic_Load_Balancing()
1: /*Static Load Balancing*/
2: if a new node n joins the system then
3: find a heavily loaded node n′
4: n shares a part of the load being in charged by n′
5: end if
6: if an existing node n leaves the system then
7: find a lightly loaded node n′
8: n′ is responsible for the load of the leaving node n

9: end if
10: /*Dynamic Load Balancing*/
11: if an existing node n becomes overloaded then
12: find a lightly loaded node n′
13: perform load balancing between n and n′
14: end if
15: if an existing node n becomes underloaded then
16: find a heavily loaded node n′
17: perform load balancing between n and n′
18: end if

5.1.2 How Load Balancing is Performed

As discussed in the previous section, load balancing is done between a lightly loaded
node and a heavily loaded node. In order to balance the load between these nodes,
the heavily loaded node needs to pass a part of its load to the lightly loaded node. In
general, there are two ways to do this.

− Instead of being in charge of only one position in the system or one virtual node,
as suggested in some of the works described in [134, 174, 264], each peer node
may keep several virtual nodes at the same time. In particular, Chord [173] sug-
gests that if each peer keeps approximately logN virtual nodes, with high proba-
bility, the load of peers in the system is balanced. In this method, when a node is
overloaded, it simply assigns some of its virtual nodes to a lightly loaded node.
Furthermore, the load balancing process can happen not only between a heavily
loaded node and a lightly loaded node but also between several heavily loaded
nodes and several lightly loaded nodes at the same time [264].

In situations where an overloaded peer cannot find any virtual node to pass to
other lightly loaded nodes because the virtual nodes are too big, it is necessary to
split the virtual nodes into smaller ones and pass some of them to lightly loaded
nodes. The weakness of this method is that it requires more storage at a node for
keeping additional virtual nodes. Furthermore, having more virtual nodes leads
to higher bandwidth consumption overhead for node maintenance. This method
may also cause an increase in the latency of the query, since the number of steps
in query processing is often proportional to the number of virtual nodes in the
network (if not handled properly, a message may hop between two real nodes
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multiple times simply because its path follows a set of virtual nodes that reside
on the same two real peers).

− To avoid the problem of the virtual nodes method, some systems [49, 125, 166]
suggest that a lightly loaded node should leave its position and rejoin next to the
heavily loaded node to balance the load. In this way, each peer still needs to keep
exactly one virtual node. Furthermore, they also propose that an overloaded or
underloaded node should try to do load balancing with its adjacent nodes first
before looking for a far away lightly or heavily loaded node [49, 125, 166].
This is because load balancing with adjacent nodes is always cheaper than load
balancing with a far away node. To distinguish between these two load balancing
approaches, these systems call the former global load balancing, since it can
happen between two distant nodes, while the later is called local load balancing,
since it only happens between two adjacent nodes.

5.2 Load Balancing in Concrete Systems

5.2.1 Basic Load Balancing Schemes with Virtual Nodes

Rao and his colleagues [264] discuss in detail three basic load balancing schemes
in systems that employ the concept of virtual nodes. These schemes are different
from each other in the number of nodes that can participate in the process at the
same time. In particular, in the simplest scheme, only two nodes, one lightly loaded
node and one heavily loaded node, invoke the load balancing process while in the
most complex scheme there may be several lightly loaded nodes and several heavily
loaded nodes joining the load balancing process at the same time.

5.2.1.1 One-to-One Scheme

This is the simplest scheme, taking place between a lightly loaded node and a heav-
ily loaded node. Basically, the heavily loaded node iteratively selects a virtual node
to pass to the lightly loaded node. The virtual node selected at each step is subjected
to the following conditions:

− If transferred, it will not overload the lightly loaded node. This is the most im-
portant principle because if we make the lightly loaded node become overloaded,
then load balancing will continue to be required at that node. As a result, it causes
a ripple effect of load balancing, incurring a very high cost or even the collapse
of the network.

− The transferred virtual node is the lightest virtual node that makes the heavily
loaded node become normal. This means that the process tries to balance the
load by transferring a minimum amount of load.
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Fig. 5.1 One-to-One load
balancing scheme

− If there is no virtual node that can be transferred to make the heavily loaded node
become normal, the heaviest virtual node is selected to transfer (given that the
first principle is still satisfied). This principle makes it easier for subsequent steps
to balance the load with smaller virtual nodes.

An example of load balancing using this scheme is illustrated in Fig. 5.1 in which
A is a heavily loaded node and B is a lightly loaded node.

5.2.1.2 One-to-Many Scheme

This scheme is a variant of the previous scheme. Instead of doing load balancing
between a lightly loaded node and a heavily loaded node at each time, this scheme
allows a heavily loaded node to do load balancing with many lightly loaded nodes
at the same time. Nevertheless, the principles of selecting a virtual node to transfer
from a heavily loaded node to a lightly loaded node are similar to those of the
previous scheme. An example of load balancing using this scheme is illustrated in
Fig. 5.2 in which A is a heavily loaded node while B and C are lightly loaded nodes.

5.2.1.3 Many-to-Many Scheme

This is the most complex scheme involving many lightly loaded nodes and many
heavily loaded nodes in the load balancing process. To serve the process of moving
virtual nodes, this scheme creates a pool to keep virtual nodes temporarily while
they are not assigned to any node. The scheme is executed in three phases:

− Unload: In this phase, heavily loaded nodes select virtual nodes to put in the pool
so that they all become normally loaded nodes. At the end of this phase no nodes
are overloaded. However, there are virtual nodes in the pool, which need to be
assigned to nodes.

Fig. 5.2 One-to-Many load
balancing scheme
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Fig. 5.3 Many-to-many load balancing scheme

− Insert: In this phase, best-fit heuristic is used to transfer virtual nodes from the
pool to lightly loaded nodes in the load balancing process. This is done step by
step such that no nodes become overloaded. This phase stops when either the
pool is empty or no more virtual nodes can be assigned without overloading a
node. If this phase stops because the pool is empty, the load balancing process is
finished. Otherwise, the next phase is executed.

− Dislodge: In this phase, nodes try to swap remaining big virtual nodes in the pool
with smaller virtual nodes they are holding. After that, the process comes back
to the insert phase. Since the pool contains smaller virtual nodes, it is easier to
assign them.

An example of load balancing using this scheme is illustrated in Fig. 5.3 in which
A and B are heavily loaded nodes while C and D are lightly loaded nodes.

Note that in the above schemes, in the worst case, if no virtual nodes can be
selected to transfer between heavily loaded nodes and lightly loaded nodes, it is
necessary to split a big virtual node into smaller virtual nodes and transfer some
of them to the lightly loaded nodes. However, as analyzed in the previous section,
having more virtual nodes degrades the performance of the system. As a result,
whenever it is possible, if a node maintains adjacent virtual nodes, it merges these
virtual nodes into one to reduce the number of virtual nodes in the system.

5.2.2 Y0 Protocol

Since the high cost of maintaining multiple virtual nodes comes from the cost of
maintaining their routing tables, Godfrey and Stoica [134] suggest a method to re-
duce such a cost. As in Chord [173], each peer is required to maintain O(logN)

virtual nodes, such that, with high probability, the load of peers in the system is bal-
anced. However, instead of selecting these logN nodes randomly, the Y0 protocol
selects logN virtual nodes from a logN of consecutive intervals of length 1

N
. The

advantage of this selection is that it allows the system to consider these logN virtual
nodes as a big cluster and create only one routing table for the whole cluster instead
of having a routing table at each virtual node. As a result, even though a peer keeps
logN nodes, the cost of maintaining the routing table is still as if it keeps only one
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Fig. 5.4 The Y0 protocol

node. The problem now is how to direct a query, given that the routing table keeps
only one entry for logN nodes. Y0 deals with this problem by modifying the search
algorithm a little: A node still tries to forward the search request to the farthest node
in its routing table not overshooting the searched key and the message stops when it
arrives at a node whose range of values covers the search key, as in Chord. However,
that node may not actually keep the key because there are internal nodes between
the virtual nodes that are actually maintained at the node. At this point, the succes-
sor link of the virtual node, which is the nearest with respect to the searched key, is
selected for forwarding the request. The next node receiving the request repeats the
same process to forward the query through a successor link towards the destination
node. In particular, if a virtual node keeps O(logN) successor links (the main pur-
pose is fault tolerance1), the query processing only takes O(1) additional steps. The
Y0 protocol is illustrated as in Fig. 5.4.

5.2.3 The S&M Protocol

Based on the random choices paradigm, Giakkoupis and Hadzilacos [132] propose
two versions of a load balancing protocol called S&M: one is used for homogeneous
systems, and the other, the weighted S&M protocol, is used for heterogeneous sys-
tems. These protocols work under the assumption that data is uniformly distributed
over the system. It means that the load of a node is proportional to the size of the
range of values of which the node is in charge. As a result, this protocol only uses
the static load balancing technique. Note that this assumption is only true if consis-
tent hashing is used to distribute data uniformly. However, in many applications that
need to support range queries, such a hashing does not work. As a result, dynamic
load balancing is also necessary as analyzed in the above section.

1Another advantage of selecting logN nearby virtual nodes to keep at a node is that even though
each node may keep O(logN) successor links, the number of distinct successor nodes, which are
needed to maintain at a peer is still bounded by O(logN).
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5.2.3.1 The Design of the S&M Protocol

The two versions of the S&M protocol work in the same way except that the
weighted version takes into account the capacity of nodes and, consequently, is split-
ting or merging the load, function of this capacity. The S&M protocol balances the
load of nodes when a new node joins the system or when an existing node departs
from the system, as follows:

− When a new node joins the system, it first contacts an existing node inside the
network. Through that node, the new node sends a lookup request to a number
of random nodes in the system and selects the heaviest loaded node amongst
contact nodes to join next to it. The heavily loaded node now splits a part of its
load to the new node. In particular, if nodes are homogeneous, the load is simply
split into two equal parts. However, if nodes are heterogeneous, the load has to
be split proportionally to the capacity of the heavily loaded node and the new
node.

− When an existing node leaves the system, it also contacts a number of random
nodes in the system. The lightest node amongst the contact nodes is selected
for further processing. This lightest node needs to check the load of its sibling,
which is either the node splits the load to it when it joins the system or the
node receives the split load from it depending on which action happens later.
If the load of its sibling has not been split further, these two nodes are merged
together. One of them replaces the departure node. On the other hand, if the load
of the sibling node has been split with another node, the load of the sibling node
must be lighter than the load of the current lightest node. As a result, the sibling
node takes the role of the former lightest node and repeats the checking process
with its other sibling. This process continues until two lightest sibling nodes are
found and merged together. Note that if the load of the departure node is lighter
than the load of the lightest node amongst contact nodes, the previous process is
executed at the departure node to find a pair of the lightest nodes to merge.

We can observe that this protocol is similar to constructing a binary tree such that
the gap between the highest level leaf node and the lowest level leaf node in the tree
is as small as possible: The narrower the gap between these nodes, the better the load
distribution. As a result, when a new node joins the system, it tries to split a high
level node in the tree, which is a heavily loaded node. On the other hand, when an
existing node leaves the system, a pair of low level leaf nodes that are lightly loaded
nodes should merge together. After that, one of them replaces the position of the
departed node. For example, as in Fig. 5.5, assume that a new joining node contacts
and obtains information about the load of nodes A,C, and J . Since A is the highest
level, or the heaviest, node among the three nodes, the current load of A is split into
two parts and the new node takes one part. On the other hand, assume that node
I wants to leave the network and it contacts three nodes B,D,F . Since F is the
lowest level or the lightest node amongst three nodes, F checks its adjacent node.
Since the adjacent node of F , G, has been split before, G replaces F as the lightest
node. Finally G and H are merged together, and one of them takes the merged load
while the other comes to replace the position of I .
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Fig. 5.5 A binary tree
formed by S&M protocol

5.2.4 A Combination of Both Local and Random Probes

In order to reduce the cost of random choices paradigm, some authors [182, 215]
suggest that the node should ask for the load of not only random nodes (random
probe) but also neighbor nodes surrounding them (local probe) to estimate the load
distribution of the system. Since it is much cheaper to ask for the load of an adja-
cent node of a contact node than to ask for the load of a contact node (1 message
compared to O(logN) messages), the node can reduce the cost of load querying
by decreasing the number of contact random nodes and increasing the number of
contact neighbor nodes in the vicinity of contact nodes while still achieve the same
performance.

5.2.4.1 Load Imbalance Boundary

Under the assumption that the data is uniformly distributed over the system and
nodes are inserted step by step to the system, Manku [215] shows that if the kth

node joining the system asks for the load of one random node and O(logk) neigh-
bor nodes in the vicinity of that random node, with high probability, the maximum
imbalance of the system that is the ratio between the heavily loaded node and the
lightly loaded node is just 4. Later, Kenthapadi and Manku [182] prove that if the
kth node asks for the load of r random nodes and v neighbor nodes of each random
node so that r · v ≥ c · logk, where c is a suitable large constant, with high proba-
bility, the maximum imbalance of the system is 8. An issue here is how a new node
knows k, its order in the insertion sequence. The solution is that k can be deduced
from the number of nodes in the system, which can be estimated from the number
of bits in the identifier of any node in the system. An example of a combination of
local and random probes is shown in Fig. 5.6 with r = 3 and v = 4.

5.2.5 Mercury

Mercury [49] suggests the use of histograms to maintain the load distribution of
nodes in the system. In Mercury, each node periodically samples nearby nodes to
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Fig. 5.6 A combination of
both local and random probes

Fig. 5.7 Histogram
construction in Mercury

get local load distribution. The node also periodically samples a number of ran-
dom distant nodes, to ask for the local load distribution of these nodes. The process
of sampling distant nodes is based on random walk algorithm. In particular, the
node first sends sampling requests with logN hops time-to-live to random neighbor
nodes. After that, at each node along the sampling path, a random neighbor node
is selected to forward the request. In this way, the process finally sends sampling
requests uniformly to nodes in the system, with high probability. The node at the
end of the sampling path returns to the requester node its local load distribution.
Based on the received samples, a load distribution histogram is constructed at the
node. The process of constructing and maintaining the histogram of a node is illus-
trated as in Fig. 5.7. As discussed before the method to construct and maintain the
histogram is based on the combination of local and random probes presented in the
above section. In particular, in the figure of the example, values of random probe (r)
and local probe (v) are respectively, 4 and 5.

5.2.5.1 Load Balancing with Histograms

From the information given by a histogram, a node can calculate the average work
load of the system. Additionally, by calculating the average work load of itself and
adjacent nodes, a node can determine its status as normally loaded, overloaded or
underloaded. In particular, if the ratio between the average local work load and the
average work load of the system is smaller than 1

α
, the node is underloaded. On

the other hand, if this ratio is greater than α, the node is overloaded. If the node
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is overloaded, information in the histogram is used to find a lightly loaded node.
Once the lightly loaded node is found, that node leaves its current position and joins
next to the current node to share the heavy load. On the other hand, if the node is
underloaded, the information in the histogram is used to find a heavily loaded node.
The node then leaves its position and comes to join next to the heavily loaded node.
Here, α is set depending on applications.

5.2.6 Online Balancing of Range-partitioned Data

Ganesan, Bawa, and Garcia-Molina [125] propose a model for load balancing in
which load balancing in the system is controlled by a threshold function T: Ti =
�c · δi�. Whenever the load of a node passes the threshold value, load balancing
is triggered as follows: At first, the node tries to do local load balancing with its
adjacent nodes by comparing the threshold value of itself and that of its adjacent
nodes. If there is at least one level difference between the two threshold values, local
load balancing is done between the node and its correspondent adjacent node. If not,
the node tries the next step to do global load balancing. To do global load balancing,
the node needs to find the lightest node in the system and compares its threshold with
the threshold of the lightest node. If there is at least a two level difference between
the two threshold values, global load balancing is done. Otherwise, the node is not
actually overloaded, but the entire network is considered to be having a heavier load,
and consequently the threshold level is increased. The complete algorithm is shown
in Algorithm 15. The process of local load balancing and global load balancing are
illustrated in Fig. 5.8.

In this algorithm, in order to find the lightest load node, a separate Skip Graph is
dedicated to keep the load of every node in the system ordered by the load of nodes.

Algorithm 15 : Online_Load_Balancing()
1: set Tn = c · δn be threshold value of the current node
2: set Tl = c · δl be threshold value of the left adjacent node
3: set Tr = c · δr be threshold value of the right adjacent node
4: if n − 1 ≥ l or n − 1 ≥ r then
5: perform local load balancing with adjacent nodes
6: else
7: find the lightest loaded node K in the system
8: set Tk = c · δk be threshold value of K

9: if n − 2 ≥ k then
10: perform global load balancing between the current node and K

11: else {increase the threshold value}
12: n = n + 1
13: end if
14: end if
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Fig. 5.8 Online load balancing

Even though maintaining such a Skip Graph is expensive, since any of operations
from node join, node departure to data insertion or data deletion can make nodes
in the Skip Graph change their positions, this method can achieve the maximum
imbalance ratio load, which is the ratio between the heavily loaded node and the
lightly loaded node in the system, by δ3. Note that, depending on applications, δ can
be set to a low or a high value. The lower value the δ is, the better the load balance
of the system is and certainly the higher the cost of load balancing is.

5.3 Replication

Replication is a technique in which data can be stored at multiple nodes in the sys-
tem.2 The benefits of replication are that it can improve availability of data in case
of failure, avoid hotspot problem due to many queries targeting to the same node,
and improve performance of query processing since a replica may be found at a
node nearer to the query node than the node holding the original data. Neverthe-
less, the benefits do not come for free. Replication requires some costs for creating
and maintaining replicas. Since it is costly to blindly replicate data in Peer-to-Peer
systems, where the amount of data is huge, a challenge in replication is how to de-
termine which object should be replicated, how many replicas are needed, where
replicas are stored, and how to maintain consistency of replicas with their original
data. This section gives a detailed view of all the above problems.

5.3.1 Replica Granularity

There are two levels of replica granularity: Full replication and Block replication.

2If the data is only replicated at the query node, the technique can be called caching.
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5.3.1.1 Full Replication

The simplest way in replication is storing the entire data object. Gnutella [133] and
Napster [226] use or used this method for file replication. In particular, when a node
downloads a file, it automatically creates a replica stored at itself. The advantage
of this method is that it is simple to implement and easy to maintain consistency
of data. However, it is not efficient to replicate the entire object in one operation,
especially when the object size is large.

5.3.1.2 Block Replication

In some applications, users do not require to retrieve the entire data object. They
only need a part of it or they need the whole object but only a part of it at each time.
For example, video applications only need a part of file to play at each time. As a
result, the second type of replication is block-level replication. In this way, each data
object is divided into several parts, and replication is done for each part individually.
This method brings several advantages compared to the previous method:

− By dividing the object into separate parts, it is easier to find a place to keep
the object’s replicas. In some cases, a big object cannot be stored in any peer.
However, by splitting it into smaller pieces, they can be stored at several peers.

− Since individual parts can be distributed or collected simultaneously, this method
can reduce the time of replicating as well as the time of collecting replicas to
rebuild the original data object. To some extent, this method can provide a faster
response to users than the previous method, which replicates the whole object.

− The replication cost of small parts can be smaller than the replication cost of the
whole big object since it does not require a long and stable network connection.

However, there are also some disadvantages of using the method:

− In order to reconstruct the original object, it is required that all parts of the object
be available. As a result, it is necessary to maintain statistics about replicas and
the number of blocks in an object. This puts some extra cost in replication.

− In the worst case, if any part of an object cannot be retrieved, the whole object
cannot be reconstructed completely. In case of the full replication method, the
object once retrieved should be complete.

− Compared to the full replication method, it is harder to maintain data consistency
in this method as the higher number of replicas has to be updated in case of
change in the original data object.

The second problem mentioned above requires a good strategy in distributing
replica parts of an object so that we can collect at least one replica for each part
every time. As an effort to reduce the number of blocks, that has to be collected
to reconstruct the original object, Erasure codes such as Reed-Solomon [259] and
Tornado [59] are proposed. These codes have an interesting feature: the original n-
block object can be reconstructed from a number of blocks m less than n (m is close
to n). These m blocks are taken from a set of k · n coded blocks, which are encoded
from the n original blocks (k is a small constant).
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5.3.2 Replica Quantity

5.3.2.1 Uniform Replication

This is a simple method in which each object has the same number of replicas. Since
objects are treated equally, this method is often used in two cases:

− To guarantee the available of data in the system in case of node failure.
− To provide a high probability that any data can be found within a boundary num-

ber of steps, if it is used in unstructured Peer-to-Peer systems (as discussed in
Chap. 2, under normal condition, there is no guarantee to find an existing data in
unstructured Peer-to-Peer systems within a boundary number of steps).

However, this method cannot deal with the bottleneck problem caused by popu-
lar objects. Since the method always creates the same number of replicas for both
frequently queried objects (popular objects) and infrequently queried objects (un-
popular objects), if the storage capacity of the system is limited, there may be a case
where popular objects are lack of replicas to deal with the bottleneck problem while
there are redundant replicas of unpopular objects. By keeping unnecessary replicas
for unpopular objects, it also means that the method is not efficient if the two above
cases are not considered (i.e., if it is used in structured Peer-to-Peer system and there
is no worry about node failure).

5.3.2.2 Proportional Replication

To solve the bottleneck problem caused by extremely popular objects, this method
suggests that the number of replicas of a data object should be proportional to the
number of queries looking for that object. As a result, a popular object with a large
number of queries has a large number of replicas while an object with a small num-
ber of queries has a small number of replicas. By replicating data objects following
query distribution, the more popular a data object is, the higher the number of repli-
cas it has, and hence the bottleneck can be avoided. Furthermore, this method can
improve the efficiency of query processing in the system, since replicas of popular
objects are pervasive and consequently queries about them are answered quickly.
Nevertheless, this method can neither guarantee the availability of data nor the
boundary of search steps in unstructured Peer-to-Peer systems as in the previous
method because unpopular objects may only have a few of replicas or no replicas at
all.

5.3.2.3 Square-root Replication

Although the two previous methods, uniform replication and proportional replica-
tion, apply different strategies in creating the number of replicas for an object, they
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produce the same average performance on successful queries. As pointed out by Co-
hen and Shenker [80], this performance is actually worse than that of any replication
strategy falling between them in which the performance of square-root replication
is the optimal one. In square-root replication, the number of replicas of a data object
is proportional to the square-root of its number of queries. In other words, replica
distribution of objects in the system is proportional to the square root of query dis-
tribution. As indicated by Cohen and Shenker [80], let m be the number of different
objects, n be number of peers, R be the total number of replicas, qi be the query dis-
tribution of object i, and p = R

n
be the average number of objects stored at each peer,

both uniform replication and proportional replication take the average search size of
m
p

while the optimal value achieved by square-root replication is 1
p
(
∑√

qi )
2. It is

interesting to realize that even though proportional replication is based on query dis-
tribution, the average search size is similar to that of uniform distribution and does
not depend on query distribution at all. It only depends on the number of objects, the
number of peers, and the number of replicas. On the other hand, the average search
size of square-root distribution really depends on query distribution.

5.3.3 Replica Distribution

There are five general strategies used to select locations for distributing replicas:
owner replication, path replication, random replication, preceding replication, and
successor replication.

− Owner replication: this method places a replica at the requester node when a
search is successful.

− Path replication: instead of putting replica at only the requester node as the pre-
vious method, this method puts replicas at nodes along the search path between
the requester node and the destination node. Even though it incurs additional
costs (storage, bandwidth), this method has the advantage that replicas can be
put at nodes near the source node, and hence it can help the source node to avoid
the bottle neck problem if the searched data is a hot data object.

− Random replication: Lv et al. [210] have pointed out that path replication has
a tendency to distribute objects to nodes following the topological order. As a
result, it is not as effective as the method that creates the same number of replicas
but distributes them in random order to nodes that have been visited by the search
process (i.e., not only nodes in the search path between the requester and the
destination node).

− Preceding replication and successor replication: while the first three strategies
only replicate data objects upon search requests, the last two strategies replicate
data objects equally to preceding nodes or successive nodes in the search path.
In particular, the preceding replication distributes replicas of a data object to all
preceding nodes when the object is popular, and hence avoids the bottle neck
problem. Conversely, the last strategy, the successor replication, replicates data
objects to successor nodes since if a node fails, its immediate successor node is
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the node taking responsibility for all data stored at itself. As a result, the system
increases availability of data objects, and hence is more resilient to failures.

5.3.4 Replica Consistency

Guaranteeing the consistency of replicas is an important aspect of replication. How-
ever, most of the current Peer-to-Peer systems assume that replicated data is read
only and hence they can avoid this problem. Only a few of Peer-to-Peer systems
consider this aspect and give solutions. Generally, these solutions can be classified
into two main categories.

5.3.4.1 Replication with Expiration

The simplest solution to guarantee consistency of replicas with the source data is
keeping them only for a period of time. Depending on the frequency of object mod-
ification, an expiration time can be adjusted. For example, if the data object is often
modified, the expiration time can be set to a small value. Otherwise, it can be set to
a high value. When replicas expire, they can either be discarded or be refreshed by
soliciting the resource owner for an update.

5.3.4.2 Immediate Updates

A difficulty of the previous method is the determination of a suitable expiration time.
It is inefficient if an unsuitable value is chosen for expiration time. For example, if
a data object is persistent while we discard its replicas or refresh them at frequent
time intervals, it is unnecessary and costly. On the other hand, if a data object is
modified frequently while the expiration time is set to a high value, stale replicas
may be retrieved. To overcome this problem, this method suggests that replicas can
be used as long as possible, no expiration time is set. However, when the original
data object is changed, an update request should be sent to all nodes keeping replicas
for updating. In order to update replicas, there are generally two solutions. The
easiest one is broadcasting the replica update request to all nodes in the system.
The weakness of this solution is that it is expensive. On the other hand, the second
solution suggests that the system should keep links between the node holding the
original data object and nodes keeping its replicas. Nevertheless, this solution also
incurs a high cost for maintaining these links, especially in high churn rate systems.

5.3.5 Replica Replacement

In some cases, due to the limitations of storage capacity, it is necessary to remove
less efficient replicas, to reserve space for new coming replicas. As a result, replica
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replacement policies have to be considered. In general, all popular replacement poli-
cies such as Least Recently Used, Most Recently Used, Least Frequently Used,
Most Frequently Used, Minimum Size, Maximum Size. . . can be applied for replica
replacement in P2P systems. However, replicas in P2P file-sharing system may need
special policies due to their special characteristics [335]. As an example, a special
replacement policy called Minimum Relative Size has been proposed.

5.3.5.1 Minimum Relative Size

This replacement policy can be used in systems that create replicas at block level.
Since the whole data object can only be reconstructed completely if all replicated
parts of the objects are found, this replacement takes into account the total amount
of replicas of a file in the policy. In other words, the policy considers how much
content existing replicas contribute to reconstruct the whole file. In particular, this
replacement policy tries to replace replicas that contain the smallest percentage of
content in a replicated file. For example, if a node keeps all replicated parts of a
file, it is better to keep all of these parts since they can be used to serve subsequent
requests with the least cost (the query does not need to be forwarded to other nodes
to find remaining parts).

5.4 Replication in Concrete Systems

5.4.1 Replication in Read-only Unstructured P2P Systems

Owner replication is the most popular replication strategy, which is used in read-
only unstructured P2P systems such as Gnutella [7] and Napster [12]. This strategy
works efficiently because the search strategy in unstructured systems allows the
query to be sent to any node so that replicas have a potential to be reused. However,
this strategy cannot be applied in structured P2P systems because in these systems,
queries always traverse though specific paths and replicas on certain nodes are un-
likely to be encountered during the course of a query, and thus such replicas are
useless.

5.4.2 Replication in Read-only Structured P2P Systems

5.4.2.1 Past

PAST [114] is a read-only file sharing system, which employs the uniform repli-
cation to create k replicas for each data file. These replicas are placed on k nodes,
whose node identifiers are closest to the file identifier. This strategy has two impor-
tant properties:
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− With high probability, k replicas are widely spread across the physical network.
As a result, the system is resilient to massive node failures as well as to network
partition.

− Since identifiers of nodes and files in the system are generated uniformly, the
number of files stored at each node is approximately equal.

The biggest advantage of this method is its simplicity. However, as analyzed
before, it is not efficient to deal with the bottleneck problem since the popularity of
files is very different.

5.4.2.2 Cooperative File System

Cooperative File System (CFS) [93] is a Peer-to-Peer read-only storage system built
on top of Chord [173], in which data files are stored and managed at block-level.
Clients see the storage system through a file system (FS) layer that is similar to
those used by common operating systems. It is structured in blocks and a block can
be either a part of a file or a part of the file system metadata. The FS accesses blocks
by interacting with the distributed hashing table (DHash) layer under it. In turn,
the DHash layer uses the Chord layer to access concrete file blocks from servers.
Different from clients, servers do not have the FS layer, they only have the two
bottom layers: DHash and Chord. The system architecture of CFS is illustrated in
Fig. 5.9. In CFS, replication is done at the DHash layer at servers to improve the
performance of the system. Two replication techniques are used in CFS:

− The first technique uses the successor replication scheme. Each block stored at
a node is replicated to k following nodes in the Chord ring to increase avail-
ability of the block. This technique is based on a property of Chord ring that if
a node fails, the immediate successor node will take responsibility for all data
belonging to the failed node. As a result, using this replication technique, blocks
are always available to retrieve even thought the block owner fails. Furthermore,
this technique can help clients to select the fastest download server from a group

Fig. 5.9 CFS architecture
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of servers holding the resource, provided that additional statistics of servers in
the successor list are also maintained at the nodes.

− The second technique employs the path replication scheme. Replicas of a block
are replicated through the search path to avoid bottle neck at the block owner
node if that block is a popular block or in order words, that block belongs to a
popular file.

5.4.3 Beehive

Beehive [263] proposes the use of proactive replication to achieve O(1) average-
case lookup performance on structured Peer-to-Peer systems such as Pastry [275],
Tapestry [349], Chord [173], or P-Grid [17]. It is based on an interesting property of
structured Peer-to-Peer systems: “the length of the lookup path will be reduced by
one when an object is replicated to all neighbor nodes having links to it” and “this
lookup path length can be further reduced if the object is also replicated at all nodes
preceding neighbor nodes in the search path and so on”. As a result, by replicating
data objects to an enough number of levels in their lookup paths, the system can
achieve a constant average lookup performance. Figure 5.10 illustrates replication
in Beehive. Note that similar to other systems, popular queried objects should be
replicated to deep levels while rare queried objects may be replicated only at narrow
levels.

5.4.3.1 Analytical Model

At the center of Beehive there is an analytical model, which helps to identify optimal
replication levels for objects based on the query distribution. Let α be the parameter
of the query distribution in which the i th most popular object has the number of
queries proportional to i−α ; M and N be the number of objects and the number of
nodes in the system; b be the fan-out of the search tree structure in the system; k =
logb N be the maximum number of search steps; C be the desired lookup constant.

Fig. 5.10 Replication in Beehive
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Let xi be the fraction of objects replicated at level i or lower. The closed-form
solution of xi is

x∗
i =

{
[ di (k′−C′)

1+d+···+dk′−1 ] 1
1−α ∀0 ≤ i < k′,

1 ∀k′ ≤ i ≤ k.

In which d = b
1−α
α , C′ = C(1 − 1

M1−α ) and k′ has to satisfy the condition

xk′−1 < 1 or
dk′−1(k′ − C′)

1 + d + · · · + dk′−1
< 1.

The above formula is used only in the case of α < 1. If α > 1, there is no optimal
value since the space is not convex. However, this formula can still be used simply
to improve lookup performance. In the special case α = 1, the close-form solution
of xi is

x∗
i =

⎧
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⎩
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∀0 ≤ i < k′,

1 ∀k′ ≤ i ≤ k.

Beehive estimates the value of the α parameter in two steps. In the first step, the
popularity of data objects is calculated by aggregating query hits at nodes in the
replication paths. After that, the calculated result is broadcasted back to all nodes
in the second step. The gossiping algorithm is used to forward messages in both
steps. In details, at interval time, nodes report query hits counted at them and lower
level nodes in the replication path to higher level nodes. Step by step, these counts
are aggregated at the resource owner node. The aggregated result is then propagated
back to other nodes. By getting popularity of data objects, each node estimates the
α parameter locally in the second step. The estimated value is further refined by
exchanging knowledge between nodes.

5.4.3.2 Replication

Based on the results of the estimation of α, replication is performed asynchronously.
Each node has a responsibility to manage replicas of data objects stored at itself. If
the analyzed results show that it is necessary to create more replicas of a data object
at lower level nodes, the node replicates the data object to nodes preceding it on
the search path. On the contrary, if the popularity of a data object is decreased, and
hence it is not necessary to keep a replica of that object at the node, the node auto-
matically deletes the unnecessary replica. Data consistency in the system is achieved
by propagating changes in data objects from the resource owner node to other nodes
through the replication path. In particular, each data object is associated with a ver-
sion number. When a data object is modified, a new (higher) version number is
assigned for it, and the modification is propagated to nodes keeping replicas. By
comparing version numbers, a node can determine the latest version of data object
it should keep among different versions.
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5.4.4 Symmetric Replication for Structured Peer-to-Peer Systems

The basic idea of the symmetric replication method for structured Peer-to-Peer sys-
tems [131] is simple: nodes in the system are split into groups in which every node
keeps replicas of all data stored at other nodes in the same group. Depending on the
system, the size of groups can be smaller or larger.

5.4.4.1 Node Grouping

The biggest challenge of this method is how to gather nodes into groups and dis-
tribute data among them. One simple solution is to partition the identifier space into
equal zones. Nodes in the same zones are located in the same group. For example,
if N is the number of nodes in the system and f is the intended size of groups,
then nodes whose identifier modulo f is the same can be put in the same group.
Figure 5.11 shows 16 nodes organized in a Chord ring structure with the group size
of 4. As a result, nodes whose identifier is 0, 4, 8, and 12, are put in the same groups,
and data stored at these nodes is replicated to all others. Similarly, nodes 1, 5, 9, and
13 are in a group; 2, 6, 10, and 14 are in a group; 3, 7, 11, 15 are in a group.

5.4.4.2 Data Replication

Based on the fact that data is stored at the immediate successor node in the identifier
space, it can be replicated in an opposite way of node grouping. In particular, repli-
cas of a data object are created with identifiers i′ = (i + j · f )modN , where i is
the original data identifier, 0 ≤ j < r , r = N

f
is the number of groups in the system.

Having data replicas and their identifiers, they can be concurrently inserted into the
system.

Fig. 5.11 Symmetric
replication in a Chord ring
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5.4.5 CUP: Controlled Update Propagation in Peer-to-Peer
Networks

CUP [274] is a protocol employing the path replication method. However, instead
of blindly replicating data objects along the search path, in CUP, a node has its own
right to decide if it needs to keep a replica of the data object or not. A node only
keeps a replica if that replica brings benefits to it. For example, if the node receives
queries for a data object frequently, it is reasonable to keep a replica for that data
object.

5.4.5.1 System Architecture

To manage replication, in addition to the traditional link that is used for search
purpose (called query channel), CUP maintains a separate channel called update
channel for distributing and controlling replicas. Queries for a data object are for-
warded along the query channel to the destination node. If there is any node in the
query channel, which wants to keep a replica, a replica of the object is created and
sent through the update channel to that node. Note that the update channel only ex-
ists if there are replicas of an object in that channel. Based on the update channel,
CUP can promptly update replicas when the original object is changed. The system
architecture is illustrated as in Fig. 5.12.

5.4.5.2 Data Replication

To determine if a replica should be kept at a node or not. CUP introduces the concept
of investment return. Investment return is based on the popularity of a data object.
For every query a node receives, the node keeps track of its popularity, which can
be determined by the query frequency. Note that since the popularity of data objects
may be changed by time, the node only keeps track of queries either in a sliding
time window or since the last time the object is modified. Knowing the popularity
of a data object, a node can then decide to keep a replica of it or not. CUP controls
the process of updating data by using an “interest” bit vector for each data object.
An update is only sent to a neighbor node if the interest bit corresponding to that
neighbor node is set. If the interest bit is clear, it means that the correspondent
neighbor node does not need to keep the replica and hence it is not necessary to
send the update request.

Fig. 5.12 CUP system
architecture



5.4 Replication in Concrete Systems 151

5.4.6 Dynamic Replica Placement for Scalable Content Delivery

Another variant of the path replication technique is to select the most suitable node
satisfying some system constraints3 along the search path to place a replica on
it [72]. Replication is managed through disseminating trees. A disseminating tree
is constructed at a node whenever a replica is created for a data object stored at that
node. Nodes keeping replicas are represented as tree nodes in the disseminating tree.
As a result, data updates can be done to guarantee the consistency of replicas simply
by distributing update requests along the tree starting from the root node and ending
at leaf nodes. The architecture of a disseminating tree is shown in Fig. 5.13.

5.4.6.1 Disseminating Tree Construction

There are two methods for constructing disseminating trees. In the following de-
scriptions, assume that there is a node, called client, that needs to duplicate a data
item it has on another node that satisfies some system constraints.

− Naive placement: if, by issuing a query, it finds a node x, keeping the resource or
a replica of the resource, and x satisfies the system constraints, then the replica
already exists and no further copying is performed. Instead, node x becomes the
parent of the client in the tree structure. However, if x does not satisfy the con-
strains, then a node y along the search path, satisfying the constrains, is selected
to store the replica. If no node satisfies the constraints, the node nearest to the
client node is chosen. Once the replica is created, x takes y as its child in the
disseminating tree structure.

Fig. 5.13 Dissemination tree
architecture

3Constraints can be the maximum query latency from clients, the minimum server storage capacity,
or the minimum network bandwidth speed.
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− Smart placement: if the node x, found as before, keeps a replica, it is already a
node in the disseminating tree. However, instead of only checking constraints at
x, surrounding nodes (parent, siblings and children) are also checked to select
the best node satisfying the constraints. If such a node is found, the client node
becomes a child of that node in the tree structure. Otherwise, the same process
as the naive placement is performed.

The tradeoff between the two methods is that the naive placement method re-
quires less cost in the tree’s construction than the smart placement method does.
However, the smart placement method is more efficient than the naive placement
method in the aspects of number of replicas, load distribution, query latency, and
bandwidth consumption (for query processing).

5.4.6.2 Disseminating Tree Maintenance

The tree structure is maintained in a simple way: At interval times, “heartbeat”
messages are sent from the root node downwards to all nodes in the tree. If a node
does not receive such a message within a time interval, it knows that it is no longer
in the tree structure, and has to rejoin the tree. On the other hand, each child node
has a responsibility to send a “refresh” message to its parent periodically. If the
parent node does not receive such a message within a time interval, it assumes that
the child has died and removes the link to that child.

5.4.7 Updates in Highly Unreliable, Replicated P2P Systems

Instead of using a dissemination tree for replica update as before [72], Datta,
Hauswirth, and Aberer [96] suggest that each node only needs to keep a replica
list, which contains nodes holding replicas. Nodes in the replica list of a node can
include the nodes from which it received the replica, nodes to which it has sent the
replica, or other nodes that it happens to know by random search or by the process
of replica update, which is discussed later. In other words, if we consider the set
of all nodes holding the same replica, each node in this set knows an arbitrary por-
tion of remaining nodes in the set. Based on the replica list, replica update can be
propagated in two phases.

1. Push phase: when a data item that has been replicated to other nodes is updated,
the push phase starts. At first, the node holding the original data item selects
randomly a number of nodes in its replica list (not all nodes in the list) to send
the update request. The update request contains four pieces of information: the
new updated data item U , its version V , the list of nodes that have received the
same update request Rf , and a counter t that count the number of push round that
has been executed. When a node receives an update request, it updates its current
data item and continues to select a number of nodes in its replica list to forward
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the update request. Before forwarding the update request, the node needs to add
the selected nodes to Rf and increases t by 1. Note that in this phase, nodes can
also add more nodes into its replica list using the nodes in Rf .

2. Pull phase: during the push phase, some nodes holding replicas may be offline,
and hence they do not receive update requests. Consequently, the replica stored
at these nodes may be out of date. The pull phase is proposed so solve such
a problem. In particular, when a node that was offline before, comes online, it
issues a pull request to a portion of online nodes in its replica list to ask for an
update. When a node receives a pull request, it sends its stored replica version
to the requester if it is sure that it currently holds the latest version of the data.
Otherwise, it joins the pull phase, and continues to ask other nodes.

Figure 5.14 shows an example of these two phases. In this figure, the replica list
of a node contains all nodes to which it has a link. For example the replica list of
node A contains C, D, G, and H , while the replica list of node B contains C, G,
and H . Note that to make the figure clearer, we just assume the links are symmetric.
However, they can be asymmetric in practice. Now, assume that node A is the node
holding the original data item and the data item is updated. As a result, A starts the
push phase. We further assume that C is offline at this time. Following the push
phase, replica update can be propagated from A to D and H ; from D to E; from
H to B and G; from E to F and G to F . Since C is offline, it cannot receive the
update request. As a result, its holding replica is out of date. However, when C goes
online, it has to start the pull phase. As a result, sooner or later, it will receive an
update of the latest replica version. In this figure, C sends a pull request to B and
gets the latest version from B (assume that B is sure that it currently holds the latest
version).

Fig. 5.14 Updates with push
and pull
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5.4.8 Proactive Replication

As discussed before, replication can help to improve the availability of data in case
of failure. Usually, to achieve this property, for each data item stored in the system, a
number of k replicas of it are created and maintained, where k is configured depend-
ing on applications. In particular, when a new data item is inserted into the system, k
replicas are created and distributed to other nodes in the system. On the other hand,
when a node fails, the system must recreate new replicas for all data items stored
at the failed node in order to keep enough number of necessary replicas of a data
item. This process may cause overhead in bandwidth usage at that time. As a result,
Sit and his colleagues propose Tempo [297], a proactive replication protocol, which
replicas data items constantly at regular time intervals instead of failure time. If the
replication rate is equal to the failure rate, the system can still guarantee the same
number of k replicas for each data item.

5.4.8.1 Replication Protocol Design

A concern with Tempo is how to determine the replication rate, since if this rate is
smaller than the failure rate, the system cannot guarantee the availability of a data
item. On the other hand, if the replication rate is greater than the failure rate, the sys-
tem will eventually run out of storage space. The basic solution is to greedily select
the largest possible replication rate at first and control the rate later. In particular,
replicas can be created constantly at the maximum bandwidth capacity, which is
allowed at nodes. Usually, this replication rate is much greater than the failure rate.
After that, the rate is gradually adjusted when the number of replicas reaches k.
Tempo also applies this solution with a little modification based on three parameters
specified by nodes:

− μ: bandwidth budget used for replication.
− Cmax: storage budget used for replication.
− Rmax: total number of replicas, which is needed for an object.

Using these three parameters, in Tempo, replicas are created constantly at nodes
at the rate of μ until the storage at nodes used for replicas reaches its maximum
capacity Cmax. However, if a data item does not have enough replicas (i.e. it has
less than Rmax), replicas continue to be created at nodes. The purpose of this strat-
egy is to achieve the minimum requirement to provide availability of data by using
Rmax. Nonetheless, whenever it is possible, it also improves availability of the sys-
tem by using all granted resources. Additionally, to avoid many concurrent uploads
at nodes, which may slow down the system, it is suggested that each node may only
replicate data items to a fixed number of other nodes. A potential problem of this
replication protocol is that there may be situations where nodes are out of storage
space due to keeping several replicas of some data items while not having enough
replicas of others, and hence they have to delicate more storage to keep new replicas
for these data items to satisfy Rmax constraint. Nevertheless, such a case is unlikely
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because when a node decides to create a new replica for a data item, it always gives
preference to data items having the least replicas, and hence the number of replicas
of data item should be approximately equal.

5.5 Summary

In this chapter, we have introduced in details load balancing and replication tech-
niques. They are important techniques that increase the efficiency of P2P systems.
In particular, load balancing helps to balance the load of nodes proportional to their
capability. As a result, nodes in the system can avoid being overloaded. On the other
hand, replication helps to avoid hotspots at nodes holding popular data items, to re-
duce query latency, and to improve the availability of data in the system. In general,
these two techniques, load balancing and replication, are orthogonal and comple-
mentary to each other.

Basically, there are two load balancing strategies: static load balancing and dy-
namic load balancing. Static load balancing happens at the time a new node joins
the system or when an existing node departs from the system. In the former case, the
new node gets a part of the load from some heavily loaded node. In the latter, the de-
parting node passes its load to some lightly loaded node. On the other hand, dynamic
load balancing happens when an existing node in the network becomes overloaded
or underloaded. It is “dynamic” in the sense that even if the network does not suffer
changes in its set of nodes (but only in the data that they make available), it still
acts upon it by a continuous process of self diagnose. If a node somehow detects
it is overloaded, it needs to find a lightly loaded node to balance the load, while if
the node is underloaded, it needs to find a heavily loaded node. To balance the load
between a lightly loaded node and a heavily loaded node, there are two solutions.
The first solution is to use the concept of virtual node. In particular, a node may
keep several virtual nodes. As a result, the overloaded node only needs to pass some
virtual nodes to the lightly loaded node to balance the load. The second solution is
to let the lightly loaded node pass its load to its adjacent node and join next to the
heavily loaded node to share the load.

A significant issue in this process is how to find a lightly loaded node or a heav-
ily loaded node. Currently, there are three main methods. They show a spectrum of
choices as to when to incur some overhead. The first method is based on random
choices paradigm: a node needs to sample a number of random nodes in the net-
work. The node having the lightest load is considered a lightly loaded node while
the node having the highest load is taken as a heavily loaded node. This method has
a high overhead each time a rebalancing is triggered, but it does not need to main-
tain an image of the state of the network. The second method is to use histograms to
maintain the load distribution of nodes in the system. It balances the overhead at the
time of the rebalancing with the overhead in maintaining metadata on the load dis-
tribution. The last method is to use a separate Skip Graph to keep the load of nodes
in the system in order. As a result, the heaviest loaded node and the lightest loaded
node are two nodes at two heads of the skip graph. Obviously, this method incurs a
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high maintenance overhead, as links in the skip graph are constantly adjusted, but at
the time of the rebalancing process, there is little or no overhead in identifying one
or more lightly or heavily loaded nodes.

Replicas of a data item can be created at two levels of granularity: file level and
block level. At file level mode, the whole data item is replicated while at block level
mode, only a part of data item is replicated. In this second case, it is necessary to
collect all pieces of replicas of a data object in order to reconstruct it. Again, this is a
design decision: the smaller the replication units, the better the chances of a uniform
spread, but the chances of not being able to retrieve one of the pieces also grow. Of
course, we could have multiple copies, but then consistency is an issue to take into
account.

A simple solution for maintaining the consistency of replicas is to set timeout,
such that after a limited time, replicas are discarded. As a result, there is no worry
about inconsistency of replicas with the original data. Another solution is to create
links between nodes holding replicas and the node keeping the original data. In this
way, replica updates can be disseminated through these links.

Finally, the number of replicas to be created could also depend on the number
of queries issued for each data item. Such replicas could be stored at the query
requester node, at a node along the query search path, a node preceding or following
the data item owner node, or a random node in the system. To decide, a system
designer should consider what is likely to be more frequent: data querying, in which
case store a replica closer to nodes likely to issue the query, or data updating, in
which case, store the replica closer to the nodes generating the data.



Chapter 6
Security in Peer-to-Peer Networks

For P2P systems to be widely accepted and adopted, they must be secure. Unfortu-
nately, securing applications in a P2P environment is much more challenging than
the already hard problem of securing client-server or traditional distributed appli-
cations. This follows from the openness and autonomous nature of a P2P network.
For example, as nodes can join and leave the network, this could turn out to be a
potential (denial-of-service) threat that can disrupt the operations of the system. As
another example, given that a (malicious) node may change its identity whenever
it rejoins the network, it becomes more difficult to trust a newly joined node. Yet
another example of security threat is that (malicious) nodes may not be operating
according to the prescribed protocols—a node may not route requests, another may
not store data, yet another may not serve requests even if it has the data, etc.

In this chapter, we will endeavor to survey some of the works in the literature
that attempt to address some of the security issues mentioned above. Our focus will
be on (a) Routing attacks, (b) Storage and retrieval attacks, (c) Denial-of-service
attacks, (d) Verification of data and computation, (e) Free riding, (f) Privacy and
anonymity, and (g) PKI-based security. We defer the issues of trust and reputation
to the next chapter.

6.1 Routing Attacks

Structured P2P systems such as Chord [173], CAN [266], Pastry [275], and BA-
TON [166] apply the same principle in query processing: when a node receives a
query request, if it does not contain the query result, it always forwards the query to
a node in its routing table that is “closer” to the node holding the query result and the
process stops when the responsible node is reached. This means that given a fixed
overlay network where no new nodes join and no existing nodes leave, the same
query starting at the same node always follows the same route (via the same series
of nodes). In these systems, it is important to guarantee the correctness of routing
functions, and hence routing attacks must be adequately dealt with. In routing at-
tacks, the malicious node plays an active role in the system—it not only participates
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in routing, but its information is in the routing tables of other nodes. In [298], routing
attacks are classified into three types.

6.1.1 Incorrect Lookup Routing

Incorrect lookup routing arises when a malicious node forwards a query request
to an incorrect node or returns an incorrect result to the query requester node e.g.,
returns a random node as the node holding the query result. For the former attack,
a solution is to let the query requester node monitor the search process. In this way,
if a node forwards the query to another node that is not “closer” to the destination
node while such a node exists, it is identified as a malicious node. Additionally, to
recover from this attack, the query requester node can backtrack the routing path
to the last trustworthy node to ask for an alternative route. For the latter attack, the
query requester can check the range of values managed by the destination node to
verify the result. For example, the query requester can look at the identifier of a node
to justify whether this node is the correct destination node. This scheme, however,
requires that the identifier of a node should be assigned in a verifiable way e.g.,
using the IP address of the node.

6.1.2 Incorrect Routing Updates

Incorrect routing updates happen when a malicious node damages the routing tables
of other nodes by providing them incorrect information. The consequence of this is
that “good” nodes in the system end up misdirecting queries to inappropriate, or
nonexistent, nodes. A solution to this attack is to verify that the remote node can
be reached before incorporating the update into the node’s routing table. A more
subtle attack can occur when the system provides added flexibility by offering server
selection (i.e., provide alternative routes). This attack does not affect the correctness
of the routing but it may affect the desired quality of service. For example, instead
of picking the fastest node, the malicious node may route the query to a node with
low bandwidth and highly unreliable. In this case, an effective trust model may offer
a good solution.

6.1.3 Incorrect Routing Network Partition

Incorrect routing network partition occurs when a new node joining the P2P net-
work is “hijacked” to another network partition formed by a group of malicious
nodes. This can happen because when a new node joins a system, it needs to boot-
strap via some known (existing) node in that system. Such a node may be a member
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of the malicious network partition. Alternatively, a malicious node in a legitimate
network partition may also divert new nodes to the malicious network partition.
Such attacks not only may deny service to the new node, but more importantly, may
observe the behavior of the new node. One solution is for a new node to bootstrap
only to trusted nodes. In this solution, each node maintains a list of trustworthy
nodes that the node has known in the past and only contacts nodes in this list to
join the network (if the node joins the network in the first time and does not know
any trustworthy node, it can ask some publicly known nodes). Additionally, the new
node can perform cross-checking of routing tables to detect a malicious partition.
This can be done by initializing random queries at random neighbor nodes of the
node and compare the returned result to the result returned by initializing these
queries at the node. If the two results are not the same, there is a potential that the
node falls into a malicious partition. Actually, as discussed by Sit and Morris [298],
a simple but effective solution to avoid malicious nodes is to assign identifiers for
nodes using their public key. Even though the overhead incurred by this solution
may be high, with this solution malicious nodes cannot easily cripple the system.

6.1.4 Secure Routing Scheme

Castro et al. [64] addressed routing attacks by proposing a secure routing scheme.
The scheme exploits redundancy and replication to ensure that a message sent from
a nonmalicious node will, with very high probability, eventually be delivered to all
target nonmalicious nodes. In particular, a key is replicated and stored at multiple
nodes. Moreover, each node may maintain more than one routing table, and mes-
sages may be broadcast to a set of neighbors (despite the fact that the basic architec-
ture is a structured P2P system). The scheme achieves this by providing solutions to
three subproblems:

− Secure assignment of node identifiers (nodeID) to nodes. Basically, attackers
should not be allowed to have control over nodeID assignments. Otherwise, the
attacker can potentially position itself to be on the path of a victim node in order
to monitor all traffic to or from it. For example, in Chord [173], the nodeID is a
function of the IP address. A malicious node can pick an IP address that meets its
need. Similarly, in Pastry [275], nodeIDs are randomly chosen 128-bit numbers,
and hence a node can choose its nodeID maliciously. The proposed solution to
ensure that nodeIDs are assigned securely is to employ a trustworthy server to
generate nodeIDs from the public keys of nodes. This server is only consulted
whenever a new node joins the P2P system, and does not participate in other
actions of the system. As such, there is little concern about the potential bottle-
neck at this node, and hence it does not have any effect on the scalability of the
system.

− Secure maintenance of routing tables. The routing table of a nonmalicious node
must be protected in order to ensure that it does not contain too many malicious
nodes (e.g., the ratio between malicious nodes and trustworthy nodes in a routing
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table should not be large). Otherwise, the node is effectively being controlled by
these malicious nodes. A solution to secure routing tables is to constrain the
entries in the routing tables. For example, in Chord, the nodeIDs need to be the
nearest nodeIDs following some calculated values in the identifier space. Given
that the node-IDs of nodes are secured with the previous scheme, the probability
that a malicious nodes takes an entry in a routing table is small. In particular, this
probability would be equal to the ratio between the number of malicious nodes
and the total number of nodes in the system.

− Secure message forwarding. To ensure that a query could be sent, with high
probability, to the correct destination node holding the search key, a solution is
to send the query over multiple and diverse routes. The rationale is that given
enough copies of the message being disseminated over different routes, at least
one copy of the message should go through the correct route, and hence reach
the correct destination node with high probability. In particular, when a node
wants to issue a query, it should send the query to all its neighbor nodes since the
neighbors are expected to be a sufficiently random and geographically diverse
sample of the nodes in the network. When a node receives a query request from
another node, it just follows the normal procedure to forward the query to the
destination node. A performance study based on modeling and simulation [64]
concludes that the probability of successfully sending a copy of a query to the
destination node in this scheme is 99.9% if the number of malicious nodes in the
system is less than 30%.

Routing attacks may also take place in unstructured P2P systems, for example,
a node that receives a forward request may simply drop it or forward to incorrect
nodes. However, since such systems typically broadcast to a number of neighbors,
unless all its neighbors are malicious, the system is less vulnerable to these attacks.

6.2 Storage and Retrieval Attacks

P2P systems (structured or unstructured) deployed as distributed data repositories
are liable to a number of storage and retrieval attacks, including the following:

− A malicious node may refuse to store data it should be responsible for.
− A malicious node may agree to store data but delete it later. This is a critical

problem since the data may be lost permanently.
− A malicious node may claim to be responsible for the data but refuse to serve to

clients; or worse, it may serve an altered copy.
− A malicious node may coordinate attacks with other peers.
− A malicious node may masquerade as a different peer.

The above attacks also apply to systems where metadata (instead of the actual
data) are stored. In particular, the most common metadata are those used in rout-
ing indexes, and are critical to ensure the correctness and completeness to requests.
A solution to the these attacks was proposed in PIPE [82], a Peer-to-Peer Infor-
mation Preservation and Exchange network. PIPE is essentially a distributed system
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designed to protect documents from failures and malicious nodes. Assuming k peers
will fail, and m peers are malicious, PIPE offers several services to a peer:

− Discover(). This service is used by a new node joining the system. The service
is responsible for announcing the existence of the new node to online nodes in
the system, and helping the new node to obtain a list of at least k peers where it
can store its documents. To ensure that any document to be stored (or replicated)
at other peers is not lost, at least (m + 1) peers must be contacted to ensure
that at least one of the peers is nonmalicious. PIPE assumes that the new node
knows the identity of these peers in order to bootstrap the process of learning
the identifier of other nodes in the system. In fact, it may be necessary to contact
up to (m + k + 1) peers if k peers fail. From these (m + 1) (or more) peers, the
new node will merge the lists of peers provided by each peer. These are the peers
where the new node needs to store its document in order to be able to retrieve a
valid copy at a later time.

− publish(D,i). This operation will store document D at peer i. Since malicious
nodes may delete D or even refuse to serve D, and nodes may fail, P must publish
to at least (m + k + 1) peers. In this way, there will be at least one valid copy in
at least one active node.

− recover(D,i). This operation is used to publish extra copies of a document into
the PIPE network when malicious or failed nodes have been detected, so that
there will always be at least one active copy around.

− search(q). The search operation broadcasts the query q to all nodes. Nodes con-
taining documents that match q will return the id of the documents and their
own peer id. The challenge here is to be able to filter out junks or even altered
versions.

− retrieve(D,i). This operation retrieves document with id D from peer i. To guar-
antee that the retrieved document is a valid copy (and not an altered version),
one solution is to securely bind the id of the document to the content of the doc-
ument. This can be done by representing the id as a signature (using one-way
hash functions such as SHA or MD5). A document is therefore authentic as long
as its signature matches its id (obtained from search()).

The effectiveness of PIPE depends on accurate prediction of m and k, which is
very difficult, if not impossible. While the most straightforward solution is to intro-
duce extra redundancy (replicate the document over a larger number of nodes), an
alternative solution is to raise the barrier to maliciousness a little. The latter can be
achieved by employing mechanisms to detect some obvious malicious behaviors.
In PIPE, two mechanisms were proposed for a challenger to query the node that
is supposedly storing a document. The first scheme—detect-servecopy—requires
a peer to serve a document that it has been allocated. Clearly, if it is unable to
return the document, then it is treated as being malicious. The second strategy—
detect-has-copy—requires a node storing a document to return a portion of the doc-
ument (randomly selected by the challenger). Again, if the node is unable to return
the portion or the returned portion is not the expected content, the node is likely
to be malicious. Once a malicious node is detected, the system would recover by
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further replicating extra copies (since those at the malicious nodes are no longer
valid).

Besides the challenging scheme, an incentive-based strategy was also proposed
[82]. The basic idea is for nodes who store a document to prove that they are storing
the document before they can retrieve other documents. For example, imagine peer
P2 wants to retrieve document D2 from peer P1. Suppose P1 knows that P2 is stor-
ing a document D1, then P1 can send D3 = D1 XOR D2 to P2 (instead of sending
D2). Thus, P2 can only retrieve D2 (by decoding D2 = D3 XOR D1) if it did not
maliciously remove D1. Thus P2 has an incentive to keep D1 in its original version.
However, this scheme cannot guarantee that P2 will serve the correct version of D1.
Moreover, it requires P1 to have a copy of D1 as well.

Sit and Morris [298] also recognized the need to employ replication to handle
storage and retrieval attacks. They proposed that the storage layer in structured P2P
employs replication to avoid a single point of failure and that replicas be equally dis-
tributed among nodes in the system. Additionally, all nodes holding replicas should
be able to ensure that at least a certain predetermined number of copies exist at all
times, and no single node should facilitate access to the replicas. However, clients
should be able to determine the location of replicas, and hence they can verify where
data is available or unavailable at replica sites.

6.3 Denial-of-Service Attacks

In a P2P network, participating nodes should be available to contribute their data
or resources to each other. However, a node may become unavailable as a result of
attacks. One such form of attacks is the denial-of-service (DoS) attack. In a DoS
attack, a node is overloaded by useless messages and its resources are wasted to
perform meaningless tasks so that the node cannot serve its intended purpose. For
example, a malicious node can continuously send (or route) messages to a particular
node. In this way, the targeted node’s bandwidth is consumed just to transfer mes-
sages, rendering its shared resources (CPU and storage) unavailable to other nodes
in the P2P network even though they may be under-utilized.

DoS attacks come in two flavors: network-layer attacks and application-layer
attacks. While network-layer attacks [127, 227, 231] attempt to cripple a node
by flooding and subsequently overwhelming it with huge amounts of traffic,
application-layer attacks render a node unavailable by large numbers of applica-
tion requests. The latter can be more damaging since the node must also expend
resources to serve the requests.

This section will examine some of the existing methods designed to (a) detect
when a DoS attack is taking place, (b) manage the attack so that the node can main-
tain its service to other nodes, (c) recover from the attack by disconnecting the
malicious nodes.
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6.3.1 Managing Attacks

In [95], Daswani and Garcia-Molina studied application-layer DoS attacks in the
context of a super-node P2P architecture. In such an architecture, there are two levels
of nodes: local nodes connect to the P2P network through a super-peer node; super-
peer nodes communicates in a Gnutella-like manner where a query is broadcast
from a super-peer to all its neighbor super-peers. The work focused on managing
DoS attacks where it is difficult to distinguish between legitimate and attack queries.
The basic solution is to load balance the system by giving every client a “fair share”
of the resources, i.e., no matter how many messages/requests need to be processed
from a node, the serving node only dedicates a fix amount of resources for that node.
In this way, the effect of the attack on the victim node is minimized since the node
is still able to contribute to the P2P network by serving other queries.

Given the super-node architecture, each super-node has two classes of queries—
local and remote queries. To minimize the effect of a DoS attack without being able
to tell whether a query is an attack query, the authors introduced a parameter called
reservation ratio, ρ (0 ≤ ρ ≤ 1), to determine the ratio of local queries and remote
queries to accept. For example, if a node has capacity to serve only k queries in a
time unit, then it will accept ρ · k local queries, and (1 − ρ) · k remote queries in
the time unit. In addition, since a node is willing to accept only (1 − ρ) · k remote
queries, this gives rise to two issues. The first issue is how many queries a node
should accept from a neighbor node. The second issue is what to do if the number
of remote queries is larger than (1 − ρ) · k. To handle these two issues, the paper
proposed the incoming allocation strategy, and the drop strategy.

− Incoming allocation strategy (IAS). There are two schemes used in this strategy.
The first scheme is the Weighted IAS scheme, which sets the probability of being
accepted of each query equally. As a result, the neighbor nodes that submit more
queries will have a higher proportion of queries being accepted. For example, if
a node has n neighbor nodes, and each submits αi , 1 ≤ i ≤ n, queries, then the
node will accept (

αi∑n
j=1 αj

(1 − ρ) · k) queries from the ith neighbor. The second

scheme is the Fractional IAS that treats each neighbor as having equal “right”.
In other words, a node with n neighbors will accept (1−ρ)·k

n
queries from each

neighbor. For neighbors with fewer than (1−ρ)·k
n

queries, the unused capacity will
be assigned to other neighbors.

− Drop strategy (DS). While a node’s IAS decides to accept m queries from its
neighbor that submits (m + δ) queries, the drop strategy (DS) is employed to
determine which m (out of m + δ) queries should be picked (or rather which
δ queries should be dropped). Let node x be the node that is accepting queries
from its neighbor y. Let there be j distinct queries from y, and the number of
each distinct query be q1, . . . , qj . There are three schemes used in this strategy.
In the Proportional DS scheme, each query type is given equal weight, and hence
x will accept ( qi

∑j
l=1 ql

· m) queries from query type i. In the Equal DS strategy,

queries are selected based on the originating node, and each originating node is
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equally likely to be selected. Thus, if there are s distinct sources of origin, then
x will accept m

s
queries from each of these origins. The unused capacity will be

channeled to queries from other sources. Finally, the OrderbyTTL DS scheme
is used to drop queries based on their time-to-live (TTL) values. There are two
flavors here: PreferHighTTL will drop those queries with lowest TTL first, and
PreferLowTTL will drop those with highest TTL first.

Daswani and Garcia-Molina report results of an extensive simulation study on
different network topologies (including line, cycle, grid, power-law, star, wheel, and
complete) [95]. These results showed that the (Fractional IAS, Equal DS) pair is an
effective mechanism to handle application-level DoS attacks. It not only minimizes
damage (degradation in service, i.e., the number of queries that are processed) inde-
pendent of network topology, but also minimizes flood damage distributed through-
out the network. The results also showed that under the (Fractional IAS, Equal DS)
policy, the complete topology has the strongest resistance to damage. The (Weighted
IAS, PreferLowTTL DS) pair is shown to be the least effective combination that
maximizes damage independent of network topology.

6.3.2 Detecting and Recovering from Attacks

In a Gnutella-like P2P system, it has been observed that the system’s topology fol-
lows a power law distribution where a small fraction of nodes hold a large number
of connections to other nodes while the remaining large number of nodes only main-
tain a small number of connections [284]. This means that a majority of traffic in the
network go through a small fraction of highly connected nodes. As a result, attacks
on these nodes can easily partition the network into isolated fragments, rendering
the system ineffective. To survive these attacks, mechanisms to detect attacks and to
recover from them are critical.

Attacks that partition the network are different from failures. Failures of peers
resulting from nodes dropping out of the network unexpectedly (either due to the
nodes leaving or from other forms of attacks, e.g., application-layer DoS attacks)
are largely more random. On the other hand, attacks that attempt to split the network
target the highly connected nodes. As such, the typical failure detection mechanism
that regards a neighbor as failed when it stops responding to a message is inade-
quate. Keyani et al. [183] proposed a solution to detect an attack that minimizes
coordination between nodes. In this solution, it is required that a node maintains
information of not only its direct neighbor nodes but also indirect neighbor nodes,
i.e., nodes two hops away from the node. The solution is based on an observation
that an attack on a node will remove the most highly connected neighbor node of
that node with high probability and hence disconnect a large number of neighbor
nodes of the removal neighbor node. Thus, to detect an attack, at interval time, each
node monitors the number of direct neighbor nodes and indirect neighbors that are
disconnected. If the percentage of disconnected indirect neighbor nodes is greater
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than the percentage of disconnected direct neighbors, and is greater than a prede-
termined threshold, there is a chance that an attack is happening. The rationale for
introducing the threshold is to filter out false positives due to random failures.

To restore the network after an attack has been detected, Keyani et al. [183] also
proposed a recovery mechanism. The basic idea is straightforward but effective: the
system maintains an alternative virtual overlay network besides the active network
so that when the active network breaks, nodes from the virtual overlay network can
be used to replaced the broken links. To provide such an alternative virtual overlay,
several issues have to be addressed: (a) what should the virtual overlay network be
like? (b) how to maintain this virtual network? (c) how to employ the virtual network
during an attack? Keyani et al. also propose an exponential network [183]. In this
network type, all nodes have approximately the same number of links, and hence
nodes in the network are less probable to be holding the entire network together.
This means that an attack on a small number of nodes cannot easily partition the
network [23].

To ensure an exponential network can be maintained without excessive overhead,
a random node discovery scheme is proposed: a node issues a ping message, called a
random discovery ping (RDP), randomly picks a neighbor node to send the message.
When a node receives a RDP, it also selects a random neighbor node to forward the
message. This process repeats until the message has traveled a number of predefined
hops. The last node receiving the RDP will reply a pong message to the initiator of
the ping message and is thus discovered. To cover the entire network, the number
of hops must be sufficiently large to cover the diameter of the network (in Gnutella,
this corresponds to a TTL of 20). Moreover, two heuristics were adopted in picking
the neighbors to send the RDP. The first heuristic applies to the initial number of
hops, and selects neighbors randomly with probability proportional to the number
of neighbors they have. This heuristic allows the message to be forwarded as far as
possible from the originating node to prevent the occurrence of cycles. The second
heuristic applies to the remaining number of hops, and favors nodes with fewer num-
ber of neighbors. This strategy is adopted to minimize the preferential attachment
property of the active network. Thus, each node in the network will maintain a num-
ber of active neighbors for the active network, and a number of virtual neighbors for
the virtual networks.

In the event that the network breaks, the virtual network will be used: a node will
select nodes from the virtual neighbor list to replace its failed neighbors. Note that
during the replacement process, the system does not look for new virtual neighbors
since doing this incurs additional traffic in the network, and hence put more burden
on the already failed networks. Finding new virtual neighbors can be done later
when the network is not busy.

The simulation study [183] showed that the proposed detection and recovery
method can reduce network partitioning by a factor of 25 times compared to the
standard approach. As a result, query effectiveness is also improved both during
and after the attack. The 20% overhead in terms of additional traffic on the network
is deemed to be acceptable considering the benefits the scheme brings to the system.

For structured P2P system, Sit and Morris [298] proposed that DoS attacks on a
single node be treated as failures so that the system can employ the failure recovery
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mechanism to isolate the targeted node. However, to minimize the effect of attacks
(and failures), some degree of replication is necessary.

6.3.3 Other Attacks

There are many other attacks that affect the availability of a P2P network. For ex-
ample, in the rapid joins and leaves attack [298], a node will repeatedly join the
network only to leave immediately. In structured P2P systems, this may cause some
network segment to overload as such operations require rebalancing of informa-
tion/data into for the routing procedures to operate properly. A possible solution is
to let only nodes that have been active or alive in the system for a sufficiently long
period of time, to participate in the network routing protocol. In other words, newly
joined nodes will only be allowed to query through other nodes, but will not partici-
pate in facilitating the querying process. Yet another attack is the Sybil attack where
a malicious node can forge multiple identities. Douceur [111] shows that, without
a trustworthy server, it is always possible to create Sybil attacks except under some
unrealistic assumptions.

6.4 Data Integrity and Verification

With the rapidly increasing available resources at individual computers, P2P sys-
tems such as Freenet [3], Publis [326], OceanStore [242], and CFS [93] provide
solutions for an inexpensive, highly available storage without centralized servers.
However, P2P environments are essentially hostile in the sense that one can expect
malicious nodes to exist (even if most of the nodes can be trusted). A malicious node
may corrupt the content, replace it by a harmful one (e.g., that has a virus), or may
not return the complete answers to requests (e.g., in the context of database applica-
tions, it may choose to return k objects while the answer contains k + j objects for
j ≥ 1). While it is easy for the owner to verify his own data, it is not straightforward
for any other users who need to query the data on untrusted nodes.

A straightforward solution is to only store data on trusted nodes, i.e., nodes that
have been certified by some authorities to be trustworthy. However, such an ap-
proach not only incurs significant overhead, it also severely hinders the wide adop-
tion of P2P technologies. A more viable solution is to remove the need to trust any
nodes. Instead, a node will generate some verification objects in response to queries.
These verification objects are used by the query nodes to validate that the answers
are correct. The two important properties of such a scheme are: (a) it must allow the
query node to verify that the answers returned by the untrusted node indeed belong
to the answer set; (b) it must allow the query node to verify that the answers are
complete, i.e., no answers are intentionally withheld.
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6.4.1 Verifying Queries in Relational Databases

Devanbu et al. [105] propose a scheme that facilitates the storage of relational data-
bases in untrusted nodes. The basic idea is as follows:

− The owner distributes a digest to nodes that would query the relation. This
digest is obtained from the root of a Merkle hash tree [220] built on top of
the relation. A Merkle hash tree is a binary tree whose ith leaf node is a
hash value Hi obtained by applying a hash function h on the ith tuple, i.e.,
Hi = h(h(ti .A1)||h(ti .A2)|| . . . h(ti .An)) for a relation with n attributes. Internal
nodes are also obtained by computing the hash value of its child nodes. Fig-
ure 6.1 shows an example of a Merkle hash tree. Here, there are four tuples. H1
to H4 are the hash values of four tuples t1 to t4, respectively. The parent node
of t1 and t2 has hash value computed as H12 = h(H1||H2). The digest for these
four tuples is Hr .

− Given a query, the untrusted node evaluates the query and returns together with
the answer tuples a verification object, V O. Essentially, V O is a sub-tree ob-
tained from the Merkle hash tree on the relation. For an exact match query that
retrieves a single tuple, the path from the tuple to the root, along with other
intermediate nodes that are necessary to compute this path, form the V O. For
example, to retrieve t2, the V O comprises the nodes H1 and H34. For a range
query, say q in Fig. 6.1(b), the V O is more complex. Here, GLB(q) and LUB(q)

represent the largest value smaller than the answers of q and the smallest value
larger than the answers of q . LCA(q) is the least common ancestor of the subtree
that bounds the answers from GLB(q) to LUB(q). The V O comprises the nodes
that are needed to determine three paths: from GLB(q) to LCA(q), from LUB(q)

to LCA(q) and from LCA(q) to the root.
− Upon receiving the answers and the V O, the query node will verify the correct-

ness of the answers by recomputing the digest using the answers and the V O.

Fig. 6.1 Using Merkle hash
tree for verification
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We note that the GLB(q) and LUB(q) values are necessary to verify the com-
pleteness the answers. If the resultant digest is the same as that provided by the
owner, then the answers returned by the untrusted node is correct and complete.
Continuing with our example, to verify that t2 has not been tampered with, the
client does the following: it first computes H ′

2; with H1 and H ′
2, H ′

12 can be
determined; and finally, combining H ′

12 and H34 results in H ′
r . t2 is correct if

Hr = H ′
r . Note that the client is assumed to have obtained Hr from the owner

separately. Alternatively, Hr may be signed by the owner (with his private key)
and be included as part of the V O; in this case, the client can verify if H ′

r is the
same as the signed Hr (with the owner’s public key).

Devanbu and his colleagues [105] also show that V Os for SQL operators such
as selections, projections (in a limited way), joins and sets (union and intersection)
can be computed using this scheme. The scheme, however, poses three main weak-
nesses:

1. Since different orders of tuples in a table lead to different Merkle trees, when
the order of tuples changes, it is necessary to reconstruct the Merkle tree of the
table. As a result, the system incurs a high cost in data update. Furthermore, if
the table is sorted in different ways, it is necessary to have different Merkle trees,
and hence the storage overheads of holding Merkle trees is big.

2. Since a V O of a query result covers all nodes in the path from the query result
to the root, the size of the V O is proportional to the size of the query result and
logarithmically to the size of the table. As a result, the size of the V O can be
large if the query result is large.

3. Since the hash function is applied on the whole tuple, to verify a V O of a query
result, it is necessary to send complete tuples of the query result to the query
issuer. This means that projection operations can only be done at the query is-
suer, and hence it may waste a lot of efforts in transferring filtered attributes.
Additionally, the requirement of sending complete tuples of the query result lim-
its this scheme in supporting access control at the granularity of column level
i.e. the scheme cannot allow a user to access some columns while not to access
others.

To overcome the above limitations, Pang and Tan [250] propose the Verifiable
B-Tree (VB-tree). This solution can create a V O of a query linear to the size of the
query result and independent of the size of the table and allows the projections to
be executed at the query result provider instead of at the query issuer. Additionally,
the solution also allows updates to be executed dynamically without violating data
consistency. An example of a VB-tree is shown in Fig. 6.2. This tree structure is
built on three basic ideas as follows.

− First, VB-tree creates signed digests for all attributes in a tuple and uses these
signed digests to compute the signed digest of the tuple. In particular, to create
a signed digest for an attribute, the system first uses a one-way hash function
such as MD5 [271] or SHA-1 [16] to hash the concatenation of the names of
database, table, tuple, tuple key, and the attribute value. This result value is then
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Fig. 6.2 Verifiable B-Tree

signed with the private key of the database. In this way, the system needs to have
a trusted server to store public keys of databases and an authenticated channel
such as the X.509 Public Key Infrastructure Certificate and CRL Profile [158],
to allow users to retrieve public keys of databases for the reverse computation.

− Second, this solution employs the hash function h(x) = gx mod q to create hash
values for nodes in the VB-tree. Since this hash function has an important prop-
erty that is h(x + y) = h(y + x), using this hash function allows the system (1)
to compute the digest of tree nodes in an arbitrary order, and hence avoid the first
problem of the Merkle tree (2) to perform projections at the node holding query
result and hence avoid the third problem of the Merkle tree.

− Finally, to alleviate the second problem of the Merkle tree, a V O of a query result
in a VB-tree only needs to contain tree nodes belonging to the smallest subtree
covering all the results of the query. This solution is feasible because the system
maintains a signed digest for each node in the VB-tree. An example of how a
verification object is created is shown in Fig. 6.3.

Fig. 6.3 Verification Object
for Selection
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6.4.2 Self-verifying Data with Erasure Code

Weatherspoon et al. [334] integrated the concept of a Merkle hash tree and erasure
code to design a self-verifying scheme for data storage in a P2P context. The data
can be a document, an object or a block. We shall use the term data object here. With
erasure code [333], a data object can be split into m fragments and subsequently re-
coded into n fragments (n > m) such that it is able to reconstruct the original data
object from the combination of any m fragments. In a P2P environment, each frag-
ment is stored in a node, which can be a malicious node. In this case, the malicious
node may modify the fragment to damage it (a damaged segment is call erasure).
Obviously, if the system is unable to recognize damaged fragments, the reconstruc-
tion process becomes very computationally expensive, i.e., we may need to try

(
n
m

)

combinations.
A solution to this problem is to build a Merkle hash tree for the data object and

its fragment i.e., the data object and its fragments form the leaves of the tree (in
a similar manner as that described in Sect. 6.4.1). Figure 6.4(a) shows an exam-
ple of a Merkle hash tree for data object with 4 fragments. Here, fragment Fi has
hash value of Hi and the data object has hash value of Hd . The digest GUID is the
unique identifier that can be used to identify and verify the object. Each fragment
is made self-verifiable by storing in each fragment all necessary information to ver-
ify the fragment’s hash value i.e., hash values of sibling nodes in the path from the
leaf fragment to the root. Figure 6.4(b) shows the self-verifiable fragments’ content
for the example in Fig. 6.4(a). When a node receives a fragment to reconstruct the
object, the node verifies the fragment by first computing the hash value of the frag-
ment, and then repeating the process of hashing the result computed the previous
step with the correspondent hash value in the Merkle hash tree until the hash value
of the root is obtained. If the final hash value matches the GUID, the fragment is
a valid fragment and can be used for reconstruction; otherwise, it is a corrupted
version and another fragment has to be obtained.

Fig. 6.4 Self-verification scheme
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6.5 Verifying Integrity of Computation

We have witnessed the success deployment of P2P technologies for distributed
computation. Notable projects include the SETI@home [288] (BOINC [63]) and
the Folding@home [2] projects where compute intensive operations are distributed
across peers. For example, the number of participants in SETI@home is more than
4.5 million. They contribute unused processing power of their computers to process
an average of 65 TeraFLOPS.

Unfortunately, not all peers that are tasked to perform certain computations can
be trusted. For example, some peers may perform only a subset of the tasks assigned
and claim that they have done all the computations. Actually, there have been reports
about donors of resources to SETI@home have forged the amount of time they have
contributed. The purpose of this forgery is to increase the contributed time of the
peer so that it is listed as one of the top contributors in the SETI’s website [40]. As
another example, some peers may intentionally return wrong answers (even if they
have done the computations). If undetected, the consequences may be disastrous.
A straightforward solution to detect incorrect answers is to exploit redundancy—to
assign each task to multiple peers, and then compare their results returned by these
peers. The disadvantage of this simple solution is that it incurs a high cost in compu-
tation since it wastes some processing cycles and bandwidth to repeat computations.
An improved solution is to just double check the computations of some randomly
selected sample tasks. With proper choice of the number of samples, we can reduce
the probability that a dishonest peer can get away without being detected to be very
low. For example, if the dishonest peer computes only half of 1000 assigned tasks,
and 50 samples are picked, then the probability of getting away is only 1/250. By
picking a sufficiently large sample size, it is almost impossible for cheating to go
undetected. However, this scheme still requires a high communication overhead to
transmit all results.

More recently, some work have been done to address the semi-honest cheat-
ing problem [115]. Du et al. [115] proposed a commitment-based sampling (CBS)
scheme that further reduces the overhead in communication—instead of returning
results of all tasks, only the results of samples need to be returned. The CBS scheme
operates in four phases (assuming peer A assigns T tasks to peer B): (a) Peer B

performs the allocated tasks; builds a Merkle hash tree where each leaf node cor-
responds to a task, and the hash values at the leaf nodes correspond to applying
a one-way hash function on the result of the task; and peer B transmits the hash
value of the root node of the Merkle hash tree to A. (b) Peer A randomly selects
m sample tasks for peer B to proof its honesty. (c) For each of the m tasks, Peer
B determines the path P from the leaf node for that task to the root node, then for
each node v ∈ P , the hash value of the sibling node is sent Peer A. The hash value
of the result of the task is also transmitted to Peer A. (d) For each of the m tasks,
Peer A can easily verifies whether Peer B is honest by recomputing the hash value
of the root: If the value of the computed root is the same as that of the committed
root hash value, then Peer B is honest with respect to this task; otherwise, Peer B

is dishonest. Since the scheme is based on one-way hash functions, it is therefore
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computationally infeasible for Peer B to be able to determine the set of hash values
along the path of each sampled task to enable the same committed root hash value
be obtained had the result of the task been incorrect. The authors also proposed a
noninteractive version of CBS that allows Peer B to generate the samples. To en-
sure that the scheme does not compromise integrity, larger number of samples can
be used; alternatively, the process of generating samples can be made to be more
costly.

6.6 Free Riding and Fairness

Cooperation is the central strength of peer-to-peer systems. Nodes participating in
the P2P network are expected to contribute their resources (e.g., data, CPU cy-
cles, bandwidth, or storage space) in order to realize the full potential benefits of
P2P technologies. Unfortunately, in reality, many users consume the P2P system’s
resources (e.g., in Napster, Gnutella, and Kazaa) without contributing their own
resources to others [21]. Moreover, there is a natural disincentive to cooperate—
allowing some other nodes to use one’s resources may reduce one’s own computing
capacity. For example, in file sharing applications such as Gnutella, allowing up-
loads may increase the delay in one’s own file downloads. As another example, shar-
ing one’s CPU cycles means it will take a longer time to run one’s own tasks locally.
As pointed out by Feldman and his colleagues [120], a disincentive to cooperate
leads to the “tragedy of the commons” [152] where free-riding from self-interested
participants affects the performance of the system (even though free-riding brings
benefits to those doing that). In particular, Feldman’s study [120] shows three inter-
esting results.

− As the level of cooperation increases, the system performance improves; how-
ever, there is a certain “sweet spot” beyond which the improvement in perfor-
mance is not significant.

− The disincentive for sharing is potentially high at nodes having heterogeneous
bandwidths. It is because when these nodes allow data to be uploaded, they suffer
a significant delay in their download.

− Prioritization of TCP acknowledgement packages over data packets helps to
eliminate the potential cost of sharing, and hence it can potentially increase the
sharing level of the system.

The study results show clearly that it is necessary to design incentive techniques
to “encourage” cooperation. Previous works have addressed the cooperation prob-
lem using game theoretic approaches [32, 241] and economic “mechanism design”
theory [118, 119]. However, a P2P system imposes several unique challenges that
must be addressed.

− Asymmetry of interests. Asymmetry of interests arises when peers with different
interests require one another’s resources. In this way, it may be difficult for the
server (the peer providing the service) to determine if it will benefit from the
system if it serves the requests.
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− Zero-cost identity. A peer in the P2P system can continuously change its iden-
tities. As such, it is difficult to monitor whether a stranger is indeed a new par-
ticipant who has not received any service, or is a free-rider who is exploiting the
holes in the system.

− Collusion and other attacks. Peers in the system may collude so that they vouch
for one another to raise each other’s reputation (e.g., claiming that they have
shared their resources when they have actually not done so). Similarly, peers
may also lie that they have provided some service when they have actually not
done so. Being able to deal with such attacks is important.

− Traitor. A peer becomes a traitor when it turned into a defector after successfully
gaining the trust of other nodes in the system. Since the traitor already has es-
tablished a good reputation, it may be hard to detect when it decides to become
noncooperative.

To exploit P2P technologies to the fullness, there must be incentives for peers to
contribute, as well as mechanisms to enforce fair sharing to prevent any abuse. The
remaining of this section looks at some of the techniques that have been proposed
recently.

6.6.1 Quota-Based System

In quota systems [237, 327], each peer is associated with a quota that reflects the
amount of resources that a peer can consume from the system. Whenever a peer
provides a service, the quota may be increased, and whenever it consumes some
resources, the quota is decreased. For example, if peers share storage space, then
the quota can reflect the amount of space that a node can utilize from the system.
In this way, the more a node needs to utilize the distributed storage, the more it
has to provide storage for remote peers. The key issue lies in managing the quota
information. Some possible schemes include:

− A trusted centralized authority can be deployed to manage the quota. In this case,
every request for service would also generate a query to the centralized server.
While effective, the server may become a bottleneck and single point of failure.

− Smart card can also be used to enforce quota [276]. In this system, each node
in the network has its own smart card that is used to track a node’s usage of
remote resources as well as local resources the node provides for other nodes to
use. In particular, when a node asks for a service/resource from another node, its
quota stored in the smart card is decreased. On the other hand, when the node
provides a service/resource for another node, its quota is increased. However, the
practicality of this scheme is questionable since it may not be possible to issue
every user a smart card. Moreover, the integrity of the data stored within smart
card may be compromised by malicious users.

− Another scheme is to employ nodes in the system to be quota managers. A node
will distribute and/or replicate its quota information across these managers. The
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managers manage all requests for services/resources from the node to other
nodes and all services/resources the node provides for other nodes in the same
manner as that of a smart card. To handle the inconsistency in decision among
quota managers, the majority vote policy is applied. It means that any decision
related to the quota of a node must be agreed by a majority of manager nodes.
The disadvantage of this scheme, however, is that the scheme incurs additional
overhead on the network. Moreover, there is a lack of incentives for a node to be
another node’s manager, and a lack of punitive measures for handling a manager
who misbehaves.

6.6.2 Trading-Based Schemes

In trading-based schemes, the system is structured as an exchange or barter econ-
omy. Essentially, a set of peers trade resources among themselves so that every one
in the group is satisfied. One such exchange scheme for file sharing systems [27] im-
plements N-way exchanges as rings of N peers where each peer serves its successor
in the ring, and is in turn served by its predecessor. In Fig. 6.5(a), we have peer Pi

requesting for object oi+1 owned by (and stored at) peer Pi+1 (1 ≤ i ≤ n − 1), and
peer Pn requesting for object o1 owned by P1. As such, though Pi does not benefit
directly from Pi−1, each peer eventually gets what it wants. Note that the N-way
cycle is valid only if every peer has sufficient (upload) bandwidth to serve the re-
quests. (In the work of Anagnostakis and Greenwald [27], this is less of a problem,
as it assumes that the system supports partial transfers and that the upload link is
organized into fixed-size slots. Thus, as long as one slot is available, the transfer
request is considered to be satisfiable.) Nonexchange transfers are allowed only if
there is no trading partner encountered.

The key issue in the scheme is for a node P to determine when a cycle occurs.
This can be done by constructing a request tree as follows. Each request from a
neighboring node is tagged with its request tree. A request tree is empty if there
are no incoming requests; otherwise, P’s tree has an implicit root that serves as the

Fig. 6.5 Exchange-based scheme
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parent of the request trees from the incoming requests and their corresponding trees.
A cycle is formed if there exists a peer PS in the request tree that owns an object
that P currently requested. This cycle is a potential N-way exchange ring. Note that
while P can initiate a request to PS , it does not mean that there is an N-way exchange
since PS or other nodes in the cycle may not participate in the N-way exchange. One
solution proposed in the paper is for P to circulate a token through the proposed ring
to determine if all peers along the ring are still willing to participate. This process
can also be used to negotiate transfer rate.

Now, it is possible that more than one cycle is detected. In this case, P picks
a subset to serve its requests. Intuitively, larger rings may be more beneficial to
the entire system as more peers can be served. However, peers with smaller rings
incur shorter search cost. Smaller rings are also likely to be more stable—fewer
disconnections during the searching. In addition, smaller rings would mean that the
overhead to transmit the request trees can be kept small—if the ring size of k is
preferred, then a request tree can be pruned to a depth of k before being transmitted.
A simulation study [27] showed that a ring size of no more than 5 provides good
overall performance.

While the exchange scheme is fair, it cannot prevent cheating—a peer can initi-
ate an N-way exchange by claiming to possess a file that it does not actually have.
One solution is to blacklist such peers. Unfortunately, this cannot solve the problem
completely since a peer can always assume a new identity each time it is black-
listed. Another solution is to exchange blocks synchronously and to validate each
block before the next block is transferred. This will require a mechanism (e.g., valid
checksums) to facilitate validation of blocks.

The scheme may also lead to free-riders in the following sense. A peer P may
receive requests from peer P1 for item x and P2 for item y. Though P may not
own both items, it can claim to own them and initiate transfers of x and y between
P1 and P2 via itself. As a result, it can potentially download objects from P1 and
P2 without contributing any of its own objects (or rather without having anything
to contribute). This can be handled with tighter control that requires a trusted third
party (another peer) as a mediator. The blocks are encrypted together with some
header information (e.g., the owner identifier of the block), and sent through the
mediator (who is assumed to know the secret key for the block). The mediator can
then verify the validity of the blocks (by checking the header information).

6.6.3 Distributed Auditing

In quota-based and trading-based systems, cheating is still possible. For example,
consider the sharing of disk storage space. Suppose a node agrees to store a file, and
as such effectively increases its quota on remote storage. However, the node may
then choose to delete the file and free the space for other use. Essentially, what is
needed is an auditing system. One such distributed auditing scheme is proposed by
Ngan, Wallach, and Druschel [237] for sharing of disk storage (the scheme can be
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easily generalized for sharing of other resources). In the scheme, each node main-
tains a usage file containing (a) the amount of storage space set aside for the system,
(b) a local list of (ID, F) pairs for the file F that the node is storing on behalf of re-
mote node with identifier ID, and (c) a remote list of files that other nodes are storing
for the node. In some sense, we can view the two lists as representing the credits and
debits to the node’s account. A node is allowed to store new files in remote nodes if
the size of all files in the remote list is smaller than the storage space set aside, i.e.,
the node is using less remote storage than it is willing to provide.

When a node L wants to store a file F in a remote node R, R must examine L’s
usage file to verify that L is indeed allowed to store a file remotely. If so, two new
entries are created: L adds F to its remote list, and R adds (id of L, F ) to its local
list. Clearly, both L and R can cheat. L can fabricate the contents of its usage file,
by inflating its storage capacity or inflating (deflating) the number of entries in the
local (remote) list. On the other hand, R can drop F quietly after claiming to store
it.

Since nodes are sharing storage, they have the incentives to make sure that any
malicious node be removed. An auditing procedure can be used to prevent fraudulent
behaviors. When a node R is storing a file F for a node L, then R has an incentive
to audit L to make sure that it is “paying” for the remote space. If L does not list the
file in its remote list, then it is not “paying” for its storage, and so R can delete F . To
make the auditing process effective, every node that has a relationship with L should
audit it at random intervals and all communications should be anonymous. Likewise,
L gains by auditing R: to make sure that R is actually storing the file instead of
quietly dropping the file. To prevent colluding among nodes, e.g., A claimed to store
some files for B , B for C, and so on, more comprehensive auditing that involves
checking the nodes reachable from the local list recursively is required.

6.6.4 Incentive-Based Schemes

Sun and Garcia-Molina [307] propose an incentive mechanism called SLIC (Self-
ish Link-based InCentives). The goal is to allow each peer to behave selfishly (the
“you-scratch-my-back-and-I’ll-scratch-yours” philosophy) such that it will share re-
sources with those that have helped it in some ways, and ostracized others that it has
not benefited much from. SLIC operates in an unstructured P2P context, and is based
on a key property in disseminating queries: as each query is flooded in unstructured
network, a peer’s neighbor would have control over its reach to the network. In
other words, a peer can (a) refuse to serve a neighbor’s request (if it contains the
resources that the neighbor requested), (b) drop its neighbor’s requests (if it does
not contain the desired resources but will not pass it on), (c) serve the request and/or
pass it on. SLIC exploits this relationship as follows. A node N rates its neighbor
M based on how much M has contributed to N (M serves N ’s queries directly or
indirectly through its neighbors). If M is rated well, then N will in turn serve M’s
requests favorably. On the other hand, if M is rated unfavorably by N (because M
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did not serve N ’s requests), then N will also not share much with M . Thus, nodes
are incentivized to provide content and/or connection to nodes that provide content.

SLIC works based on a weighted scheme. Consider a peer N with M neighbors.
Each neighboring peer is assigned a weight Wi where 0 ≤ Wi ≤ 1 (1 ≤ i ≤ M) based
on its quality of service perceived by N . Wi = 1 means that the neighbor is provid-
ing excellent service, while Wi = 0 implies an useless neighbor. The resources or
services that N will offer neighbor i is proportional to Wi . Note that the capacity
of N is used for both local and remote requests, and only the remaining capacity
of N (after servicing local queries) will be split across the neighbors. Periodically,
the weights are updated to capture any changing behavior of neighbors. For SLIC to
be effective, there are several issues that need to be addressed. First, there is a need
to determine the weights of neighbors to distinguish between good and bad neigh-
bors, and to update these weights periodically. In SLIC, the service provided by a
neighbor is measured by the fraction of query hits, i.e., number of data that satisfies
a search query. There are three ways to assign initial weights to (new) neighbors:
average—the weight of a new neighbor is initialized to be the average of the weights
maintained by the node; average_inverse—the weight is computed as the average
multiplied by 1

AvgHitsi
where AvgHitsi is the average hits per query generated by a

node during the ith period; average_exponential—the weight is given by the average
multiplied by e−AvgHitsi . The average scheme is fair in that it does not bias against a
new comer, but it may be susceptible to free-loaders—a node can simply disconnect
from and rejoin the network each time in order to exploit the good service of its
new neighbors. The average_inverse and the average_exponential schemes, on the
other hand, are based on how much a node is satisfied with its current neighbors.
Essentially, if the current neighbors are already providing good service, then it may
not be worth the risk to accept a new neighbor; on the contrary, if a node is dissatis-
fied with the services of its current neighbors, then a new neighbor may improve its
satisfaction. The two schemes differ in their aggressiveness in accepting new neigh-
bors. Weight adjustment is straightforward in SLIC by using an exponential decay
mechanism to update weights, i.e., Wi(t) = α · Wi(t − 1) + (1 − α) · I (t) where
Wi(t) denotes the weight of peer i during period t , I (t − 1) denotes the quality of
service during period t − 1, and 0 < α < 1.

Sun and Garcia-Molina [307] also introduce three mechanisms to study how
neighbors’ decisions can be influenced. First, a node can increase its answering
power. This may mean sharing more data or offering more computational services.
Clearly, by so doing, one’s neighbor will be satisfied and will in turn offers equally
good service to the node. Second, the number of neighbors can be increased—by
having more neighbors, there is a higher likelihood that a node can provide the
data that satisfies a request (indirectly through its larger pool of neighbors). Third,
a node can increase its capacity used to service neighbor’s queries either itself or
through its neighbors. Their simulation study shows that the SLIC’s approach leads
to a good incentive structure for the system as a whole, and nodes though selfish are
encouraged to share in order to gain from the system.
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6.6.5 Adaptive Topologies

In an unstructured P2P network, it has been recognized that the overlay topology
cannot be static, and that an adaptive topology that changes based on interaction
between peers would improve the efficiency and robustness of the system [81, 234,
235]. For example, if a peer always finds useful files from another peer (that it
is not directly connected to), then it is likely that this peer will continue to find
useful files. Thus, it may benefit the system if the two peers are linked together in
the overlay network so that subsequent searches do not have to pass through other
intermediate nodes. Moreover, being able to adapt the overlay network will also
allow peers to change their neighbors periodically as their interests (access patterns)
change. While the earlier work focused on efficiency issues, Condie et al. [81] show
that by deploying such adaptive topologies, P2P systems are able to reward for active
peers and punish malicious peer and freeriders, and hence the systems can benefit
by increasing their resistance to certain kinds of attacks. In particular, each peer
in the system should maintain some past history that allows the peer to estimate
the potential downloads from other peers in the future. As a result, when the peer
rejoins the system after being offline, it chooses to connect to peers for which it
has the highest probability of downloading files from. The history information of
a peer is encoded into a vector of local trust vector in which the ith entry in the
vector indicates the peer’s trust (measured by the difference between the number of
satisfactory and unsatisfactory transactions) of its ith peer. The protocol maximizes
the trustworthiness of the network given by

Q =
k∑

i=1

k∑

j=1

connection(i, j) × si,j

where k is the number of nodes in the system, connection(i, j) = 1 if peer i is
connected directly to peer j and 0 otherwise; si,j is the trust value that peer i has
on peer j . When a peer i joins the network, it attempts to connect to N random
connections. When there is at least one connection, peer i will download a file from
peer j (peer j must not already be a neighbor of peer i), and then upon receiving an
authentic file, peer i will connect to peer j . Note that if peer i is allowed a certain
maximum number of connections, say Ti , then if there are already Ti connections,
the connection is made only if peer j leads to a higher trust value than one of the
existing neighbors of peer i. Clearly, peer j will only accept the connection if peer
i is beneficial to it: either peer j has fewer connections than the maximum number
of connection Tj or the trust value of peer i at peer j , sj,i , is greater than that of an
existing neighbor of peer j . In this case, peer j will replace that neighbor with peer i.
Even though this basic scheme seems to work well, it has two potential problems:

− It is possible for a malicious peer to disseminate inauthentic files. One scenario
reported by Condie, Kamvar, and Garcia-Molina [81] is for a malicious peer
i to be connected to an altruistic peer j . Peer j is altruistic in the sense that
it serves queries but does not issue queries, i.e., it allows others to download
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files from it, but it does not download any files from other peers. As a result,
its local trust vector has all 0 values, and it will accept connections from all
nodes. By connecting to peer j , peer i receives queries forwarded by peer j , and
hence can answer these queries with inauthentic files. The proposed solution is to
associate with each connection between two peers a connection trust value. The
connection trust value ci,j reflects how much peer i benefits through peer j , and
is determined from the number of authentic (or inauthentic) answers obtained
from nodes that responded as a result of queries being disseminated via peer j .
Thus, peer i can disconnect itself from peer j (even if peer j is an altruistic
peer) if peer j ’s acquaintances are malicious. Peer j can also free itself from the
malicious peers by breaking from all its connected nodes and start building up
its connections all over again. Now, for this scheme to work, the queries sent out
by peer i through peer j must be tagged with an encrypted identifier that encode
peer j . Peer j ’s acquaintances must extract this tag and return it together with
the answers. In this way, peer i will know the acquaintances of peer j . Moreover,
an answer without a tag cannot be trusted.

− It is also possible for a peer to be stuck in a local maxima where the peer con-
tinuously suffers a long delay in receiving its query reply and/or has no reply at
all. A solution to this problem is to replace problematic connections with new
connections to random peers. In particular, in the worst case, a peer may discard
all existing connections and create a totally new set of connections.

Simulation results [81] show that by using the API protocol, malicious peers that
provide inauthentic files and freeriders will be moved to the fringe of the network
sooner or later. In the former case, since a peer will discard its connection to another
peer if that peer provides an inauthentic file, malicious nodes are forced to move to
the fringe of the network. In the latter case, since the local trust value of freeriders
is 0, they are likely to be disconnected by peers who favor other peers that provide it
good service, and hence they are also pushed to the fringe of the network. Addition-
ally, using the APT protocol also helps the system to perform well even under threat
models where (a) malicious peers refuse to answer queries from a specific neighbor,
(b) malicious peers avoid a loss of connection by providing a few authentic files
to its neighbors, and (c) malicious peers are partitioned into two groups—one that
issues authentic files, while the other that connects only to the first group (and hence
never risk being disconnected) and flood the network with inauthentic files.

6.7 Privacy and Anonymity

One critical aspect of security in P2P systems is privacy. There are two possi-
ble manifestations of privacy—in data privacy, the content of the communication
should be protected from eavesdroppers, and in anonymity, the participants in the
communication should be hidden from eavesdroppers. We shall focus on anonymity
in this section. In P2P systems, anonymity comes in two flavors [243]: requester
anonymity protects the privacy of the initiator of a message and storage anonymity
hides the eventual destination of a message.
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While some P2P systems (e.g., Freenet [79]) are designed with anonymity as one
of its goals, most of the existing P2P systems (e.g., Chord [173]) do not explicitly
consider anonymity as a design objective. For the latter category of systems, it is
possible that some information is leak to even “passive observers”. In other words,
messages (e.g., routing or query) that pass through certain intermediate nodes may
disclose certain information (e.g., query tendencies) of other nodes in the system.
O’Donnell and Vaikuntanathan [243] evaluated the anonymity of Chord, assuming
a stable Chord network (i.e., one in which no node joins or leaves). In this work, two
versions of Chord are examined. The iterative mode of querying works as follows:
The initiator of a request queries nodes that are successively closer to the data item.
When a query is received at a node, it replies with the entry in its finger table that
is the closest preceding node of the data item. Finally, the initiator of the request
queries the node that actually stores the data, at which point, the data item is re-
turned. The recursive mode, on the other hand, requires an intermediate node that
receives the request to forward it (rather than returning to the initiator node) to the
node corresponding to entry in its finger table that is the closest preceding node of
the data item. Moreover, once the node storing the data is reached, some information
about the data (either the data itself or the IP address of the node storing the data) is
passed back along the reverse path.

As shown by O’Donnell and Vaikuntanathan [243], the iterative version of Chord
does not provide any storage anonymity. This is because an adversary could request
for a data item, and be returned the IP address of the node that stores the data.
Likewise, the iterative version of Chord also does not provide any request anonymity
as the query initiator will communicate directly with the node that stores the data.

For the recursive version of Chord, while it also does not provide any storage
anonymity (same reason as that for iterative mode), it turns out that it can provide
a high degree of anonymity against passive observers. The intuition is as follows.
If an adversary node N is far away from where the data is stored, say D, then there
will be fewer messages going through it. This would also mean that it can be more
certain about where the request originate. However, if N is close to D, then it sees
more requests but these requests come from a larger pool of possible query initia-
tors.

O’Donnell’s and Vaikuntanathan’s study [243] also showed that several exten-
sions to Chord can further increase its degree of anonymity. For example, by allow-
ing data to be cached (either at query initiator node or along the query path), there
will be fewer messages passing through the network (and the passive observer), and
hence it becomes more difficult to determine the requestor of an item. Similarly, by
increasing the successor lists (the basic Chord protocol maintains only one successor
node), the lookup performance can be improved since a node will search its succes-
sor list to see if any of them is an owner of the requested data before forwarding the
request using the finger table. Clearly, this also means fewer messages will be sent
over the network, and hence increases the degree of anonymity of Chord. Surpris-
ingly, increasing the finger table size does not improve the practical anonymity.

Freedman and Morris [123] proposed a peer-to-peer anonymizing network layer
called Tarzan. In Tarzan, each participating node installs a software that performs
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several tasks: (a) to discover participating nodes; (b) to establish a tunnel with these
nodes; (c) to anonymize data packets if the applications desired to do so; (d) to route
data packets through the established tunnel.

The anonymizing process works as follows. First, the source node (the node
whose data packets are to be anonymized) selects a set of Tarzan nodes to estab-
lish a tunnel through which data packets will be routed. To ensure that different sets
of nodes are selected each time, nodes are randomly selected. Thus, it is difficult for
a malicious node to figure out which nodes will be used and when they will be used.
It turns out that this random selection process can be done easily by turning the node
selection problem into a key searching problem—by randomly generating a lookup
key, one can find a random node. In Tarzan, this search process is done locally at
the source node; this is because each node maintains information (e.g., IP address
and public key) of nodes in the network through gossiping. In addition, to minimize
threats from malicious nodes that may have gained control over some subnet, only
those nodes with different IP prefix are used. This works under the assumption that
the adversary does not have the ability to observe traffic throughout the Internet.

Once a set of nodes has been selected, the source node will establish a tunnel to
route data packets. Tarzan employs layered encryption similar to Chaumian mixes
[70] for data exchanges. Essentially, each node along the path of the tunnel will
receive an encryption key and a decryption key. At the source node, the data packets
are recursively encrypted by a set of keys (whose decryption keys have been sent
to the nodes along the path of the tunnel). As a packet passes through a node, it
peels off a layer of encryption (using the decryption key). Likewise, for packets that
are to be routed to the source node, a layer of encryption is added. Thus, it is not
possible for hi to know whether its data packet comes from hi−1 or its predecessor.
Likewise, hi also cannot determine if hi+1 is the originator of a data packet received
from it.

Finally, in Tarzan, the source and destination nodes need not be Tarzan nodes,
in which case, Tarzan nodes operate a network address translator (NAT) to forward
other participants’ packets onto the Internet.

6.8 PKI-Based Security

To provide confidentiality, integrity, authentication, and authorization of data (files),
techniques based on the X.509 public-key infrastructure (PKI) can be used. One
such approach is adopted in the scishare system [45] to facilitate secure collabo-
ration in a P2P setting. scishare has two key objectives: (a) to ensure queries are
securely broadcast to a peer group (i.e., both the query message and the query re-
sponse message are to be confidential), and (b) the transfer request message and
the information transfer are to be protected. To ensure secure group communica-
tion, Secure Group Layer (SGL) [22] is used. SGL employs shared group key for
securing messages, while providing an efficient mechanism to generate and dis-
tribute new keys whenever the membership of the group changes. Communication
between pairs of peers are secured through TLS [314]. With SGL, the same group
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authorization policy can be enforced on the entire group. In order to facilitate a finer
grained access control that allows different peers to have different privileges, the
Akenti [315] authorization scheme was used. In Akenti, resource owners can re-
motely and independently specify the constraints that need to satisfied to use their
resources. While peers having X.509 certificates issued by a verifiable certification
authority (CA) are trustworthy, pseudo user is employed to minimize delay in ac-
cessing resources. A pseudo user is a user having basic privileges and is created
automatically when there is a request to access public resources.

6.9 Summary

This chapter has provided an insight into some of the existing work on securing data
in a peer-to-peer network. As we have seen, security is a very broad topic cover-
ing attacks that are beyond what traditional system have encountered (e.g., routing
attacks, storage and retrieval attacks, free riders, etc.). The basic and straightfor-
ward solution to avoid attacks from malicious nodes is to employ trusted entities
or trusted servers to control activities in the system. Alternatively, public keys can
be used to identify nodes, and hence malicious nodes can be avoided; activities can
be monitored to guarantee their correctness and backtrack whenever it is necessary;
redundant computation can be made to guarantee the correctness of computation
results. Even though these proposed solutions seem to work well under certain con-
ditions or assumptions, they are still far from completely solving the problems and
concerns in practice. This is because no conditions or assumption should be applied
in real systems. A lot more work needs to be done before we can be comfortable
with deploying peer-to-peer technologies for mission critical applications.



Chapter 7
Trust and Reputation

Trust can be seen in every aspect of daily life. Whenever we do something, we
expect a good result from such an action. In other words, we trust our action. No
one except crazy people wants to do harmful things. On the other hand, whenever
we do business with someone, we trust them on the success of our business. For
example, we trust doctors for their advice on our health; we trust mechanics for
maintaining our cars; we trust structural engineers for building our houses. To some
extent, our society cannot exist without trust. Since trust plays an important role in
our life, it has been extensively researched in many sciences ranging from sociology,
psychology, philosophy to economics, political, and computer sciences [216].

In business dealings, we trust our business partner, but how can we know that
our partner is trustworthy? Let us see an example. Assume that we want to set up a
new company and look for a skillful director to manage the company on behalf of
us since we are busy. We further assume that we have a list of candidates and know
everything they have done in the past. In this case, the chosen candidate should
be the one who used to manage one or many companies successfully and has high
integrity. We certainly do not want to select a candidate who had failed to manage
companies before or who is known as a cheater. The criterion we used to measure
our trust in a partner in this example is the reputation of our partner, formed through
past behaviors.

A computer system or Peer-to-Peer system can be considered as a small society
in which each computer or peer is an individual in the society. In this society, trust is
a belief of one computer or peer towards another one, in the successful completion
of a transaction, while the reputation of a computer or peer is evaluated from trans-
actions it has done in the past. The purpose of trust management in Peer-to-Peer
systems is to manage trust values of peers from which the system can distinguish
good peers, that usually have high trust values, from bad peers, that often have low
trust values. As a result, the system can avoid problems discussed in the previous
chapter. Additionally, this technique can help to encourage good transactions be-
tween peers in the system since good transactions increase the trust values of peers.
A good survey of trust management in Peer-to-Peer systems can be found in the
work of Suryanarayana and Taylor [308]. In this chapter, we first give definitions
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of trust, its properties, types, and values. After that, we present trust models and
concrete systems using these models. Finally, we focus on the way the reputation of
peers is managed in a system.

7.1 Concepts

7.1.1 Trust Definitions

7.1.1.1 What is Trust

Everyone knows about trust and what trust is. In general, trust can be simply de-
fined as a “belief or confidence in the honesty, goodness, skill, or safety of a person,
organization or thing”. However, different approaches, different points of view, give
rise to different trust definitions. To have a deeper understanding of trust, in the
remaining of this section, we would like to introduce major trust definitions from
different viewpoints: psychology, sociology, to biology, and economics. These de-
finitions come from Morton Deutsch [103, 104], Niklas Luhmann [204], Bernard
Barber [37], and Diego Gambetta [124], who have significantly researched aspects
of trust.

7.1.1.2 Trust in the View of Psychology

Probably, amongst several given definitions of trust, the definition proposed by Mor-
ton Deutsch in 1962 is the most popular [103]. The definition is based on the view
of psychology. It says that “a trusting behavior occurs when an individual is con-
fronted with an ambiguous path, a path that can lead to an event perceived to be
beneficial or to an event perceived to be harmful. In this person’s perception, the
occurrence of these events is contingent on the behavior of another person and the
strength of a harmful event to be greater than the strength of a beneficial event. If this
person takes the ambiguous path, he makes a trusting choice on another person. He
trusts that the other person can do the actions leading to a good result. Otherwise, he
makes a distrustful choice”. Later, in his book, “The Resolution of Conflict” [104],
the definition of trust is further expanded as confidence that one will find what is
desired from another, rather than what is feared. The definition of Morton Deutsch
shows an interest property of trust: autonomy. Each individual has his own percep-
tion about trust. In other words, trust is subjective and dependent on the views of the
individual.

7.1.1.3 Trust in the View of Sociology

Approaching trust from the sociological perspective, Niklas Luhmann [204] points
out a problem of the society: the complexity of the relation between the society as
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a whole and the individual identities within it. As a result, the definition of trust is
given “as a means for reducing complexity of society; complexity created by in-
teracting individuals with different perceptions and goals”. Like Niklas Luhmann,
Bernard Barber also relies on sociology in his definition [37]. In particular, he states
that trust is “predominantly as a phenomenon of social structural and cultural vari-
ables, not as a function of individual variables”. In general, these definitions go
beyond the definition of Morton Deutsch since they suggest that trust has to be seen
from both individual aspect and social aspect.

7.1.1.4 Trust in a Broader View

Diego Gambetta [124] views trust ranging from biology to economics aspects. He
defines trust “as a particular level of the subjective probability with which an agent
will perform a particular action, both before he can monitor such action and in a
context in which it affects his own action”. This definition reinforces that trust is
subjective to individual. In other words, the same trust value may mean different
levels of trust to different individuals or, in short, trust is probability. The definition
also implies that the information, that an individual can monitor, has an effect on its
trust level. In a similar approach, Stephen Paul Marsh, in his thesis [216], presents
trust in different aspects from psychology, sociology to biology. Details of all of the
above definitions and discussion about them can also be found in this thesis.

7.1.2 Trust Types

In general, there are two types of trust: trust in an agent’s action or trust in an agent’s
recommendation.

7.1.2.1 Trust in Action

The first type of trust reflects the basic definition of trust: trust in a behavior of
another. For example, we trust surgeons on their operations for our health or we
trust mechanical engineers for maintaining our car. An important note here is that
trust in action is always specified with a concrete action, not in general. For example,
we do not trust doctors to repair cars, nor mechanics to perform surgeries.

7.1.2.2 Trust in Recommendation

The second type of trust, on the other hand, takes into account the relationship be-
tween individuals in the society: trust in recommendation. An agent may trust an-
other agent’s action, but does not trust its recommendation at all. For example, we
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may trust a doctor on his advice since we know him well. However, if he introduces
us to see another doctor whom we have never known, we may not trust his introduc-
tion. This type of trust may also be divided further into two subtypes if we make a
deeper analysis: trust in recommendation of an agent, and trust in recommendation
of another agent who is introduced by an agent.

Note that although there exists different types of trust, in most computer systems,
in order to maintain simplicity, people do not differentiate them. In general, if an
agent trusts another agent, it also trusts that agent’s recommendation as well as
recommendations of other agents, that are introduced by this agent. In other words,
a single value could be used to represent all types of trusts in computer systems.

7.1.3 Trust Values

In general, we can classify four types of values used in trust: single value, binary
values, multiple values, and continuous values.

7.1.3.1 Single Value

In the simplest type, trust values are presented by a single value: either trust or
nontrust. For example, in an article by Aberer and Despotovic [19], a trust value can
only be specified as a claim. When a peer is not satisfied in a transaction, it sends a
claim to the system. Otherwise, it does nothing. By using a single value, this method
cannot distinguish trusted agents with unknown agents.

7.1.3.2 Binary Values

To overcome the problem of the previous type, this type employs two values, one
value represents for trust while the other represents for nontrust. With this way,
trusted agents and unknown agents can be distinguished. However, if we consider
more complex situation, an agent still cannot distinguish between agents with whom
it has never done transactions with, agents from whom it has done transactions, but
it neither trusts nor distrusts them.

7.1.3.3 Multiple Values

Using multiple values seems to be the best way. It provides a flexible way for an
agent to specify different levels of trust about others. For example, an agent can
specify another agent as “very low trust”, “low trust”, “average trust”, “high trust”,
and “very high trust” in which “very low trust” and “low trust” can be considered as
distrust, “high trust” and “very high trust” can be considered as trust while “average
trust” can be consider as unknown or undetermined. This type of values is applied
in most systems.
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7.1.3.4 Continuous Values

All of above types of values are discrete values. As a result, they always limit the
number of trust values an agent can give for its partner. To provide a wider range
of selection, a continuous range of values can be used. For example, an agent can
rate its partner with a trust value falling between 0 and 1. In this way, an agent can
determine a value as trust if it is greater than an upper threshold value or as distrust if
it is smaller than a lower threshold value. Values between the lower threshold value
and the upper threshold value are considered undetermined. Note that in this way, to
be flexible, threshold values are also determined by agents depending on situations.

7.1.4 Trust Properties

There are four main properties of trust: autonomy, asymmetry, transitivity, and com-
posability.

7.1.4.1 Autonomy

As stated in the definitions of trust by Morton Deutsch and Diego Gambetta in the
previous section, trust strongly depends on the individual’s view. It is the property
of autonomy. For example, if we ask two people about whether they trust in the
development of the world’s economy, we may receive two very different answers. If
the one we ask is an unemployed person, the answer may be no. However, if the one
we ask is a wealthy person, the answer may be yes. Even if we may receive a yes
answer from both of them, each person may have a different level of belief in their
answer: one may strongly confirm the answer while the other may weakly confirm
the answer. It means that the same answers rarely exist.

7.1.4.2 Asymmetry

Asymmetry is an interesting property of trust. It further confirms the autonomy of
individuals in the society. Individuals have different ideas not only about the third
party but also about each other in their relationship. A person may strongly trust
his friend. However, his friend may not trust him at the same level. The difference
between trust levels of partners in a relationship may vary depending on situations.
In some cases, a person may totally trust the other while the other does not trust him
at all. In other words, if we want to display individuals in a society and their trust
relationship in a graph, the graph has to be a directed graph.



188 7 Trust and Reputation

7.1.4.3 Transitivity

Trust has a transitivity property. However, it is not a perfect transitivity. For ex-
ample, a person always trusts a mechanical engineer for fixing his car, and hence
whenever his car has problems, he takes it to the mechanical engineer. One time,
assume that the car has a problem while the mechanical engineer is so busy that he
cannot fix the problem immediately. As a result, he gives two options for the per-
son. The first option is waiting for a day since he can probably fix the problem a day
later. Otherwise, he suggests that the person can take the car to his friend, another
mechanical engineer, to fix the problem. In this situation, if the person absolutely
trusts the mechanical engineer’s introduction, he can follow the suggestion. How-
ever, this case rarely happens. In most cases, the following action is more likely
to occur. The person only takes his car to the mechanical engineer’s friend if the
car’s problem needs to be fixed immediately. Otherwise, he may prefer to wait for a
day. The reason is that the person does not trust the mechanical engineer’s friend in
the same manner as he trusted the mechanical engineer. In other words, the person
trusts the mechanical engineer’s friend at a lower level. Since complete trust rarely
happens, if an introduction is done through many agents, the trust value should be
significantly decreased. It is because the trust value is decreased after each step of
introduction. For example, if we are looking for a house keeper, and he is introduced
via a long chain of our friends, we may not trust him at all.

7.1.4.4 Composability

As mentioned above, since trust is individualized (i.e., has the property of auton-
omy), different agents can have different ideas about the same thing. As a result, by
transitivity, an agent can receive different trust values about one thing. To draw a
final conclusion from these received values, it is necessary that these values may be
integrated. In other words, trust has to have the composability property. Neverthe-
less, the way these values are merged to get the final result depends on the situation.
For example, if we make a simple survey about whether people trust in development
of the world’s economy and receive a result in which half of surveyed people says
yes while the other half says no. What is the final conclusion? If we cannot draw the
final result, the answer is unknown. However, assuming that most people saying yes
are economists while most people saying no are not economists, the answer may be
yes. Otherwise, if all people saying no are economists while all people saying yes
are not economists, the answer may be no. It is because in our knowledge, we may
trust economists more than noneconomists.

7.2 Trust Models

In general, we can classify trust models into two categories: one is based on creden-
tials, while the other is based on reputation. Systems in the first model are simply
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based on credentials to verify trust. For example, if we meet a person who has a
drivers license, we can trust him in driving a car. However, in some cases, even
though a person holds a drivers license, it does not mean that we should trust him
in driving a car since he may be a careless driver, and it is dangerous to sit in a
car driven by him. In this case, we should also judge based on his reputation or his
previous actions. This is what trust systems based on the second model use to verify
trust. Details of these models are discussed in the following.

7.2.1 Trust Model Based on Credentials

A straightforward trust model is based on credentials. When an agent wants to de-
termine if it should trust another agent or not, it looks into that agent’s credentials.
If the agent’s credentials satisfy its policy, that agent can be trusted in its action.
Otherwise, that agent should not be used. The most popular credentials system used
in computer systems is the public/private keys system. In this way, when an agent
wants to join a system, it has to create a pair of public key and private key in which
the public key can be used to decrypt information encrypted by the private key and
vice versa. Note that here, public key and private key are asymmetric keys. It means
that it is impossible to regenerate public key from private key and vice versa. Af-
ter keys are created, the public key is registered to a trusted party with the agent’s
information while the private key is kept secret at the agent as its identifier. When
an agent wants to do business, it can sign the information with its private key. Since
only the public key can be used to decrypt the encrypted information, and it has been
registered to a trusted party, the credential of the agent can be verified by its partner.
Because the keys are generated only once, this trust model cannot take into account
past actions of an agent in trust evaluation. As a result, this model is probably suit-
able for a specific kind of systems: access control systems. For example, systems
X.509 [162], PGP [352], PolicyMaker [51] and its successors, REFEREE [75] and
KeyNote [50], are those applying this trust model.

7.2.2 Trust Model Based on Reputation

In many cases, we cannot always trust a person just by seeing his credential, as in
the previous example: we cannot trust a person with the driving action just by seeing
his drivers license. It is because a person may be good at the time of registration but
he may become bad later. As a result, it is necessary to consider his past actions in
trust verification.

The concept of reputation has been used widely in society, where each partici-
pant has a reputation score based on what he has done before. Common examples
of trust management based on reputation systems are eBay [116] and Amazon Auc-
tions [26]. These systems provide a feedback channel for users. After each transac-
tion, both sellers and buyers can rate each other and the score is kept for references
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Fig. 7.1 Trust model taxonomy

later. As a result, from the reputation score of a person, people can decide if they
can trust him or not (i.e., a person with many successful transactions is the one we
can trust, while a person with all failed transactions should not be trusted at all). In
general, the definition of reputation can be given as follows:

− Reputation: the perception of an agent x in the eyes of another agent y through
past transactions of x. There are two kinds of reputation: local reputation is the
impression that y has about x only from transactions between x and y. Global
reputation is the overall reputation, that y gets from all past transactions of x

with all agents in the system.

Using reputation to evaluate trust, we now give a new definition for trust, based
on reputation.

− Trust: the belief of an agent y about another agent x in the success of a transac-
tion function of x’s reputation: If x’s reputation is good, y trusts x. Otherwise, if
x’s reputation is bad, y should not trust x in the transaction.

Reputation based trust model can be further divided into two subcategories: one
is only based on the individual reputation while the other also considers social re-
lationships. By considering social relationships, reputation of an agent is based on
not only individual aspect but also other aspects of the social network. Regret [277]
and Node Ranking [261] are examples of systems belonging to this sub category
while most P2P systems belong to the first category due to its simplicity [19, 83, 94,
113, 128, 171, 187, 191, 302, 303, 331, 332, 340, 350]. In general, the taxonomy of
trust model can be depicted as in Fig. 7.1. In the next three sections, we introduce
concrete systems applying these models.

7.3 Trust Systems Based on Credentials

7.3.1 PolicyMaker

PolicyMaker [51] is a trust management system based on credentials, developed at
the AT&T Research Laboratories. The system provides a flexible framework using
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Fig. 7.2 PolicyMaker architecture

a “safe” programming language to uniformly describe policies, credentials, and trust
relationships instead of treating them separately as other systems [162, 352]. In the
system, each agent can take a decision in a flexible way: either locally or via a
third party. Furthermore, PolicyMaker separates mechanism from policy, and hence
makes applications independent from the infrastructure.

7.3.1.1 System Architecture

PolicyMaker operates like a database query engine, that can be either integrated into
applications via a linked library or run as an independent service. It allows agents
in the system to specify local policies and credentials as well as to raise queries
about trust of actions. Depending on credentials and policies, the system may return
“yes” for actions that are allowed, or “no” for actions that are forbidden. However,
in some cases when the action cannot be justified, the system returns additional
restrictions—a conditional acceptance. The acting agent is then considered trusted
and allowed to proceed only upon the satisfaction of these additional requests. The
system architecture of PolicyMaker is described in Fig. 7.2.

7.3.1.2 The PolicyMaker Language

PolicyMaker uses its own language for specifying local policies, credentials, and
queries. Policies and credentials are described as assertions with the following syn-
tax.

Source ASSERTS AuthorityStruct WHERE Filter

Here, Source specifies the source of policy that is either the local policy or the
public key of a third party, AuthorityStruct represents public keys to whom the as-
sertion is applied, and Filter describes actions that are trusted by the correspondent
public keys at the assertion source.

When an agent wants to verify an action of another agent, it sends a query to the
PolicyMaker. The query appears in the following form:

key1, key2 , . . . , keyn REQUESTS ActionString
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In which ActionString represents messages that describe a trusted action re-
quested by a sequence of public keys.

7.3.1.3 Query Processing

Let us consider assertions as a directed graph G in which nodes are either policy
sources or keys, and edges are filters. For example, if we have an assertion whose
source is s, authority is a, and filter is f , they can be displayed by two nodes s

and a, and a directed edge labeled f from s to a: s → a. In this way, for a query
containing keys k1, k2, . . . , kn and action t , the process of finding an answer for a
trust query is just a process of finding a path in the graph from the source node s

that is a local policy, to the destination node d whose input is k1, k2, . . . , kn and
containing action t .

Note that PolicyMaker does not verify the correctness of the credentials by
checking an agent’s signature. This step is processed outside the system by appli-
cations themselves before submitting to the system. However, this weakness has
been solved in both REFEREE [75] and KeyNote [50] that are next generations of
PolicyMaker.

7.3.2 Trust-X

In a different approach, Trust-X [48] proposes a framework using an XML-based
language called X-TNL for specifying credentials and policies. Different from Poli-
cyMaker, that does not verify correctness of credentials, Trust-X does. Additionally,
Trust-X improves the speed of trust verification by using trust ticket and caching:

− Trust ticket: is a special credential that can be issued by an agent to its partner
after each successful transaction. Using trust tickets, the partner can speed up
the negotiation process of resources related to the previous transaction. Each
trust ticket has an expiration time, and it can only be used before that time.

− Caching: since two or more agents can ask for the same resource, and the ne-
gotiation process may be the same for all of them, caching can help to reduce
the time of finding and setting up the negotiation process. It means that the se-
quence of operations pertaining to the negotiation process is cached for popular
resources.

7.3.2.1 System Architecture

In the Trust-X framework, each entity has a profile of certificates, each of which can
be either a credential or a declaration. The negotiation process is processed through
four phases as follows:
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− Introductory: in this phase, necessary conditions for establishing a transaction
between two agents are checked blindly. Trust verification is not considered in
this phase. For example, the client agent checks properties of the resource offered
by the server agent while the server agent checks necessary conditions of the
client agent to apply for the resource.

− Sequence generation: this is an important phase of the process where a sequence
of certificates of both parties, required for taking resources in accordance with
their policies, is determined. If the same transaction has been done before, and
the trust sequence has been cached, it can be taken from the cache, to speed up
this process. Furthermore, if an agent has a trust ticket, and if the trust ticket is
still valid, the resource can be granted immediately and the whole process stops.

− Certificate exchange: once the trust sequence is generated and agreed between
parties in the previous step, the certificate exchange starts: agents exchange re-
quired certificates. Once required certificates are checked and satisfied, the re-
quested resource is granted.

− Caching of trust sequence: the final phase is to cache the trust sequence involved
in the transaction such that it can be used to speed up the sequence generation
later.

The negotiation process and its phases are described as in Fig. 7.3.

Fig. 7.3 Phases of a negotiation
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7.4 Trust Systems Based on Individual Reputation

7.4.1 P2PRep

One of the biggest problems in Peer-to-Peer file sharing systems is that malicious
peers may abuse the systems to distribute harmful content such as spyware or
viruses. P2PRep [83] is a reputation based protocol used to identify malicious peers
in such systems. This protocol is actually an extension of the Gnutella protocol [133]
for trust management. The basic idea of P2PRep is that a peer looking for a resource
should check the reputation of all peers that can provide such a resource before
downloading. Reputation of a peer, that is either good or bad, can be determined
by asking other peers, who have done transactions with that peer before. There are
two versions of P2PRep: basic polling and enhanced polling. The only difference
between these two versions is that the basic polling protocol treats all opinions from
other peers about reputation of a peer equally while the enhanced polling protocol
also considers credibility of peers’ opinions. Note that to guarantee the correctness
of message exchanges, P2PRep uses public/private keys for encryption/decryption
of messages.

7.4.1.1 Basic Polling Protocol

The basic polling protocol is depicted in Fig. 7.4. It consists of five phases: resource
searching, resource selection and vote polling, vote evaluation, best peer check, and
resource downloading.

Fig. 7.4 Phases of P2PRep protocol
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− Resource searching: this phase is processed in the same way as the search
process in Gnutella. At first, the peer looking for the source sends a Query re-
quest to its neighbors, that in turn forward to other peers. Each query has a “Time
to Live” used to control the number of steps in forwarding the query. When a
peer receives a query request, if it contains the resources satisfying the search
condition, it returns the result to the requester by a QueryHit message. The re-
turned message contains the number of satisfied documents and information for
downloading resources.

− Resource selection and vote polling: in this phase, the resource requester peer
first selects the list of peers from returned results in the previous phase. After
that, it broadcasts Poll messages to other peers in the system to ask for repu-
tation of peers offering the resource. Peers receiving the Pool message check
their knowledge about the asked peers, and send the feedback PoolReply to the
requester.

− Vote evaluation: since malicious peers always try to interfere in the vote polling
process, before evaluating votes, the requester has to analyze votes to identify
suspicious votes for removing (i.e., votes coming from bad IPs). Additionally,
the requester selects a number of voters to send messages TrueVote to check
whether they are peers sending votes. True voters reply to this message with a
TrueVoteReply message. Once the correctness of votes is verified, the requester
can select the best reputation provider for downloading the wanted resource.

− Best peer check: before downloading the resource, the requester makes a final
step of verification: checking the correctness of the selected resource provider.
This verification is done by sending a Challenge message to the provider to ask
for a confirmation of its identifier. If the requester receives a correct Response
message from the provider, it can advance to the final step to download the
needed resource. Otherwise, it comes back to the previous step to select another
good resource provider.

− Resource downloading: the necessary resource is downloaded in this phase. Af-
ter that, the requester updates its experience about the reputation of the peer
providing the resource.

7.4.1.2 Enhanced Polling Protocol

As mentioned before, the basic polling protocol considers the opinions of all peers
equally. As a result, it cannot reflect the importance in opinions of good and well-
known peers compared to those of unknown or bad peers. This enhanced polling
protocol improves the previous protocol by considering the credibility of peers in
vote evaluation. To do that, each peer also maintains a credibility value of other
peers in addition to their reputation. Similar to reputation management, the credi-
bility of peers is accumulated after each transaction: if the result of the transaction
is consistent with the opinion of a peer, its credibility is increased. Otherwise, its
credibility is decreased. The enhanced polling protocol is actually similar to the ba-
sic protocol except for the vote evaluation process: the resource requester weights
opinions of peers based on their credibility.
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A disadvantage of P2PRep is that it incurs a high cost in the voting process
because it needs to broadcast a message to ask all peers in the system about peers
offering the resource. Additionally, the solution to check and remove suspicious
votes from malicious peers seems to be unrealistic since it is not easy to identify
malicious peers to remove their votes. The suggestion to identify malicious peers
by simply checking their IPs does not always work. It is because malicious peers
can deal with this solution by changing or hiding their IPs (actually, if it is able to
identify malicious peers from their IPs, voting process may not be necessary because
malicious peers can be identified directly when they offer the resource).

7.4.2 XRep

Even though malicious peers can be recognized through their reputation, as a result
of their past behaviors, it is not easy to keep track of their identifiers because they
can be frequently changed. As a result, XRep [94], a successor of P2PRep, suggests
a method to keep track of the reputation of resources, in addition to the reputation
of peers. In this way, each peer maintains two reputation repositories: one is for
individual reputation, the other is for resource reputation. Since XRep is a variant
of P2PRep, the protocol is similar to the P2PRep protocol. Just like there, XRep
also contains five phases in the protocol: resource searching, resource selection and
vote polling, vote evaluation, best peer check, and resource downloading. We will
continue with describing only the differences between the two protocols.

− The first difference is in the second phase: “resource selection and vote polling”:
Instead of getting the top list of peers containing the searched query and asking
for their reputation, XRep selects the top list of resources from returned results
and asks other peers for reputation of both resources and peers offering the re-
sources.

− As discussed above, the main difference between XRep and P2PRep is that XRep
considers not only peer reputation but also resource reputation in the evaluation
process. It means that from the opinions of other peers about resources and other
peers offering resources, obtained in the previous phase, the requester selects the
most suitable peer and resource for downloading. The criteria for selection here
may be different depending on the preference of the requester. For instance, it
may want either the best reputation resource amongst returned resources even if
it comes from a peer with moderate reputation, or a moderate reputation resource
from the best reputation peer.

− The final difference is in the last phase, “resource downloading”: after the re-
source is downloaded, the requester updates its knowledge for both peer reputa-
tion and resource reputation depending on the quality of the downloaded mater-
ial.
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7.4.3 Cooperative Peer Groups in NICE

Cooperative Peer Groups [191] is a trust model system built on top of NICE [238],
a platform for implementing cooperative applications over the Internet. The system
identifies good peers to form cooperative groups and isolates malicious peers. By
separating good peers from malicious peers, the security of the system is improved.
Similar to other trust systems, in this system, after each transaction a peer rates its
partner by the quality of the transaction. The score is kept in a cookie. However,
different from other models, where scores are kept at either the peer issuing the trust
assertion or the receiving peer, here scores are kept in both of them: positive scores
are kept at receiving peers while negative scores are kept at issuing peers. Note that
in order to keep a constant storage for cookies, old cookies are expired or discarded
after a predefined time to reserve a place for new ones.

7.4.3.1 Trust Evaluation

In the system, trust evaluation is done via a directed graph called trust graph in
which each directed edge between two nodes represents a relationship between two
peers who have had successful transactions with each other. The source node is
the one who issues the trust value, while the destination node is the receiving node
mentioned in the previous paragraph. The weight of the edge implies how much the
source node trusts the destination node. For example, after a successful transaction
between peers A and B , if peer A sets a trust value 0.8 to B , we have a directed
edge of weight 0.8 from A to B in the trust graph. Two strategies for calculating
trust in the graph are suggested for the system: strongest path and weighted sum of
strongest disjoint paths.

− Strongest path: in this strategy, a peer first finds the strongest path between itself
and the destination node. The strongest path is determined as the path whose
minimum valued edge along the path or the product of all edges along the path
is the highest amongst all possible paths between two nodes. Once the strongest
path is known, the trust value is the smallest weight among the edges in the
path. For example, if we use the minimum valued edge function for finding the
strongest path, the strongest path between A and F in Fig. 7.5 is A → C →
D → F . As a result, the trust value of F inferred by A is 0.65.

Fig. 7.5 NICE trust graph
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− Weighted sum of strongest disjoin path: in this strategy, the trust value is com-
puted by the weighted sum of the strengths of all of the strongest edge-disjoint
paths. As exemplified in Fig. 7.5, there is another path between A and F :
A → B → E → F . Since the strength of this path is 0.5 while the strength of the
previous edge-disjoint path is 0.65, the trust value of F is 0.5·0.5+0.8·0.65

0.5+0.8 = 0.59.

7.4.3.2 Finding Paths Between Two Nodes in the Trust Graph

We need to notice first that the trust graph is formed virtually and no peers know
the entire graph. The good news is that in order to evaluate the trustworthiness of
another peer, one does not need to know the entire graph. It only needs to know all
paths from its position to that peer. These paths can be found when a peer looks up
the trust value for another peer. In particular, when a peer wants to find a path to
another peer, it sends a search request to all nodes that it trusts, by looking them up
in the list of trust cookies it has. These nodes, at their turn, if they do not keep a
cookie of the sought peer itself, forward the request to other trusted nodes. If they
do keep the cookie of the requested peer, they return it to the requester. The rationale
behind using the path connecting two nodes A and C is that if A is trusted by B ,
and B is trusted by C, A should be trusted by C.

It is interesting to note that the approach of trust verification proposed in this
system is different from other systems because in other systems, resource owners
are the ones to verify the trustworthiness of the requester. However, here, requesters
take the responsibility to show evidence to resource owners that they can be trusted.
Additionally, each node is required to keep a preference list containing potentially
good nodes (i.e., nodes having high trust values). These good nodes can be found
during the process of identifying paths. In this way, the system increases the abil-
ity of good peers to form groups together, and consequently, malicious peers can
be isolated. The weakness of this system, however, is that it incurs a high cost in
searching the trust path between the requester and the resource owner if either the
requester or the resource owner is a node not having many transactions with other
nodes before (e.g., the requester or the resource owner is a new node of the system).

7.4.4 PeerTrust

PeerTrust [340] analyzes the reputation of a peer in more details. It points out that
if the reputation of a peer is simply based on the number of successful transactions,
it may not be enough to eliminate malicious peers. As a result, PeerTrust suggests
five important factors that should be used to form reputation of a peer. They are
presented as follows:

− Amount of satisfactory transactions: a basic idea would be to trust a peer if it has
a big number of good transactions with other peers.
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− Number of transactions: a problem with the above criteria is that malicious peers
only need to have a sufficient amount of good transactions to get a good record.
After that they can always do bad transactions without losing their reputation.
As a result, it is necessary to consider also the total number of transactions to
determine the reputation of a peer.

− Credibility of feedback: the idea behind this factor is that if a peer is malicious,
we should trust neither the peer, nor its feedback about other peers. Otherwise,
malicious peers can cooperate to give high scores for each others to increase their
reputation scores.

− Transaction context: if we do not consider the transaction context, malicious
peers can be very good in many small transactions but be bad in some big trans-
actions to earn benefit. In this scenario, if the context is not taken into account,
they can still have a good reputation because the number of good (but small)
transactions is greater than the number of bad (but big) transactions.

− Community context: sometimes, it is necessary to also consider community con-
texts in trust evaluation. For example, agents may be lazy in providing feedback
for their transactions. As a result, giving some points for those who give feed-
back, may encourage them to actively provide such information, and hence in-
crease the system’s knowledge. Another example is to assign a higher weight in
the process of calculating the reputation, to the opinions of some old, well-known
or apriorically trusted peers.

7.4.4.1 General Trust Metric

From the above criterion, a general trust metric is proposed as follows:

T (u) = α ·
I (u)∑

i=1

S(u, i) · Cr
(
p(u, i)

) · TF(u, i) + β · CF(u).

Here, I (u) denotes the total number of transactions peer u has with other peers
in the system; i represents the ith transaction of u; S(u, i) is the level of satisfaction
of u’s partner in the ith transaction; Cr(p(u, i)) is the credibility of the feedback of
its partner p about the ith transaction; TF(u, i) is the adaptive transaction contact
factor in the ith transaction; CF(u) is the adaptive community context factor for
peer u. The coefficients α and β are the normalized weight factors for the collective
evaluation and the community context factor. These coefficients are adjustable de-
pending on situations. For example, α and β can be given values such that, if a peer
has enough transactions to evaluate, the system can be simply based on feedback in-
formation. Otherwise, if the evaluated peer is a new peer with only a small amount
of transactions, the system may prefer to use default values.
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7.5 Trust Systems Based on Both Individual Reputation
and Social Relationship

7.5.1 Regret

Similar to previous works [83, 94, 191, 340], Regret [277] is also based on repu-
tation for trust evaluation. However, different from the above systems, Regret also
considers social relationships in the evaluation of trust. In particular, Regret takes
into account three aspects of reputation: individual, social, and ontological.

7.5.1.1 Individual Dimension

The individual reputation of a peer j in the eyes of peer i on a subject s reflects
only the direct experience (or individual ideas) of peer i about peer j from their
past transactions and is defined as follows:

Ri→j (s).

7.5.1.2 Social Dimension

It is important to realize that when an individual belongs to a society, its behavior is
influenced by behaviors of others in that society. In other words, individuals in the
same society have a tendency to behave in the same way, and the society’s behavior
is affected by every individual’s behaviors. In the opposite way, the reputation of
an individual is affected by the reputation of the society it belongs to. As a result,
it is necessary to consider social reputation in addition to individual reputation. In
particular, the social reputation value of a peer j in the eyes of peer i, SRi→j (s),
takes into account four factors. The first two factors are individual ideas of i about
the individual reputation of j : Ri→j (s), and group reputation of J : Ri→J (s), the
group j belongs to. The last two factors are group ideas of I , the group i belongs
to, about individual reputation of j : RI→j (s), and group reputation of J : RI→J (s):

SRi→j (s) = ξij · Ri→j (s) + ξiJ · Ri→J (s) + ξIj · RI→j (s) + ξIJ · RI→J (s),

where ξij , ξIj , ξiJ , and ξIJ are coefficients that reflect the importance of each com-
ponent in the calculation; ξij +ξIj +ξiJ +ξIJ = 1. These coefficients are adjustable
depending on situations. The formula is illustrated in Fig. 7.6.

7.5.1.3 Ontology Dimension

There are usually many properties that may contribute to the reputation of an agent.
For example, when we want to book a hotel for our holiday, we may consider its
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Fig. 7.6 Social reputation

reputation as a composition of reputations on its price, its location, and its services.
By combining all aspects of reputation into one, we form an ontology on reputa-
tion. In Regret, the ontology reputation value of a peer j in the eyes of a peer i is
computed by the following formula:

ORi→j (s) =
∑

k∈children(s)

wsk · ORi→j (k).

Here, ORi→j (k) = SRi→j (k) if k is an atomic feature; wsk represents some
weights in the calculation, normalized such that

∑
k∈children(s) wsk = 1. The exis-

tence of these weights is necessary because different agents may have different
points of view on properties in the formula. Furthermore, these weights at each
peer are not fixed. They may change over time, depending on necessities. Figure 7.7
shows an example of an ontology for the reputation of a hotel, consisting of price,
service, and location.

While the idea of using both individual reputation and social relationship in trust
evaluation is interesting, the cost of building and maintaining societies, computing
reputation of societies and determine to which society a node belongs to, is high.
Furthermore, there are always holes that malicious peers can exploit and use to get
benefits from society reputation once they know the way societies are formed.

Fig. 7.7 Ontology
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7.5.2 NodeRanking

Similar to Regret [277], NodeRanking [261] also considers social relationship in
trust evaluation. However, different from Regret, NodeRanking takes a very differ-
ent approach in reputation calculation. The basic idea of NodeRanking is that in a
society, a good agent always has relationships with many agents while a bad agent
usually stands alone since no one wants to make a relationship with it. As a result,
if in some ways we can have an overview structure of social network, we can infer
reputation of each agent inside it. The advantage of this method is that it does not
require agents to provide feedback for every transaction as other methods.

7.5.2.1 Social Network Construction

Social network can be built from many sources of information such as links in per-
sonal web pages, email traffic, collaboration of agents in transactions, etc. For ex-
ample, a simple formula for constructing relationship between two agents i and j in
the system via information retrieved from personal web pages is as follows:

w(i → j) = wemail(i → j) + wlink(i → j).

Here, wemail(i → j) = 1 if there exists an email address of j in the web page
of i. Otherwise, wemail(i → j) = 0. Similarity, wlink(i → j) is 1 if there exists a
link to the web page of j in the web page of i, and 0 otherwise.

We may think of data mining techniques to retrieve this kind of information.
From the retrieved knowledge, a social network is constructed as a directed graph
in which the direction of a node to another node reflects the influence of that node
on the other.

7.5.2.2 Reputation Evaluation

The reputation value of an agent in a society can be evaluated by the references other
agents have given it: The higher the number of references, the higher the reputation
of an agent. Since the social network is represented as a graph, the reputation of an
agent is simply measured as the incoming degree of the correspondent node in the
graph. If a node is not referenced by any node, it is assigned a default reputation
value. Note that when the system is first initialized, the same reputation value is
assigned to all nodes. For example, in Fig. 7.8, nodes C, G, and H are good nodes
since each of them has at least three references from other nodes, while node F may
not be a good node because no one makes a reference to it.

7.5.2.3 NodeRanking Algorithm

Since the reputation of a node i is calculated from referring nodes, while reputation
of other nodes, to which i references, is calculated from i’s reputation, if there is a
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Fig. 7.8 Social network

circular reference, the calculation process may be infinite. As a result, it is necessary
for the NodeRanking algorithm to consider and prevent this problem. The suggested
NodeRanking algorithm is adopted from the random walk strategy: It starts from an
arbitrary node and follows outgoing references to other nodes. The algorithm stops
when the reputation values converge.

7.6 Trust Management

So far, we have discussed trust models and concrete systems using them. Recall
that there are two trust models: credential based model and reputation based model.
The latter model can be further divided into two submodels: one only considers
reputation of individuals while the other also takes into account social relationships.
Since all of these models require a global knowledge to evaluate trust, and such
a knowledge does not exist at any individual peer, this section discusses the way
trust is evaluated in a distributed manner. In particular, we focus our discussion on
the way peers manage and exchange their knowledge about reputation of others in
order to get a global view of the Peer-to-Peer system. Solutions for this problem have
been partly discussed in concrete systems presented in the above sections. However,
we want to emphasize and organize them into categories and discuss them in more
details here. In general, there are three methods for trust management in Peer-to-
Peer systems, as follows.

7.6.0.1 Server Based Trust Management

This is the simplest way, where servers are used to maintain the reputation of peers.
In this way, after a transaction, each participant peer only needs to send its opinion
about its partner to a server. The server takes the responsibility to manage the repu-
tation of these peers and answers queries about them later. This way is suitable for
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structured Peer-to-Peer systems based on servers because they can utilize the exist-
ing structure for trust management. However, since this method bases on servers,
it suffers the problems of server based systems such as bottleneck, single point of
failure, and lack of scalability.

7.6.0.2 Gossiping Based Trust Management

Without servers, there are two methods to manage global trust. The first one uses
a gossiping algorithm for exchanging knowledge among peers in the system. As a
result, after enough exchange steps, a peer may have a global view of the system.
In particular, after each transaction or after a time interval, peers report the score of
their partners in latest transactions to all nodes in the system by using a gossiping
algorithm. At first, the peers send the score to all peers they know, which in turn for-
ward it to others. Step by step, the score is updated at all peers. This naive method
is very expensive since it requires to keep global knowledge of all peers in the sys-
tem at every peer even though most of times, a peer only does transactions with a
small number of peers in the system. Alternatively, most systems suggest that only
local reputation of other peers that have done transactions with a peer should be
maintained. Whenever a peer wants to retrieve the reputation of an unknown peer, it
can use the gossiping algorithm to ask for that peer’s reputation from its neighbors,
neighbors of its neighbors, and so on. Combining feedback results with its local
knowledge, it can determine the trust value of that peer. Note that this method is
cheaper than the above naive one because it may not be necessary to ask all nodes
in the system for the reputation of a peer. The correct value may converge just after
some steps of propagating the reputation query.

7.6.0.3 Structured P2P Based Trust Management

The previous method, based on gossiping methods, is expensive because the repu-
tation of a peer or a query has to be broadcasted to either all or a majority of peers
in the system. However, without doing this, the query’s result about reputation of
a peer may not be correct. Alternately, the third method proposes that a structured
Peer-to-Peer network itself can be used to manage reputation of peers in the system.

The basic idea is that for each peer in the network, its identifier is considered as
a key, and its reputation is indexed together with the identifier key into the network.
When a peer wants to retrieve the reputation of another peer, it simply issues a query
with the identifier of that peer as the search key. A potential problem is that a peer
may keep reputation of itself if it is in charge of the range of values containing its
identifier, and hence it is possible that it may change the value of its reputation if
it is a malicious peer. To avoid this problem, instead of keeping the reputation of a
peer at one place, the system replicates the reputation of a peer to several places.
However, if there are many malicious peers, and if they cooperate with each other,
it is still possible for them to provide false scores for some peers. The solution to
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Fig. 7.9 Trust management taxonomy

this problem is asking a peer to evaluate the reputation of referenced peers too. This
may lead to a circular check for all peers in the system, which is costly, but in many
cases, the system can decide the correctness of reputation values just after a few
steps. This method can be applied in any structured Peer-to-Peer systems such as
P-Grid [17], CAN [266], or CHORD [173].

In conclusion, the taxonomy of trust management methods can be displayed as
in Fig. 7.9. It is interesting to realize that the taxonomy of trust management is
similar to the taxonomy of Peer-to-Peer networks: the first model can be consid-
ered as the unstructured, server based Peer-to-Peer model, the second model using
gossiping can be considered as the unstructured, pure Peer-to-Peer model, and the
last one as the structured Peer-to-Peer model. In the following parts of this sec-
tion, we introduce three systems that are representatives of these models. They are
XenoTrust [113], using server based trust management model, EigenRep [171], em-
ploying gossiping based trust management model, and the work of Ge, Luo, and Xu
[19], using P-Grid for trust management.

7.6.1 XenoTrust

XenoTrust [113] is a trust management system used in the XenoServer Open Plat-
form [150, 267], an open and public infrastructure, in which servers can lease their
resources to clients for deploying applications. The XenoServer Open Platform con-
tains five entities:

− XenoServer: provides hosting services for clients. Any server can join the plat-
form by registering itself with the XenoCorp first. Then it needs to advertise
its services to the XenoServer Information Service (XIS). Additionally, it has to
notify XIS periodically about its status (services). When a client is going to pur-
chase its resources, the server can ask the XenoCorp to validate and charge the
purchase order.

− XenoCorp: works as a trusted party for payment processing. It takes the respon-
sibility for authentication of both XenoServers and clients in the platform, and
guarantees the correctness of payments.

− XenoServer information service (XIS): is in charge of maintaining the status and
the list of services of XenoServers. This information can be queried by either
clients or by the Resource Discovery System.
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− Resource discovery system: is used to help clients find the corresponding
XenoServers they want.

− Client: rents resources from XenoServers. Just like XenoServers, to participate
in the system, a client has to register itself through XenoCorp first. After that, it
can find a suitable XenosServer either through the Resource Discovery System
or by itself thought XIS. The client can further check the server’s services by
querying them directly. For renting resources, the client needs to purchase or-
der from XenoCorp. Finally, it can create sessions at the servers and deploy its
tasks.

The framework of the XenoServer Open Platform can be seen in the top part
of Fig. 7.10. Although the platform has a component, XenoCorp, that can provide
a trusted payment service for its clients, it cannot let them know the reputation of
each other (i.e., if they are good or bad servers/clients). Since servers and clients are
autonomous, it is necessary to provide users (both servers and clients) a mechanism
for evaluating the reputation of each other. XenoTrust is dedicated for this purpose.

Fig. 7.10 XenoServer open platform with XenoTrust
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7.6.1.1 Architecture

XenoTrust is an event-based trust management component that allows participants
in the XenoServer Open Platform to find, as well as to distribute, the reputation
of others in the system. The new component adds a new level of trust: reputation-
based trust on top of the existing trust level: authoritative trust. This is the process of
verifying an agent’s credentials from registrations at XenoCorp. XenoTrust is based
on servers for managing trust. Clients can contribute to the reputation of the servers
after each transaction by informing XenoCorp. They can also ask it for information
about the reputation of servers they are about to work with via the following two
methods:

− Statement advertisement: is used when a peer wants to make a report about the
reputation of another peer. A statement is in the form of (advertiser, subject,
token, value(s), timestamp), in which advertiser and subject are identifiers of
the reputation’s evaluator and receiver, token is the aspect of evaluation, value(s)
denote reputation score(s), and timestamp sets the validity time of the claim.

− Rule-set deployment: is used to query about the reputation of a peer. It has a for-
mat of (principal, property, advertiser, function, [trigger]), in which principal is
the identifier of the peer whose reputation is looked up, property is the aspect of
reputation, advertiser is a nonempty set of advertisers considered during evalu-
ation, function gives the method to calculate the reputation (e.g., min, max, or
average) and trigger sets the threshold of change in values when a notification
should be sent to the client.

In general, the reputation of a peer is inserted/updated in the system by adver-
tisement statements. The rule-set can be deployed in two modes: event-based mode
or query mode. In event-based mode, after setting, a notification will be sent to the
peer whenever there is a significant change in the reputation of the queried peer, ac-
cording to the trigger condition. In query mode, XenoTrust simply returns the result
to the requester. The structure of XenoTrust is shown in the bottom part of Fig. 7.10.

As discussed in the first part of this section, by employing servers in trust man-
agement, XenoTrust has to suffer several problems of server based systems such as
bottleneck, single point of failure, and lack of scalability.

7.6.2 EigenRep

EigenRep [171] is also a trust management system based on the individual reputa-
tion of peers. Here, each peer maintains a list of reputations of peers with which it
has previously had transactions. The global reputation of peers is aggregated via a
gossiping algorithm.
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7.6.2.1 Local Reputation

The local reputation of peer j in the eyes of peer i is

sij = sat(i, j) − unsat(i, j)

where sat(i, j) is the number of satisfactory transactions i has done with j and
unsat(i, j) is the number of unsatisfactory transactions i has done with j . For ex-
ample, when peer i downloads a file from peer j in a file-sharing network, if the file
is good, the transaction is considered satisfactory and hence it increases sat(i, j) by
1. However, if the file is bad or i cannot finish its download, the transaction may be
considered unsatisfactory, and hence it increases unsat(i, j) by 1.

7.6.2.2 Global Reputation

Using only local reputation maintained at a peer is not enough for determining trust
values, especially if the peer has to evaluate an unknown peer with which it has no
prior experience. As a result, a peer has to look for the opinions of other peers in
the system. In other words, it has to calculate a global reputation for the peer of
interest in order to evaluate the trust value it can assign to it. Intuitively, the global
reputation of a peer should be calculated by aggregating local reputations. However,
it is not that simple. If there are many malicious peers, and if they collaborate,
it is possible that they give each other high local reputation values while giving
remaining peers low local reputation values. As a result, they can corrupt the trust
system. To avoid this problem, the local reputation has to be normalized before
aggregation, as follows:

cij = max(sij ,0)∑
j max(sij ,0)

.

This formula guarantees that the normalized local reputation is neither high nor
low. It is always between 0 and 1. However, if a peer has no reputation values for any
peers (as it would happen if it had just joined the network), then

∑
j max(sij ,0) = 0.

As a result, cij is undefined. The solution for this problem is to have a set of trusted
peers that are globally known (e.g., network access points). Therefore, the above
formula is revised to

cij =
{

max(sij ,0)∑
j max(sij ,0)

if
∑

j max(sij ,0) �= 0,

pj otherwise

where pj = 1/|P | is a predefined reputation value of a well-known peer j

amongst P , well-known or pre-trusted peers. Normalized local reputation values,
once calculated, are stored in a vector called the normalized local reputation vector
on the local peer: �ci = (ci1, ci2, . . . , cin)

T. Since a peer has different trust levels on
other peers, the formula has to consider it by adding the local reputation values of
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Algorithm 16 : Distributed_Algorithm()
1: for each peer i do
2: Query all peers j ∈ Ai for t

(0)
i = pj (*)

3: repeat
4: Compute t

(k+1)
i = (c1i · t (k)

1 + c2i · t (k)
2 + · · · + cni · t (k)

n )

5: cij , t
(k+1)
i to all peers j ∈ Bi

6: Compute δ = |t (k+1)
i − t

(k)
i |

7: Wait for all peers j ∈ Ai to return cji

8: until (δ < ε)

9: end for

its neighbors as coefficients in calculating the global reputation value of a peer. As
a result, the global reputation value of peer j in the eyes of peer i is calculated as
follows:

tij =
∑

k

cik · ckj .

If we combine all global reputation values of peers in the system into a global
reputation vector �ti , and let C be the matrix [cij ], then �ti = CT · �ci

⎛

⎜⎜⎝

ti1
ti2
. . .

tiN

⎞

⎟⎟⎠ =

⎛

⎜⎜⎝

c11 c21 . . . cN1
c12 c22 . . . cN2
. . . . . . . . . . . .

c1N c2N . . . cNN

⎞

⎟⎟⎠ ·

⎛

⎜⎜⎝

ci1
ci2
. . .

ciN

⎞

⎟⎟⎠ .

The above formula reflects the experience of the peer and its neighbors. However,
if neither the peer nor its neighbors have experience about an unknown peer, the peer
should continue to consult its neighbors’s neighbors. In this way, the above formula
is changed to �t (2)

i = (CT)2 · �ci . Continuously, the overall knowledge of the system

can be determined after n steps, for large enough values of n: �t (n)i = (CT) · t (n−1)
i =

(CT)n · �ci .
Following the above discussion, the distributed algorithm is designed as in Algo-

rithm 16, in which A and B are, respectively, a set of peers that have downloaded
files from peer i and a set of peers from which peer i has downloaded files. The
process of calculating t

(k+1)
i can be illustrated in Fig. 7.11.

Note that in the distributed algorithm, on line 3, t
(0)
i can be initialized with either

uniform probability distribution values over all peers in the system or predefined
trust values of pre-trusted peers. Since the second method makes the convergence
process faster, it is generally selected for this algorithm.
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Fig. 7.11 Distributed algorithm

7.6.3 Trust Management with P-Grid

Both of the previous trust management models do not scale well with the network
size because they are either based on servers, or use gossiping algorithms for broad-
casting reputation amongst peers in the system. On the other hand, one of the out-
standing properties of Peer-to-Peer systems is scalability. As a result, why not use
the structure of Peer-to-Peer systems themselves to manage trust for Peer-to-Peer
networks? The question is answered in the work of Ge, Luo, and Xu [19], where a
structured Peer-to-Peer system, P-Grid [17] is used to deploy a trust management
system.

7.6.3.1 Trust Evaluation

In this system, the reputation of a peer is based on the number of claims made by
other peers and the number of claims it makes about others. Although counting the
claims a peer makes about others in its evaluation of reputation may seem like an
overhead, it helps to identify malicious peers faster. The reason is that if a peer is
malicious, it always makes a claim about its partner(s), since it knows that its partner
does the same thing. Therefore, malicious peers not only receive many claims from
others but also make a lot of claims about others. Adding them up, malicious peers
should have a very high number of claims compared to others, and hence they are
easier to identify. In general, let P denote the set of all peers and c(p, q) denote a
claim made by p about q . Then the reputation of a peer is defined by the following
formula:

T (p) = ∣∣{c(p, q) | q ∈ P }∣∣ × ∣∣{c(q,p) | q ∈ P }∣∣.

7.6.3.2 P-Grid Based Trust Management

In the P-Grid structure, each peer is associated with one path of a binary search tree,
and is responsible for all data that contains the search path as its prefix identifier.
As a result, it can be used to store complains of peers in the system by using peers’
identifiers as the keys. An example is shown in Fig. 7.12. There are a total of six
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Fig. 7.12 P-Grid based trust management system

peers in the shown system, arranged in a binary search tree of depth 2. If we use
three bits for encoding the peers’ identifiers, complaints about and by 1 are stored
in both peer 1 and peer 6 because the binary search path leading to peers 1 and 6,
00 is the prefix of peer 1’s identifier, 001. Similarly, peer 2 stores complaints about
peers 2 and 3, whose identifier’s prefix is 01; peers 3 and 4 store complaints about
peers 4 and 5, whose identifier’s prefix is 10; peer 5 stores complaints about peer 6,
whose identifier’s prefix is 11.

Using the P-Grid structure, complaints are inserted and queried following the
routing links maintained at peers. For example, if peer 2 has just done a transaction
with peer 6, and wants to issue a complaint about peer 6, it creates a request for
complaint insertion with key 110. By checking its routing links, peer 2 sends the
request to peer 3. In turn, peer 3 forwards the request to peer 5, the one keeping
complains about peer 6. A similar process is done for search. In particular, insert
and search requests are defined in the following formula:

− insert(t, k, v): in which t is the target of the complaint; k is the key or identifier
of t ; and v is the complaint value.

− query(t, k): in which t is the target whose reputation is investigated; k is the key
or identifier of t .

One thing that the keen reader will observe in Fig. 7.12, is that node 1 keeps
the complains about itself. If node 1 is a malicious peer, it may change the result.
Therefore, it is suggested that complaints should be indexed at several places instead
of only one place, by using a replication technique, as discussed in Chap. 5. This
way, the query’s results can be double-checked. Additionally, it is also suggested
that the reputation of peers giving the result should also be checked, to avoid the
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Algorithm 17 : Trust_Evaluation(n)
1: Retrieve complains of n

2: if retrieved results are inconsistent then
3: for each node n′ providing the result do
4: value = Trust_Evaluation(n′)
5: if value = “un-trusted” then
6: Remove the returned result from n′
7: end if
8: end for
9: end if

10: Aggregate search complaints to generate final result
11: return final result

problem of a group of malicious peers cooperating to give false results. Even though
this may lead to circular checks in the entire system, this rarely happens because
the process should stop after a few steps, when the received results are consistent.
Algorithm 17 shows the overall algorithm to evaluate the trust of a node.

7.7 Summary

In this chapter, we have provided an in-depth look inside trust and trust manage-
ment in Peer-to-Peer systems. Trust can be defined as “a belief or confidence in the
honesty, goodness, skill, or safety of a person, organization, or thing”. However,
this definition is not unique, and different points of view may give rise to different
definitions.

Trust models can be classified into two main categories: credentials based and
reputation based. In the credentials based model, if an agent has a credential satis-
fying our policies, we trust it. Since this model is too simple to deal with complex
situations, it can only be used in access control systems. On the other hand, in the
reputation based model, reputation, created through past actions, is used to deter-
mine the trust of an agent. In general, after every transaction, each participant gives
a comment/score/complaint about the other, indicating that its partner was good or
bad in the transaction. If an agent has done several successful transactions, it should
have a good reputation, and hence we should trust it. This model can be further di-
vided into two submodels: one only considers individual reputation while the other
also considers social relationships among agents. Several concrete systems have
been described to illustrate these models.

Trust management is not easy in Peer-to-Peer systems because a peer does not
know all the other peers in the system. As a result, an efficient trust management
model is needed to manage and distribute the reputation of peers in the system. It
is interesting to realize that there are exactly three main methods for trust manage-
ment, following the taxonomy of Peer-to-Peer systems: The first method is based
on servers and is similar to server based, unstructured Peer-to-Peer systems. In this
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method, the reputation scores of peers are managed at servers. Since servers are used
for trust management, this method suffers the same problem as the server based
unstructured Peer-to-Peer systems: bottleneck, single point of failure, and lack of
scalability. Conversely, the second method is based on gossiping algorithms to dis-
tribute reputation values. This method is similar to pure, unstructured Peer-to-Peer
systems. The problem of this method is that gossiping algorithms usually incur a
high cost in term of message passing. Furthermore, the results may not always be
correct. The last method employs the structured Peer-to-Peer systems themselves.
Peer identifiers are used as keys for inserting reputation values into the network. As
a result, this method can avoid the problems of the above two methods. This is the
most prominent method for trust management in Peer-to-Peer systems in terms of
research interest.

Finally, before ending this chapter, we summarize the features of P2P systems
that have been presented through the chapter as examples of trust models and man-
agement methods, in Table 7.1.

Table 7.1 Summary of representative P2P systems discussed through the chapter

System Trust Model Trust Management

PolicyMaker Credential based: Trust is
determined by checking policies
issued by applications and
credentials of requesters.

Distributed control: Application
policies and credentials are
managed locally at nodes in the
system.

Trust-X Credential based: Trust is
determined by checking policies
issued by applications and
credentials of requesters. In
addition, a trust ticket is
proposed to speed up checking
process.

Distributed control: Application
policies, credentials, and trust
tickets are managed by entities
that are locally stored at nodes
in the system.

P2PRep Individual reputation based:
Trust is determined by a voting
process from existing nodes in
the system that have done
transactions with the node in the
past.

Distributed control: The
reputation of a node is
maintained locally at nodes that
have done transactions with the
node in the past. Voting is done
by gossiping.

XRep XRep is similar to P2PRep except that it considers reputation of not only
the peer but also its resources in the voting process.

NICE Individual reputation based:
Trust is determined by finding
the strongest path in the trust
graph that is formed by trust
relationships of nodes that have
had successful transactions with
each other.

Distributed control: The
reputation of a node is
maintained locally at nodes that
have done transactions with the
node in the past, in the form of
a cookie. A gossiping algorithm
is used to find the strongest
path.
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Table 7.1 (continued)

System Trust Model Trust Management

PeerTrust Individual reputation based:
Trust is determined by
reputation of a node in previous
transactions from different
aspects of the transactions.

Distributed control: Reputation
of nodes from previous
transactions is managed by
P-Grid, a P2P system.

Regret Individual reputation based and
social relationship: Trust is
determined by individual
reputation of a node and
reputation of the society the
node belongs to. Different
aspects of node properties are
considered in the reputation
evaluation process.

Centralized control: Reputation
of nodes from previous
transactions and social
relationships are managed by
servers.

Node Ranking Individual reputation based and
social relationship: Trust is
determined by calculating the
number of relationship a node
has with other nodes. The
higher the number of
relationships a node has, the
higher the rank of the node in
the society is (higher trust
value).

Distributed control:
Relationships of nodes in the
system are constructed locally
at nodes. A gossiping algorithm
is used to explore and rank
nodes in the system.

XenoTrust Individual reputation based:
Trust is determined by
reputation of services provided
by the node in the past.

Centralized control: Reputation
of nodes from previous
transactions is managed by
XenoTrust servers.

EigenRep Individual reputation based:
Trust is determined by
individual reputation of a node
in previous transactions.

Distributed control: Local
reputation of a node is
maintained locally at nodes that
have done transactions with the
node in the past. Global
reputation of a node is
aggregated through a gossiping
algorithm.

P-Grid Individual reputation based:
Trust is determined by
individual reputation of a node
in previous transactions.

Distributed control: Reputation
of nodes from previous
transactions is managed by
P-Grid, a P2P system.



Chapter 8
P2P Programming Tools

In the previous chapters, we presented architectures, routing methods, and several
other issues pertaining to peer-to-peer networks. All of them are important theoret-
ical aspects that define the concept of such networks. But how does one implement
a peer-to-peer network?

The first answer that comes to mind is to use existing network protocols and the
corresponding APIs defined in many popular programming languages. Sockets, for
instance, can be used to connect two machines and then the entire peer-to-peer ap-
plication can be built on top of that. At a higher level, web standards could be used to
connect peers and the resulting systems would bear striking resemblance with web
services. Without going into many details, we discuss these approaches in Sect. 8.1.

The difficulty in developing and deploying peer-to-peer applications from scratch
has resulted in the appearance of several systems that introduce specific libraries, or,
even more, specific languages, to help the user implement a particular architecture,
or a service on top of an existing architecture. Ideas in this direction have appeared
almost immediately after structured peer-to-peer networks became popular (at least
in the academic environment), around 2002: Teaq [117], P3 [244], P2P-RPC [109,
110], or JXTA [317] are some of the systems that were proposed. However, among
the above, only JXTA managed to be fully developed into a usable system, mainly
because of the continuous support of Sun Microsystems. Now, after five more years
of experience in the research community, new such systems have been introduced.
We present the most significant of them in Sect. 8.2.

Having implemented a network, either from scratch or using some particular li-
brary or programming language, it needs to be tested and eventually deployed. Sec-
tion 8.3 shows three such deployment and testing environments: PlanetLab, Emulab,
and Amazon’s Elastic Computing Cloud.

8.1 Low Level P2P Programming

Fundamentally, all P2P networks rely on the internet protocols suite to provide the
necessary connectivity functionality. More recently, other communication protocols
have become present, such as Bluetooth.

Q.H. Vu et al., Peer-to-Peer Computing,
DOI 10.1007/978-3-642-03514-2_8, © Springer-Verlag Berlin Heidelberg 2010
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8.1.1 Sockets

The original RFC147 that introduced network sockets defined one as “the unique
identification to or from which information is transmitted in the network”. In the
context of an Internet-connected PC, a socket is defined by an IP address, a port
number and a protocol (TCP, UDP, or raw). To establish communication, one of the
two hosts must first open a listening socket and wait for an incoming connection.
The second host, which by some unspecified means must know the IP address, port
number and required protocol of the first host, can then complete the link by sending
a message specifying its own IP address and port number.

The study of network programming using sockets is well documented ever since
the ARPANet, the predecessor of the Internet, was created. Currently, Unix Network
Programming [304] is probably the most referenced book in the field. Its third edi-
tion, released in 2003, is updated to also include the new IPv6 protocol, the proposed
new addressing space for the Internet.

8.1.2 Remote Procedure Call

Remote procedure call (RPC) is a technique to trigger computations on another ma-
chine, generally in order to perform tasks that are too costly on the local machine.
While one could easily imagine a way to do this using sockets (client sends a mes-
sage with parameters and the method name; server receives message and somehow
locates the correct method to apply; server sends result back to client), the RPC
standard provides a layer on top of that, which makes the procedure of sending the
message, identifying the correct method, and returning the results much easier.

Probably the best known RPC implementations are that of Sun Microsystems
(ONC RPC), the Open Software Foundation (DCE RPC), and possibly XML-RPC
(which is no longer an active project, but has been included into SOAP1 [325]).
The technique is widely used in distributed computing, as proven for instance by its
incorporation in the Google Web Toolkit [136] or its use in Facebook to run the em-
bedded applications (the Thrift software stack [299]). However, these applications
generally assume that the distributed environment is stable and failures are rare. This
is not the frame of mind in which peer-to-peer systems operate, so there have been
proposals to make RPC more fault tolerant [109, 110].

To alleviate the need for the client to handle possible failures of the other peers, as
it would be the case normally in RPC, Djilali introduces a coordinator that manages
the distribution of jobs [109]. Later, in a follow-up article [110], the coordinator is
redesigned from being a single machine to being a service provided by several ma-
chines, further increasing the fault tolerance, but adding complexity to the system
(see Fig. 8.1). For instance, the nodes that are part of the Coordinator must replicate

1Simple Object Access Protocol.
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Fig. 8.1 P2P-RPC uses a
coordinator service to
maintain fault tolerance

among themselves information pertaining to a particular job and they must keep
track of the status of each other using ping messages. Still, for the user, the advan-
tage is that all of this is transparent, and the RPC interface is similar to what one is
used from ONC RPC or DCE RPC.

8.1.3 Web Services

Web services add another layer of abstraction on top of RPC. Though they repre-
sent a complex application development environment [254], we include them in this
chapter because they are not specifically designed to handle peer-to-peer interaction.
However, as P2P, web services handle decentralized computing.

According to the World Wide Web Consortium (W3C, Feb. 2004), the definition
of a web service (WS) is as follows: “a web service is a software system designed
to support interoperable machine-to-machine interaction over a network. It has an
interface described in a machine-processable format (specifically WSDL). Other
systems interact with the web service in a manner prescribed by its description
using SOAP messages, typically conveyed using HTTP with an XML serialization in
conjunction with other web-related standards”.

Web services use a centralized index (UDDI) to search for, and bind to different
services. Though not specifically described in the documentation, there does not
appear to be a reason for which a web service should not be allowed to connect
directly to another web service, provided there exists a mechanism to locate such a
web service. It is here that P2P architectures and methods can be applied.

8.2 High Level P2P Programming

Building a new peer-to-peer system from scratch is very difficult. Like for so many
other applications, there is a need for libraries and tools to make it easier for the
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developers to sketch up a system and then build on top whatever specific services
are needed in a particular context. Even more, the flexibility requirements of the net-
work may require the same system to be able to adapt its entire structure according
to medium term conditions in the network.

For many peer-to-peer networks that came out of the academia, the research
groups that developed them make the source codes available under some form of
public licensing. One could, for instance, download the source codes of Chord [173]
(http://pdos.csail.mit.edu/chord/) or of Pastry [275] (http://freepastry.rice.edu/), ap-
ply any modifications that might be needed, and deploy the new peer-to-peer net-
work.

Still, learning the API of a big application such as Chord or Pastry may seem
daunting, especially considering that it will be hard afterwards to move the same
application to another peer-to-peer structure. Consequently, more flexible solutions
have been suggested and we will discuss these in the current section.

8.2.1 JXTA

As stated on its website, JXTA is “a set of open, generalized peer-to-peer (P2P) pro-
tocols that allow any networked device sensors, cell phones, PDAs, laptops, work-
stations, servers, and supercomputers to communicate and collaborate mutually as
peers”.

JXTA defines a set of concepts, at the core of which lies, naturally, that of a peer
and of peer services. A peer may be any type of device, ranging from the smallest
smart-card to a fully blown server. Function of its capabilities, a peer can provide
more or less services for other peers. Figure 8.2 illustrates the hierarchy of services
and specific denominations given to the peers implementing only subsets of these
services. In this figure, it is worth pointing out the existence of super-peers which
are peers that help other peers to communicate with the network by translating some
particular communication protocol into the general TCP/IP stack, or act as meeting
points between peers. They implement all or a subset of the Relay, Rendezvous and
Proxy protocols.

On top of the concept of peer, JXTA defines that of peer group and, respectively,
group service. A peer group is a subset of all the nodes in the network that either

Fig. 8.2 Peers and services
in JXTA

http://pdos.csail.mit.edu/chord/
http://freepastry.rice.edu/
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provide a collaborative service, or have a common interest. Groups may also serve
as an additional layer of security, as they can impose strict authentication procedures
and encryption protocols to their members.

All types of services, be they peer or group services, are published in the network
through advertisements—specific XML messages sent between peers and/or super-
peers. Advertisements, along with other types of messages (e.g., service specific or
simply data transfer messages) are transferred through sockets and pipes.

8.2.1.1 Implementations

Currently, Sun Microsystems, the main promoter of JXTA, provides two implemen-
tations:

JXSE: implementation of the JXTA standards for Java 5.0 Standard or Enterprise
Edition.

JXME: implementation of the JXTA standards for Java Micro Edition.

Apart from these standard implementations provided by Sun Microsystems, sev-
eral other implementations exist, for different programming languages (e.g., jxta-c2

for C, C++, C#) or for different platforms (e.g., symbianjxta3 for the Symbian oper-
ating system).

8.2.1.2 Protocols

Peer Resolver Protocol (PRP)—the most low-level protocol in the stack, used to
send any kind of queries.

Peer Discovery Protocol (PDP)—in JXSE, it relies on multicast or on super-
peers. PDP locates published peer resources, represented as advertisements and is
the default method for finding resources in any group, though each group may define
one that is appropriate for its needs. PDP does not guarantee a reply.

Peer Information Protocol (PIP)—used to enquire about a peer’s status, in terms
of alive-time or network traffic statistics. A ping message is sent to determine this
information and a reply can either be a simple acknowledgment to indicate that the
peer is still alive, or a more complete set of data, structured into an advertisement.

Pipe Binding Protocol (PBP)—is used to create an actual link between two or
more peers via pipe advertisements. A peer initiates a connection by sending a PBP
query indicating the pipe it needs to connect to. The query will identify one or
more other peers that already have connection to the opposite endpoint of the same
pipe, such that actual connections can be established using some physical network
transport protocols, such as TCP/IP, for instance.

2https://jxta-c.dev.java.net/.
3https://symbianjxta.dev.java.net/.

https://jxta-c.dev.java.net/
https://symbianjxta.dev.java.net/
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Fig. 8.3 Overview of
interactions between JXTA
protocols

Endpoint Routing Protocol (ERP)—provides capability to send messages via in-
termediaries, or relay nodes.

Rendezvous Protocol (RVP)—message propagation within a peer group. Ren-
dezvous nodes use a PeerView Protocol (PVP) to organize themselves, protocol that
may define a structured peer-to-peer network.

Figure 8.3 gives a high level overview of the interactions between these protocols.

8.2.1.3 Adding Value to the Network

The existing infrastructure of JXTA provides the user (i.e., developer) with sufficient
tools to deploy a super-peer based peer-to-peer network. Customized services can
be deployed in two steps:

1. Implement the new functionality in some library.
2. Install on a set of peers.
3. Publish advertisements for this new functionality.

The first step is abstracted away from the JXTA infrastructure, that is visible only
in the second and third step. Here, three types of advertisements are used to pub-
lish any module: ModuleClassAdvertisement, ModuleSpecAdvertisement, and Mod-
uleImplAdvertisement. The idea is that a subsequent discovery process may have
more or less specific requirements regarding the type of service needed. Commonly,
a client of a service will look for the module through its specification (i.e., searching
for ModuleSpecAdvertisements). This specification includes a PipeAdvertisement
containing the necessary information for creating a direct link between the service
requester and the service provider.

8.2.1.4 Other Considerations

JXTA defines an unstructured peer-to-peer network, using a super-peer approach.
Though the discovery and routing protocols can be redefined, this is much more
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difficult to do than simply adding a new services and letting the existing routing
process make it available to the rest of the network.4

8.2.2 BOINC

Keeping in line with the inclusion of Seti@Home in the category of peer-to-peer
applications, we present here BOINC (Berkeley Open Infrastructure for Network
Computing)—an open-source platform for volunteer computing developed at the
University of California at Berkeley.

As Seti@Home, its direct predecessor, BOINC does not require users to commu-
nicate between themselves, and, consequently, does not need any routing protocols:
the only communication possible is between one central server and a cluster of peers
that process data (Fig. 8.4).

As a client, the user needs only to download the software from the BOINC web-
site and register to one of the existing projects. Data will be automatically sent to
this new participant and it will be processed whenever the client has CPU cycles t
spare.

It is more interesting however to create and start a new BOINC project. For
this, a user needs only a medium to high-power Unix/Linux server, for which the
hardware requirements are similar to those of a web-server: reliable internet con-
nection, static IP address, firewalled and overall secured. In terms of software, the
server requires a set of software packages that are not normally installed by de-
fault: a database management application (MySQL), a web server (Apache) and
PHP5—a server-side web programming language. Once all the prerequisites have
been satisfied, the source codes of the BOINC project can be downloaded from
http://boinc.berkeley.edu/trac/wiki/SourceCode.

To create and start a BOINC project on the newly installed BOINC server, several
scripts must be executed:

Fig. 8.4 The architecture of
the BOINC volunteer
computing framework

4A project in this direction has been described in [177] and is available online at
https://gisp.dev.java.net/.

http://boinc.berkeley.edu/trac/wiki/SourceCode
https://gisp.dev.java.net/
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make_project: creates the server components of a BOINC project.
xadd: reads platform and application records from the project.xml file in the

project’s root directory.
update_versions: traverses the project’s folder, identifies new versions and

creates database entries for each of them.
start: starts the project.

These scripts manage different versions of the data processing functions, as there
need to be different implementations for each hardware/software environment that
these functions will be operating on.

Finally, to create utility for the project, three back-end components must be im-
plemented to generate data packets and to receive, validate and integrate the results:

work generator—input/output specifications, together with a program or a script
to submit the jobs.

validator—a daemon program that compares redundant results and decides which
one is correct and assigns credit to every correct result.

assimilator—a method that is able to handle both correct and incorrect results, to
apply further processing on the result and/or to write messages in the process
logs.

8.2.3 P2

JXTA and BOINC are popular systems, mainly because they are the result of years
of experience. At the time when they were started, structured peer-to-peer networks
were in their infancy. This is possibly why there are no popular structured peer-to-
peer frameworks. However, as the research in this direction matures, we will be able
to observe the emergence of systems that allow different structured routing protocols
to be implemented easily. One such proposed system is P2 [198]. It allows a network
routing protocol to be specified in a version of a Datalog language [67], which, in
turns, is a version of Prolog [185].

8.2.3.1 The Specification Language: NDlog

The specification language used by P2, like Datalog, generates programs that are a
set of declarative rules and an optional query. A rule y : −x1, x2, . . . , xn consists of
a head (y) and a body (the set of literals x1, x2, . . . , xn) with the usual meaning that
“if x1 AND x2 AND . . . xn are true (exist), then y is also true (assert y)”. A query
is just one literal.

The idea behind this kind of definition for a network routing specification is
something like “if the message’s destination fits ¡this¿ pattern and there is a link to
¡this¿ node then move message to ¡this¿ node”. As such, the language defines recur-
sive programs, with the difference that every iteration of the recurrence is executed
at a possibly different node.



8.2 High Level P2P Programming 223

8.2.3.2 The Execution Framework

The specification programs written in NDlog are implemented and executed auto-
matically by the P2 system. To interpret the rules, P2 uses variants of the semi-
naive interpretation method of Datalog programs [36]. The idea is to identify what
changes are triggered by a rule in the routing tables or data indices (all stored as
relational database entities) and apply them locally. At the same time, if the rule
refers to different nodes, create the necessary forwarding messages.

8.2.4 Mace

Mace5 [184] is an overlay development tool designed and implemented at the Uni-
versity of California at San Diego. It is a continuation of the ideas of MACEDON
[272] that had been proposed 3 years earlier by more or less the same researchers,
in a collaboration between UCSD and Duke University.

The aim of Mace is to provide a tool that allows developers to implement efficient
overlays that can also be formally analyzed. In this sense, it is a midway between
the finite state automata-based models of distributed systems, that allow extensive
analysis but too little flexibility to be used in practice, and practical implementations
using a common programming language (Java, C++, etc.) that work in practice but
are hard to reason about.

Mace achieves its goal by defining a layered architecture and, more precisely, the
tools for specifying each layer (i.e., service objects), and the interaction between
layers (i.e., events). To further ease the job of the developer, Mace defines aspects
to monitor network conditions and perform certain actions when a set of conditions
are satisfied (e.g., trigger load rebalancing).

8.2.5 OverlayWeaver

OverlayWeaver6 [294] is a new project, currently under development at the Japanese
National Institute of Advanced Industrial Science and Technology. Though still un-
der development at the moment of writing this book, it has the potential to become
the first system to provide the means of development of true peer-to-peer networks
with only a relatively small number of lines of code, due to its high modularity.

The authors allow the user to work at a very high level, to develop services on top
of already defined overlays (and they provide sample implementations for Chord,
Pasty, Tapestry, and Kademlia), as well as at a low level, to define their own routing
algorithms.

5http://mace.ucsd.edu.
6http://overlayweaver.sourceforge.net/.

http://mace.ucsd.edu
http://overlayweaver.sourceforge.net/
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8.2.6 Microsoft’s Peer-to-Peer Framework

Ever since its Service Pack 2 for Windows XP, but more manifestly since the re-
lease of the Vista operating system, Microsoft has provided a Peer Name Resolu-
tion Protocol (PNRP) [221] and an API to allow developers to take advantage of this
protocol.

For instance, the PNRP Software Development Kit defines the following func-
tions:

PeerPNRPStartUp() start the peer name resolution service
PeerPNRPShutdown() terminate the peer’s participation in the network
PeerPNRPRegister() register a name for the current peer in the network
PeerPNRPResolve() identify the IP address7 of a peer with a specific name

Essential to PNRP is, naturally, the peer identifier. Here, a PNRP ID is a 256 bits
long string, composed of 128 bits representing the peer itself and another 128 with
location information. Figure 8.5 illustrates this.

Because a name can represent any type of service that can be shared over the
network, the name resolution process works in two phases:

1. identify the IP of the machine that published the name.
2. identify the service on that machine that corresponds to the given name.

The first phase works similarly to any other DHT-based overlay: a name is re-
solved by sending it to the neighbor that, in the routing table of the current peer, has

PNRP Identifier

Peer Identifier

Public Key

Namehash

Peer ID Service Location

hash

Fig. 8.5 Composition of a PNRP identifier

7PNRP uses IPv6.
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an associated name that is closest to the requested name. Upon identification of the
IP of the node holding the name, the protocol specifies a sequence of messages to
determine the exact service to be executed.

8.3 Deployment and Testing Environments

After having implemented your peer-to-peer network, either from scratch using low-
level programming tools described in Sect. 8.1, or some existing libraries and tools
such as those presented in Sect. 8.2, one must be able to test it before releasing it
to the public or to the corporate client. Simulations on a single machine are lim-
ited by the resources of the machine, as well as by the difficulty of implementing
realistic scenarios. To fully test a peer-to-peer network, one needs many computers,
preferably widely distributed both in terms of resources as well as geographically.
We present here three such systems. The first, PlanetLab is a research cooperation
between the academia and industry players and represents the largest, open, dis-
tributed environment. The other two are emulators, meaning that the machines that
compose them are generally located at the same site or in close proximity. One of
them is open for research, the other one is a commercial system.

8.3.1 PlanetLab

PlanetLab [76] can be most easily described as a set of machines distributed across
the internet and the world. However, it is much more than that, mainly because all
participants can request, and obtain, access to any other machine in PlanetLab. As
such, PlanetLab is also a software package that manages this collection of comput-
ing resources across the internet.

The PlanetLab Consortium is a set of academic, industrial, and governmental in-
stitutions that collaborate and fund the PlanetLab network, whose main objective
is “to understand how the Internet can be architected to better support overlays”.
Currently, the network consists of over 850 nodes at over 400 sites in over 35 coun-
tries and is in the process of moving from a centralized administration system to a
federated one, to further extend its scaling capacity.

8.3.1.1 Participating in PlanetLab

As a consortium dedicated to academic research, PlanetLab cannot be used by indi-
vidual members of the public. Instead, a researcher gains access to the network via
one of the participating institutions.

Apart from the legal proceedings of participating in the consortium, an academic
institution must make available two or more server-class machines that will serve as
PlanetLab nodes. Another significant requirement is that the nodes be given static
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IP addresses and be located outside the institution’s firewall, to allow for maximum
reachability. The PlanetLab software package must be installed on these machines
and, as such, they will be completely dedicated to the system, without the possibility
of running anything outside the PlanetLab framework.

After becoming part of the PlanetLab consortium, an institution will be able to
create user accounts and allocate “slices”. The concept of slice is central to the Plan-
etLab framework: it provides the necessary allocation of resources for a distributed
application, as well as the insulation between different applications. Once a user has
a PlanetLab account and has been assigned a slice by a participating institution, he
or she is able to create and deploy applications across all the nodes in the network.

8.3.1.2 Application Deployment on PlanetLab

Once a user has a site and a slice, the only step left is the addition of nodes to
the slice. On each node that is added, resources will be allocated for that slice.
The simplest way to add nodes is through the web interface at www.planet-lab.org,
but nodes may also be added automatically through the PlanetLab Shell (plcsh) or
through the Python scripting language.

After being added to the slice, the nodes appear to the user as individ-
ual systems made entirely available for the new application. Several script-
ing tools are available for working executing commands in parallel on dif-
ferent UNIX-like machines, but the PlanetLab recommends using CoDeploy
(http://codeen.cs.princeton.edu/codeploy) to deploy the application and execute it
concurrently on all nodes. CoDeploy helps alleviate the risk of overloading com-
mon repositories, especially during the deployment phase.

8.3.2 Emulab

Emulab [1] is a hardware installation as well as a software package maintained by
the Flux Group at the University of Utah. As PlanetLab, Emulab is made available
to the research community free of charge, even without the requirements of partic-
ipating with resources in the project. However, as opposed to PlanetLab, Emulab
systems (there are several at different universities) use servers that are collocated.
Each system is firewalled, and the addressing space of the nodes participating in the
system is local. This is why the Emulab software provides means of specifying arti-
ficial network delays in the system, to better simulate realistic network conditions.

Running experiments on Emulab involves three major steps: obtaining an ac-
count requires a senior researcher to specify a project and obtain authorization from
the Emulab Approval Committee. Subsequently, an experiment can be initiated by
designing a network topology. For this, Emulab uses a language very similar to the
one used by the Network Simulator [15]: a scripting language used to define nodes,
nodes properties (e.g., operating system), network links, as well as commands for

http://www.planet-lab.org
http://codeen.cs.princeton.edu/codeploy


8.4 Summary 227

running the experiment and for stopping it. Finally, after the experiment has been
set up (i.e., the network topology has been instantiated), the user has full access to
all the participating nodes.

8.3.2.1 Interfacing Emulab and PlanetLab

Emulab provides an interface to PlanetLab, via which a user can create a slice and
add PlanetLab nodes to an existing Emulab experiment.

8.3.3 Amazon.com

Emulab and PlanetLab are both dedicated to academic research and it is very hard,
or very costly, for a commercial entity to use their resources. For a start-up, small or
mid-size company, it would be difficult to pay its way into these projects. Instead,
such a company would prefer a pay-per-CPU cycle scheme. Amazon.com Inc., the
online bookseller, has opened its large hardware infrastructure and sells computing
cycles through its Elastic Compute Cloud (EC2) framework.

The Amazon EC2 provides a web service interface via which a user can request
computing resources. The building block of EC2 is an Amazon Machine Image
(AMI)—a software bundle that includes the operating system and all the libraries
that a user might need. An AMI, either created from scratch by the user, or a prede-
fined one, is first stored on Amazon’s storage service (Amazon S3—Simple Storage
Service), from where it can be instantiated in EC2.

Though the EC2 framework provides the conceptual prerequisites of geograph-
ically distributed computing, in the form of Regions and Availability Zones, it cur-
rently makes available only one Region. Availability Zones, several of which make
a Region, are insulated from each other both physically and logically. They pro-
vide low bandwidth communications between those that belong to the same Re-
gion. Unlike Emulab, Amazon EC2 does not provide the tools to artificially delay
communications, or simulate link failures—because that is not the purpose of this
system. In this case, the user who needs to test more severe network conditions has
to implement his own simulator.

The Amazon Elastic Compute Cloud, together with the Amazon SimpleDB, the
Amazon Simple Storage Service and the Amazon Simple Queue Service, though
not designed specifically for peer-to-peer networks, provide sufficient flexibility to
the user who does not have access to academic network research facilities such as
those described in previous sections of this chapter.

8.4 Summary

There are many ways through which one could implement a peer-to-peer archi-
tecture: either by working directly with the network protocol stack, through cus-
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tom web services, or by using existing libraries that implement unstructured, semi-
structured, or DHT-based overlays. However, a peer-to-peer system is, by definition
almost, a complex system and, at this time at least, there is no easy way to define a
peer-to-peer network that satisfies specific user requirements.

After implementing such a complex system, and before deploying it into the real
world, several hardware and software environments provide the necessary scale to
test the performance of the system, as well as its conformity to the requirements.
Some of these platforms are nonprofit, dedicated to academic research, like Plan-
etLab and Emulab, others are commercial computing platforms, like that of Ama-
zon.com Inc.



Chapter 9
Systems and Applications

In the earlier chapters, we have examined the enabling technologies for peer-to-peer
computing. This chapter will look at several existing systems/applications that have
employed P2P technologies. We shall look at (a) file sharing systems; (b) backup
systems; (c) data management systems; (d) caching systems; and (e) mobile systems
in the following sections. For each of these applications, we shall look at represen-
tative systems in the literature.

9.1 Classic File Sharing Systems

9.1.1 Napster

It is partly thanks to Napster, for having caught the attention of more than 38 mil-
lion Internet users, that P2P has opened up a new research area in networking and
distributed computing [12, 291]. In Chap. 2, this file sharing system has been pre-
sented, from the architectural point of view, as an example of centralized P2P sys-
tems. In this chapter, we will dedicate this subsection to describe this system from
other viewpoints. First, we will present an overview, including the motivation of its
development, roles of different nodes and basic functions. Second, we will describe
its working procedure. Then we will detail the sharing protocol and, finally, touch
on the intellectual property rights discussion that it has aroused.

9.1.1.1 Overview

The development of Napster was motivated by the demand to efficiently and con-
veniently search music across the ever increasing number of individual users of the
Internet. Several years before, music fans were able to download music files of cer-
tain digital formats off the Internet. They found that, compared to the traditional
manner of buying hard copies, it was more convenient and efficient to obtain (i.e.,

Q.H. Vu et al., Peer-to-Peer Computing,
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download) the music from the network. Furthermore, any user on the Internet was
able to get any number of copies of these files easily and, in some cases, cost-free.
However, this searching style inherently has the limitations of the client-server ar-
chitecture. First, servers are usually powerful computers, resulting in expensive cost
of infrastructure purchase, maintenance and administration. This means that only
large companies could afford them, and consequently, all the data that is stored at
individual users, even if they have an internet connection, remains under-used. Sec-
ond, with the requests from users increasing, the performance of servers degrades
dramatically. Even worse, once servers breakdown, none of the users are able to
download any music files. In early 1999, Shawn Fanning (like some other success-
ful IT business people, a college dropout), having himself faced the problem above,
came up with the idea to develop a special utility to satisfy some basic requirements:

− Searching: users should be able to efficiently seek mp3 files in the network;
− Sharing: users should be able to share their mp3 files as they like, directly from

their machines;
− Chatting: any user can find out and chat with others who are currently online.

After several months of hard work, Fanning had finished the development of this
special program with the above features, and named it Napster, his nickname when
he was in high school. This is the amazing story of the birth of Napster. At that time,
it was hard to realize that “Napster” would become one of the P2P precursors and
that it would have aroused a wave of research and development in P2P computing.

Just as pointed out in Chap. 2, Naspter is a centralized P2P system, where there
are two kinds of nodes in the system, i.e., one or several servers and thousands or
even millions of peers. The servers of Napster maintain the metadata of all currently
available peers and locate the queried objects. Note that the servers themselves do
not contribute any sharable files. However, the peers, whose population had some-
times been larger than 38 million, are really the active heroes of the system, since it
is the peers that really maintain and trade these sharable music files. Furthermore,
through their peers, users cannot only contribute but also obtain their desired MP3
files. In addition, the chat functionality further helps users to enjoy the community
experience.

Even though Napster, as a public software utility, no longer exists, in what fol-
lows, we will continue to refer to its protocols and functionality in the present tense,
because the ideas and protocols remain, even if they are not currently used.

9.1.1.2 How Napster Works

The working mechanism of Napster includes many specific phases, which can be
described, from a high level, in two phases.

(i) Joining the network. To share and trade mp3 files, peers should first join into
the centralized P2P network. This implies the installation of the Napster utility
on the user’s machine and, possibly, the sharing of some files.
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(ii) MP3 trading. Once a user wants to search any music file in Napster, he or she
performs the following operations:

− Runs the peer utility installed on his (or her) computer;
– The utility software checks whether a network connection is built;

− Logs onto the central server;
− Sends a request to the server, and the server identifies the locations of the de-

sired files in network, i.e., the IP address of the peers providing the answer;
– Once the search is completed, the server returns the requestor with a list of

contributors of the desired objects. By now, the server has accomplished
all its processing in this transaction of file trading;

− Chooses one of contributors to download the music files as he (or she) likes,
while the utility establishes a direct connection between the requestor and
the selected contributor;
– The requested files are transferred directly from the contributor to the re-

questor. After transferring, the contributor breaks down the connection
immediately.

9.1.1.3 Protocol

The discussion on Napster’s protocols [13] covers four aspects, i.e., peer-server pro-
tocol, message, peer-to-peer protocol, and peer-to-peer browsing, which will be de-
scribed as follows.

Peer-Server Protocol. In Napster, the communication between a server and a peer
uses the Transport Control Protocol (TCP). Basically, each message sent to or
received from a server is in the form of < length >< type >< data >. Where
both the segments of < length > and < type > are of 2 bytes, respectively. Fur-
ther, the < length > denotes the length of the < data > portion in the message,
that is, it precisely tells the amount of the data being transferred. In addition,
< length > and < type > should be in the “little-endian” format (least signifi-
cant byte goes first). The < data > portion in the message is a string of plain
ASCII. In many cases, the strings are transported as double-quoted entries.

Message. The < data > segment specifies all the operations and messages in Nap-
ster, such as: error messages, users’ logins, download requests, and so on. In-
deed, there are more than 900 types of operations and messages all together,
and a certain < data > field represents each of them. To note that any combi-
nation of the < type > and < data > segments represents one certain message.
Specifically, the < type > specifies the message’s id, while the < data > tells
its content. The format of the < data > field should be under some criterion, so
that it can be recognized by all the servers and peers.
Table 9.1 exemplifies a combination of < type > and < data > segments, rep-
resenting the peer’s request for removing a file from the shared library.

Peer-to-Peer Protocol. In Napster, the file transfer is undertaken directly between
two peers. There are two pairs of cases, based on whether or not there is a fire-
wall in between the two peers, which will be discussed in the following table.
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Table 9.1 Example of a message

< type > < data > Specification

102(0x66) < filename > Client’s requests to remove file from the shared library

− No firewall. In a normal instance, a peer seeking a music file (requestor) man-
ages to make a TCP connection to another one, who possesses the desired file
(contributor). Upon the connection being built, the desired file is transferred
from the contributor to the requestor. In addition, at the beginning of each
transfer, the requestor sends a message to the server for a notification, and
when the transfer is completed, it will send another message to the server.
For example, the 218/219 message pair is used for the initiated/completed
notifications, respectively. If the requestor downloads multiple files, the pair
of message will be sent for each transfer, which informs the server on how
many transfers are going on. Likewise, the contributor should send another
pair of messages for the case of upload (the 220/221 message pair).

− Firewalled. When the peer sharing data (the contributor) is behind a fire-
wall, and hence the peer wanting data (the downloader) cannot establish a
direct TCP connection to the contributor to download data, it is necessary
for the contributor to “push” the data by making a TCP connection to the
downloader’s data port [13] (note that if this alternative connection cannot
be setup because the downloader is also behind a firewall, file transfer cannot
take place). Once a music file should be “pushed”, the requestor sends a mes-
sage, 500, to the server immediately, and then, the response message, such
as 501, will be sent to the contributor, i.e., the peer sharing the file. After the
contributor receives the response message from the server, a TCP connec-
tion will be built between these two peers, while the port of the requestor is
determined according to the response message. Upon this TCP connection,
the desired file is going to be transferred. In addition, the peers should also
tell the server that they are downloading or uploading with different message
pairs, as described above.

Peer-to-Peer Browsing. In the latest version of Napster, any peer is allowed to
browse files in another peer, with the condition that only objects which have
been previously shared by their owner are displayed. To browse shared file of
another peer, a TCP connection should be first built between the two peers. Fig-
ure 9.1 illustrates how this connection is built.

Fig. 9.1 TCP connection in
the browsing case
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In the figure, peer A wants to browse the shared files of peer B. The TCP con-
nection between them is created as follows:

(1) A sends the message 640 < A′sname > to the server;
(2) The server then sends command 640 < A′sname > to peer B to inform B

that A would like to browse the shared files of B;
(3) If B allows A to browse its files, it will return the command 641 <

A′sname > to the server;
(4) After receiving B’s permission, the server forwards the message 641 <

A′sname > < B′sIPaddress > < port > to A;
(5) Peer A makes a TCP connection to B’s data port given by the server.

Finally, the connection is built. By sending the command GETLIST, peer A can
browse all the shared files of B.
If B is behind a firewall, B will make a TCP connection to peer A, and will let
the list of shared files be pushed to A.

9.1.1.4 Litigation: an Issue Beyond Technology

Thanks to the advantages of P2P computing, Napster harnessed the resources at the
edges of the Internet, and in particular it facilitated the free trade of music files. As
a consequence, it became more and more popular since its birth, especially on the
university campuses in the United States. And indeed, it had more than 38 million
users before November of year 2000 [161]. However, the free trade among the users
of Napster had arguably hurt the profits of the music recording industry, since users
in such communities could obtain what they desired without paying. In December
1999, the Recording Industry Association of America (RIAA) filed a suit against
Napster, alleging “contributory and vicarious” copyright infringement. Eventually,
Napster was forced to interrupt its services. From then, the discussion on the Prop-
erty Right Issues has been a hot topic around Napster and other P2P-based file shar-
ing systems.

9.1.2 Gnutella

In Chap. 2, we have described the architecture of Gnutella, one of the pioneers of
fully distributed P2P systems. In this section, we will first introduce an overview of
the system. Then we will provide more details on its protocol and working mecha-
nism. Finally, we will summarize its advantages and challenges.

9.1.2.1 Overview of Gnutella

Gnutella [7, 172] is one of the pioneers of fully distributed P2P systems, whose
history began in early March 2000. The system was invented by Justin Frankel and
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Tom Pepper, two former employees of a division of America Online called Nullsoft.
The name is the combination of GNU and Nutella, which implies its innovation and
impact on the computing field as well. The system was primarily started to share
recipes by the Nullsoft division. Theatrically, just after its birth, America Online cut
off its support, since the project headers were aware of its potentially causing copy-
right infringement. However, Brian Mayland, a programmer, reverse-engineered the
protocol and started a new project to develop clients. Consequently, Gnutella has be-
come an open source project with clients registered under the GNU License [248].
In fact, Gnutella is a file sharing protocol rather than a brand new software. As long
as the nodes comply with the Gnutella protocol, they form a Gnutella network and
each node can search and download files from the other peers. Among the most
famous citizens of large-scale and fully decentralized P2P systems, Gnutella has
attracted a wide interest. In general, Gnutella has the following features:

− Elegance and generality. Gnutella is elegant by its simplicity. Its minimalist re-
quirements can be mastered even by a programming apprentice. Furthermore,
the Gnutella protocol is so generic that it has been implemented in a large num-
ber of P2P systems, such as Gnotella [6] and Furi [4] and usually serves as a
primary “benchmark” in academic community;

− Transparency and user-friendliness. Instead of defining a set of complicated
symbols as the Internet’s protocols, most of Guntella-compatible systems take
keyword as their inputs and reply requesters with matching files. Moreover, the
underlying structure of the Internet where such systems survive is almost trans-
parent to their users, especially in the context of recent implementations;

− Dynamicity and self-organization. As known, the traditional Internet applica-
tions, including the Web and FTP, are directly implemented upon the Internet
and the roles of server, client and router are pre-defined and static. However,
Gnutella (including other fully decentralized P2P systems) creates an overlay
of dynamic and self-organizing peers, where participants are equal and work as
servers, clients and routers at the same time. Furthermore, the infrastructure it-
self is dynamic and ad-hoc, since each peer can join and leave the community at
any time;

− Full decentralization. Compared to previous systems, one of the predominant
features of Gnutella is its total decentralization. In Gnutella, there exists no cen-
tralized mechanism.

From the above description, we can see that Gnutella has eliminated one of lim-
itations of previous architectures: single points of failure. Gnutella brings out an
ideology of full decentralization, dynamics, ad-hoc, and self-organization. There-
fore, Gnutella was regarded as a way to reshape the Internet and also inspire us to
rethink our concept of the network-based applications. It had greatly attracted the
interests both from the academic community and the IT industry, especially when
Napster had been entangled in litigation.



9.1 Classic File Sharing Systems 235

9.1.2.2 Protocol

To be precise, it is more appropriate to define Gnutella as a set of generic P2P pro-
tocols, rather than a P2P system. Therefore, we should not be surprised to find out
that there are many Gnutella-compatible systems, such as Gnotella [6], Furi [4],
and Gnewtella [5], which are running upon various operating systems. Moreover,
the Guntella protocol usually serves as an underlying overlay upon which some so-
phisticated schemes, such as Routing indices [89] and Directed Search [342], are
implemented to improve the efficiency and effectiveness of searching in the con-
text of this computing paradigm. In the following, we summarize the kernel of the
Gnutella protocol, while for its details, we refer the reader to [8].

Gnutella adopts the HTTP-based protocol, which defines the way peers com-
municate with each other over the network. A Gnutella message transported over
the TCP protocol has a header, which is fixed to 23 bytes and contains five fields:
Identifier, Function (or Payload Descriptor), TTL(Time To Live), Hops and Payload
Length. The “Identifier” field having a length of 16 bytes stores the identifier of
the message, which is generated by the peer initiating the message and is used to
identify the message. The “Function” field having a length of 1 byte describes what
action a peer should take when it receives the message. The “TTL” field having a
length of 1 byte defines the number of hops the message can be (further) forwarded
from now on. The “Hops” field having a length of 1 byte defines the number of
hops the message had already passed until now. The “Payload Length” field having
a length of 4 bytes specifies how many bytes the next message header is from this
message header. Depending on the function of the message, certain rules must be
followed. This means that the Gnutella protocol is made up of two parts: (i) a set
of specific messages employed for transmitting data between peers, and (ii) a set
of rules managing how messages are processed at peers. Generally, the routing of
Gnutella messages on the network can be classified into three categories:

− Group Membership Messages (Ping and Pong). A peer who wants to join the net-
work initiates a Ping message in broadcast-based manner to declare its presence.
Those that receive the Ping message forward the message to their neighbors and
respond with a Pong message. The Pong message also has information regarding
its own initiator, such as its IP address and the number and size of shared files.

− Search Messages (Query and QueryHit). Query messages contain a search string
specified by the user, employed by the receiving peers to determine whether they
maintain good enough answers locally. Query messages are also distributed in a
broadcast style. “QueryHit” is the response to Query and includes information
necessary to download related files.

− File Transfer Messages (Get and Push). When the requester receives the Query-
Hit Messages, it is prepared for the data exchange with the file providers. Ordi-
narily, the requester only needs to contact the providers with a Get message, and
then directly downloads the desired files from them by standard HTTP protocol,
if the providers agree to the download request. Unfortunately, many computers
in the Internet are separated by firewalls for security and privacy reasons. That
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Table 9.2 Message managing rule

Message Managing rule

Ping This kind of messages is employed by Gnutella peers to probe the activity of
others in the network. On receiving a Ping message, a peer should reply with a
Pong message.

Pong Pong messages are the response to an incoming Ping message. It packages the
address of the pong message sender and information indicating the amount of data
currently available to other peers in the network.

Query This sort of messages is sent to create the primary mechanism of Gnutella, i.e.,
searching digital objects on the network. A peer who receives a Query message
will respond with a QueryHit if it finds one or several matches in its local data
store.

QueryHit QueryHit messages are the replies of an incoming Query message. A peer should
reply a Query with a QueryHit if it contains data strictly based on the query
processing criteria.

Get Get messages are used to download the files indicated in a QueryHit message.

Push A peer can send a Push message if it receives a QueryHit message from an answer
contributor that doesn’t support incoming connections. Push is a mechanism that
helps peers behind a firewall to contribute file-based data to requestors.

is to say, the HTTP Get method does not work, if the provider is behind a fire-
wall. In order to solve this problem, a Push method is employed. If the requester
cannot build a direct connection with the provider, it then tries to send a Push
message to the provider. As long as the provider receives the Push message, it
initiates itself a direct connection with the requester.

For clarity, we summarize the messages and their respective managing rule in
Table 9.2.

9.1.2.3 Challenges

While Gnutella enjoys many desirable characteristics, and is regarded as one of the
pioneers to reshape the Internet, as well as our concepts of network-based appli-
cations, it is confronted with many challenges, which have been briefly discussed
in Chap. 2. Here, we just highlight the two most urgent ones, to maybe inspire the
reader to pay attention to the topic.

− Scalability. Gnutella has indeed eliminated the problems resulting from central-
ized servers, but it still lacks scalability due to its broadcast-based message rout-
ing scheme. First, to probe the activity of others, a peer periodically produces
a ping message and broadcasts the message to all of its neighbors, who in turn
perform the same operation until the TTL of the ping message reaches zero. This
processing results in exponential messages in the network. Moreover, each ping-
ed node will reply with a pong message, which also generates the same volume
of messages as “ping”. This is even worse if we remember that it is necessary
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for a peer to ping its neighbors when it joins the network, ant that one of the
predominant characters of P2P systems (including Gnutella) is dynamic and ad-
hoc, which indicates there are continual peers joining the network. Finally, peers
in the network definitely need to search their desired digital objects, which also
results in an exponential number of messages. As a consequence, Gnutella is
inevitably flooded by the messages running on the network.

− Security. Gnutella provides no security guarantees, since all messages are routed
in the form of plain text, which can be parsed and even modified by every peer.
Specifically, since every peer through which a message passes is able to read the
full contents of the message, the system is highly vulnerable to malicious attacks.

To overcome these two challenges is urgent, since they greatly hinder the further
development.

9.1.3 Freenet

Freenet [3, 78, 189] is a fully decentralized and adaptive peer-to-peer system to
facilitate users to publish anonymously, replicate, and retrieve key-identified digital
files. This system has specific features to differentiate itself from other existing P2P
systems, as summarized in Table 9.3.

The first version of Freenet software was released in March 2000, when Napster
was facing its darkest day of censorship. Indeed, the development of Freenet can be
retrospected to 1997, when Ian had his paper “Distributed Address Lookup System”
published, which implicitly declared the philosophy of Freenet: Information Free-
dom. When Ian accomplished his thesis “A Distributed Decentralized Information
Storage and Retrieval System” in 1999, the development basis of Freenet was set
up. Ian and his colleagues further clarified their designing goal [78]:

− Protecting the privacy of information producers, maintainers, and consumers;
− Resisting to any information censorship;
− Realizing high information availability and system reliability through decentral-

ization;

Table 9.3 Distinguished features of Freenet

Compared system Distinct feature

Centralized P2P systems
(e.g., Napster)

Freenet has no centralized mechanism.

Structured P2P systems
(e.g., Pastry)

Freenet adopts a location-independent key to identify
corresponding data, and there is no mapping between the data and
its location.

Unstructured P2P systems
(e.g., Gnutella)

Freenet does not employ broadcast search.
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− Enjoying efficiency, scalability, and adaptability of information storage and mes-
sage routing.

Based on the above description, we can conclude that the most important policy
of Freenet is anonymity or protecting the user’s privacy, while the main functions are
publication, replication, and retrieval. In the rest of this subsection, we focus on the
discussion of this P2P system’s working mechanisms, protocol, and its advantages
and disadvantages.

9.1.3.1 Freenet Working Mechanisms

In this part, we discuss the working mechanism of Freenet, including its key-based
file identification, query and storage methods, and how a new peer joins into the
network.

Foundation mechanism: key-based file identification strategies. All shared files in
the Freenet are identified by certain kinds of location-independent keys. Specif-
ically, Freenet has adopted three types of keys to name the files in the network,
i.e., keyword-signed key, signed-subspace key, and content-hash key. In the fol-
lowing, we will describe their generation, function, as well as their limitation.

− Keyword-signed key (Abbr. KSK). This simplest type of key (in Freenet) is
constructed from a short text string, which is given by its contributor (the
user inserting the file into system) and is descriptive enough to denote the file.
For instance, when a user inserts a disquisition on how human cloning im-
pacts ethics, one could use “text/philosoph/ethic/human−clone” to describe
the file. Such a string is used to deterministically produce a public, private
key pair. The public component is used to generate the file’s keyword-signed
key (KSK) while the latter serves as the signature of the file being inserted.
This signature can just provide minimal integrity check of the retrieved file
that matches the KSK. To retrieve the file, any user (either the contributor
or other participants) just needs to input the descriptive string published by
its contributor, instead of inputting the KSK itself. However, this sort of key
mechanism obviously suffers from two problems. First, since malicious at-
tackers can employ a dictionary to compile a list of descriptive strings to
assault against the signature, the proved integrity check is really minimal
and even takes no effect. Second, since there is no global coordination and
users are also hardly able to have enough knowledge of the whole system, it
is possible for two users to independently use the same description to denote
different files.

− Signed-subspace key (Abbr. SSK). This sort of key integrates the personal
namespaces of Freenet users. To generate an SSK for a file, the following
procedure is indispensable:

(i) A user randomly creates a namespace in form of public key, private key
pair;
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(ii) The user appoints a descriptive text string to the file to store into the
system (as in KSK);

(iii) Both the user’s public namespace key and that of the file’s descriptive
string are hashed independently;

(iv) Both the hash values of (iii) are joined through a XOR operation;
(v) The results of (iv) are hashed to produce the SSK of the file to be storing.

In order to let other citizens of the community to retrieve a file identified
by an SSK, the contributor should publish the descriptive string of the file
and the public key of his/her namespace. On the other hand, storing a file
also requires the private key of the namespace, so that only its owner can
modify it. In addition, users have access to manage their own namespace,
which enables them to find smarter schemes to improve file retrieval.

From the above description, we can observe that the SSK strategy is more
sophisticated than that of KSK and able to conquer both problems KSK faces.
As mentioned above, the namespace of a user is randomly generated, so it
is hard for different users to obtain the identical namespace. Therefore, it is
virtually impossible for two different users independently to identify two dif-
ferent files with a same key. Furthermore, since the signature of the file iden-
tified by the SSK is the private part corresponding to its user’s namespace,
which is randomly produced, it is more secure than that of a KSK.

− Content-hash key (Abbr. CHK). This sort of key is produced by directly hash-
ing the contents of the file being inserted. Furthermore, a randomly generated
encryption key is also used to encrypt the file. In order to allow it to be re-
trieved by other users, both the CHK and the decryption of the file should be
published by the contributor.

The greatest merit of CHK is that it helps users to update and split their
files. Users can update their files by employing CHK together with the SSK
strategy. When a file, for which we want to let it be updated later, is to be
inserted, it is first stored under its CHK. Then an indirect file pointer is in-
serted under an SSK whose contents are the CHK of the file. To update the
file, its new version is first inserted under its new CHK. Then a new indirect
file pointer of the new version is inserted under its original SSK pointing to
the new version. When the insert arrives at a peer maintaining the old ver-
sion, it triggers a key collision. The peer verifies the validity and timestamp
and finally accomplishes the updating.

File splitting is also useful in the context of networking computing. With
the application of CHK, the file splitting is very easy to achieve in Freenet.
First, the file being inserted is split into several parts based on certain metrics.
For example, each part is given a fixed size, function of the total size of
the file. Each part is separately inserted into Freenet under its own CHK.
Finally, an indirect file pointer is created, which points to all of the separate
parts.

Briefly speaking, the key mechanism, the working foundation of Freenet,
is sophisticated enough to cater to many utilization demands. However, all
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three strategies are confronted with the challenge of finding the keys in the
first place.

Query processing: how to retrieve a file in Freenet. To retrieve a desired file from
Freenet, a user should first initiate a request message through his own peer to
express the target with a file key, which is determined beforehand. Further, he
must specify the message’s hops-to-live, whose function is equivalent to that of
the TTL in a Gnutella message. By now, what the user needs to do is just waiting
for the result. When receiving a retrieval request, a peer will first lookup against
its own repository and if it finds the answer, it declares itself as the data source
and returns the answer along the same path as it came. Furthermore, all peers
along the path, independently, cache the file in their local repository, and create
a new entry in their routing table to store the actual source as well. Obviously,
subsequent requests containing the same key can be efficiently resolved from the
cached results. Otherwise, if the peer cannot find the answer locally, it will select
a key in its routing table that is nearest to the one contained in the request and
route the request to the corresponding peer. If the current peer cannot forward the
request to its downstream neighbor associated to the nearest key, either because
the operation results in a loop or because that neighbor is currently down, then
the current peer will try the second nearest, then the third, and so on. Further, if
the peer cannot route the request downstream after all possible attempts, it will
return a failure to its upstream peer and the latter will try its second nearest and
so on. If the request’s hops-to-live limit is reached, a failure message is returned
to the original peer without any more peer trying.

File storing: inserting files into Freenet. To store a file into Freenet, the process is
to insert the file into the P2P network, which “reuses” the scheme of query
processing adopted by the network and includes three sequential processing pro-
cedures:

− file key deciding;
− insert message propagating;
− file inserting.

To store a file, a user should first decide which key strategy to use and declare
or obtain the corresponding file key. Then the user should initiate an inserted
message through his own peer and specify the file key and the message’s hops-
to-live, which determine how many copies of the file will be stored in the net-
work. An insert message is propagated in the same style as a request message
described above. Specifically, when receiving an insert message, a peer first ver-
ifies whether or not its routing table has already seen the file key and perform
following two processes, respectively. (i) If it has seen the file key before, the
peer will return a message to inform the user that there already exists a file
named by the key, so that the user learns about the key collision and makes a
second try with another key. Note that along with the key collision returning to
the original inserting peer, the existing file is cached along the same path, which
equals to retrieving the file by the original file key. (ii) Otherwise, the peer will
try to forward the inserted message to its neighbor maintaining the nearest key
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to the inserted one in its routing table. If it cannot, due to the downstream neigh-
bor being down or creating a loop, it will try to route the inserted message to the
neighbor corresponding to the second nearest key in the routing table, and so on.
If the message runs out its hops-to-live without a key collision, a “clear” result
message will be returned to the original inserting peer. Finally, the inserting file
will be stored in each peer along the way of the inserted message routing. Note,
just as a query processing, an inserting processing also has the effect of file key
clustering.

File managing. This is the mechanism by which a peer deals with the conflict be-
tween a limited storage capacity and a continuous stream of files to be stored. In
Freenet, each peer adopts the policy to first delete the least recently used, which
is similar to the LRU (Least Recently Used) cache policy proposed in [309].
That is to say, when inserting a new file while not having enough sharable stor-
age space, a peer will first delete the least recently requested files until there is
enough space to cater for the new insertion.

Peer joining. The mechanism defining new peer joins has been proposed based on
two considerations: efficient routing and anonymity preservation. Indeed, they
are, to a certain extent, two conflicting demands. Freenet caters to them simul-
taneously by adopting a cryptographic protocol. Before joining the network, a
new peer should obtain the address of one or several existing peers, so that it
can propagate its message through the existing nodes, to announce its presence.
First, the newcomer chooses a random sequence (called “seed”) and informs
the veteran peers via a message including its address and the hash value of the
random seed. On receiving such an announcement, a veteran chooses itself a
random seed, further XORs the seed chosen by itself with the hash value in
the announcement and hashes the result again. Furthermore, the peer routes the
most recent hash to a randomly selected neighbor (based on its routing table).
Similarly to query and storing processing, the processing is terminated when the
hops-to-live of the message arrives at its lower bound. All peers in the path of
the announcement routing can discover and verify the key of the newcomer and
create an entry in their routing table for the newcomer.

9.1.3.2 Freenet Protocol

Freenet adopts a packet-oriented protocol while the kernel is self-contained mes-
sages. Each message is embedded a transaction ID to enable the currently process-
ing peer to decide the status of either insert or request messages. Further, Freenet
has the flexibility of employing different message transport mechanisms, such as
TCP, UPD, even radio package and so on. Indeed, it adopts TCP in most cases and
the addresses of a peer consists of its IP address and the employed port number. In
addition, the P2P system exploits the scheme of virtual addresses to overcome the
challenge resulting from the frequent change of some peers’ addresses. All mes-
sages include a 64-bit transaction ID, a hops-to-live, a depth and even a key in some
cases. The ID is randomly generated and the probability that two different messages
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share the same ID is extremely low. Hops-to-live, deciding how far the message will
be routed, is given by the message initiator and is decremented at each hop. How-
ever, a message will not be terminated at once after its hops-to-live reaches 1, but is
still routed further with a finite probability with the consideration of security. Con-
versely, the depth of a message is incremented at each hop and serves as the basis
for the current peer to set the hops-to-live of the replying message.

Connection building up. To carry out a transaction, the initiator should initiate a
Request.Handshake message, which is routed in the same manner as the request
described previously. If the remote peer corresponding to the request is active,
it replies with a Reply.Handshake indicating the version of the protocol that it
can understand. Since a handshake can be “remembered” for some time, the
subsequent transaction between the same peers can omit the processing during
the period.

Query processing. In order to retrieve a desired file, the initiator should initiate a
Request.Data message containing a transaction ID, the hops-to-live counter, the
depth and the search key. The request message is routed in the network as dis-
cussed previously. Further, based on the chosen hops-to-live, the initiator starts
a timer and assumes failure after the period. However, the remote currently
processing peer can periodically send back Reply.Restart messages to extend the
timer. If the query is successful, the answer contributor replies with a Send.Data
message carrying the desired file and the source address (possible faked). If the
message runs out its hops-to-live without finding the answer, the peer will reply
the initiator with a Reply.NotFound message. During the replying procedure, the
sending peer decrements the hops-to-live of the Send.Data (or Reply.NotFound)
and forwards the message upstream until it reaches the actual requestor. If a
peer cannot forward the message downstream while there are still hops-to-live,
it will reply its upstream neighbor with a Request.Continue message specify-
ing the left hops-to-live. On receiving a Request.Continue message, the peer
tries to contact the next most likely peer and returns a Reply.Restart message
upstream.

Storing processing. To store a file into Freenet, the initiator sends a Request.Insert
message containing a transaction ID, an initial hops-to-live counter, depth, and
the proposed key. The message is routed in Freenet as discussed previously.
The timers and Reply.Restart messages are performed in the same manner as
they are in the query processing. If the insert induces a key collision, the
peer replies with a Sent.Data message containing the existing file or a Re-
ply.NotFound message (if the file is not found while there is a corresponding
entry in the routing table). If the insert has not confronted a collision and tra-
verses all possible peers and there are still hops-to-live, the peer replies with a
Request.Continue indicating a failure in this context. If the hops-to-live counter
reaches zero without facing a key collision, the peer will reply with a Re-
ply.Insert, which is routed upstream to the initiator. All peers along the path
are waiting for their upstream neighbor’s Send.Insert message containing the
file (to store). When receiving it, they store the file locally while forwarding
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the Send.Insert message downstream until the initiator of the corresponding Re-
ply.Insert.

9.1.3.3 Merits and Limitations

As one of the pioneers of P2P systems, Freenet has many merits and several limi-
tations as well. In this part, we first present the merits that Freenet enjoys and then
discuss the limitations it is confronted with.

− Merits

(1) Freenet has eliminated many problems of centralized architectures, includ-
ing single points of technical failure and censorship, and lack of scalability.

(2) Freenet has gotten rid of the common problem of conventional network-
based application, i.e., the slashdot effect (popular data becoming less avail-
able with the increase in request).

(3) Freenet is one of the most successful P2P systems which protect the privacy
of their users and have high security.

(4) The search strategy of Freenet has the effect of clustering similar identifier
of files together, and thus is beneficial for peers to answer similar queries
efficiently according to the previous search experience.

− Limitations

(1) Not providing permanent file storing: Although Freenet has eliminated some
limitations resulting from centralized architecture and improved the informa-
tion availability and system reliability, it indeed does not provide permanent
storing. Therefore, some files that are seldom requested may be removed
from the system.

(2) Inefficient searching: Although the Freenet’s working mechanisms and pro-
tocol are much more sophisticated, e.g., key clustering and caching, it is not
sufficiently efficient to be a search engine as present. Indeed, many users
complain that the period from their request submission to the answer arriv-
ing is usually too long. This makes the system hardly practicable.

(3) Disputable philosophy. Information freedom is the main policy and the phi-
losophy of Freenet. Commonly, information freedom is desirable in the dig-
ital age, especially with the growth of censorship and erosion of privacy
increasing in the Internet. However, a level of control is desired in most civ-
ilized societies.

9.2 Peer-to-Peer Backup

Today’s PCs typically come with large storage capacities that have outgrown the
needs of many users. To utilize the unused storage space, these PCs can be “con-
nected” in a peer-to-peer (P2P) network to backup each other’s data. Designing
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such a P2P backup system is challenging: the P2P network is inherently dynamic
(nodes join and leave anytime), fairness must be enforced to prevent free-riding, the
maintenance traffic has to be kept at an acceptable level, heterogeneous needs and
capacities of nodes have to be considered, and the number of replicas must be con-
trolled, and duplicates have to be eliminated. (Note that we follow the terminology
presented in [55]—replicas refer to copies generated by a backup system to enhance
reliability, while duplicates refers to logically distinct blocks with identical content.)

Existing works have focused on two directions. On one hand, there exist dis-
tributed storage systems (e.g., PAST [114], OceanStore [186], and Farsite [55])
that pool together the storage resources of the peers in the P2P network for shar-
ing, archiving, and/or providing a distributed file system. However, these systems
provide little or no data backup semantics, such as incremental updates and ver-
sioning. On the other hand, we have P2P systems that offer backup solutions, e.g.,
pStore [38], Pastiche [84], and the Cooperative Internet Backup Scheme [195].

This section will introduce four Peer-to-Peer backup systems in detail and give a
short overview of other related work.

9.2.1 pStore

The pStore system [38] separates backup and underlying Peer-to-Peer functionality.
pStore completely surrenders all Peer-to-Peer tasks to Chord [173], a distributed
hash table (DHT) implementation, concentrating on the implementation of backup
semantics on top of it. When creating a new backup, pStore splits each individual
file of the backup set into a number of equal-size blocks (except the last block, which
may be smaller) and creates a metadata record, which are then stored inside the hash
table (Fig. 9.2). The mapping of data blocks to nodes inside the Peer-to-Peer overlay
is managed by Chord.

Before being inserted into the network, each file block (FB) is encrypted using
convergent encryption [55]. In this scheme, each block is encrypted with a sym-

Fig. 9.2 Overview of pStore
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Fig. 9.3 Block creation process in pStore

metric cipher using a cryptographic hash value of the block, H1, as the key. The
encrypted block (EB) is run through the hash function once more to obtain a hash
value H2, which serves as the identifier (ID) of that block. After that, the tuple (H2,
EB) is inserted into the distributed hash table (DHT). Both H1 and H2 and general
information on the block are added to the metadata descriptor (called file block list,
FBL). Finally, the FBL is inserted into the hash table as well. Since it contains keys
for all files blocks, it is encrypted using the symmetric key of the user, which can be
derived from a password. The block creation process is illustrated in Fig. 9.3.

Data Sharing By employing convergent encryption, pStore ensures that all peers
that back up the same file produce the same set of encrypted blocks. This guarantees
that all storage requests for identical blocks will be routed to the same host in the
DHT. If a host receives a duplicate request, asking it to store a block which is already
present in its block store, it will silently ignore it and return a “success” response.
The scheme ensures that only a single copy of each block is stored in the system
and common blocks are shared. Each host stores an owner tag list (OTL) with each
block stored to indicate all the peers that send a storage request for this particular
block. Figure 9.4 illustrates the block sharing in pStore.

To further decrease the storage requirements, pStore incorporates an incremental
backup scheme. Exploiting the observation that files in consecutive backup snap-
shots often show only minor differences, pStore tries to match previously stored
file blocks with the new version of a file using a modified rsync algorithm [319].
The original rsync algorithm is designed for fixed-size blocks, pStore extends it to
support matching blocks of different sizes. The matching process is illustrated in
Fig. 9.5. When backing up a new version of a file, pStore updates the existing meta-
data record(i.e., the FBL) by appending a new list of file block identifiers. As shown
in Fig. 9.6, the new list contains references to matching old blocks as well as a small
number of newly created blocks. Under this scheme, the frequent backups of a file
with small changes should only demand moderate resources.
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Fig. 9.4 Block sharing in pStore

Fig. 9.5 Block matching in pStore

Fig. 9.6 Adding version to file in pStore

By employing these techniques, significant savings on the global storage require-
ments can be achieved. The authors of pStore claim a reduction of between 3 and
60 percent in total storage requirements. However, savings depend heavily on the
data inserted into the backup system and scale directly with the degree of overlap
between hosts. (A study conducted as part of the Farsite project [55] found up to
50% overlap between the computers of Microsoft employees.)

Replication As discussed in Chap. 5, replication is needed in order to make data
storage robust against host failure. pStore places multiple copies of blocks under
different keys inside the hash table, it accomplishes this by hashing the block iden-
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tifier together with a salt value. pStore uses a collection of well-known salt values
for different replicas. To create the identifier of the ith replica of a block, the client
simply appends the salt value for replica i to the block identifier, H2, and calculates
the hash value of this concatenation. Using the obtained hash value as the key, the
client then proceeds to insert the replica into the system. In this way, clients can
create any number of replicas they want.

Fairness pStore offers no dedicated mechanism to fairness. Nothing prevents peers
from overloading the system with too much data and nothing prevents clients from
free-riding, storing data inside the system without providing storage themselves.

9.2.2 A Cooperative Internet Backup Scheme

“A Cooperative Internet Backup Scheme” [195] tries to address the Peer-to-Peer
backup problems in an entirely different manner. This system focuses on providing
a virtual replicated “disk”, leaving the actual implementation of the actual backup
to clients. The system emphasizes a lot on fairness, at the cost of losing a few other
desirable properties.

The main idea of this scheme is: Peers exchange disk space in a symmetric man-
ner. When forming a trading partnership, both peers agree on terms like the ex-
change quantity, the time-frame of the exchange and certain availability of each
peer. Of course, it is rare for two peers to find exact matches in exchanging quanti-
ties, so trade ratio might be used. Once both peers have agreed to the deal, they can
begin storing data on each other’s hard disk.

Replication Peers are assumed to build a virtual “disk” using erasure-coded stripes
in the manner of a RAID disk array (Fig. 9.7). Erasure codes [333] are a special
variant of error-correcting codes that only deal with erasure (lost blocks) instead
of general single- or multiple-bit errors. In general, the space efficiency of erasure
codes increases with the number of fragments being used. On the one hand, this

Fig. 9.7 Virtual disk using erasure code
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means a peer can increase system efficiency by trading with many partners, which
keeps the storage overhead low. On the other hand, bandwidth consumption and la-
tency increases with each partner added because more fragments must be retrieved
to reconstruct data, leading to decreased system efficiency. Selecting the right num-
ber of fragments is a trade-off between space efficiency and network overhead.

Finding Partner Cooperative Internet Backup suggests a central server acting as a
matchmaker in order to facilitate finding trade partners among peers. A peer that
is willing to trade (to backup data) contacts the server with the description of the
partner it is looking for. The server keeps all this information in a database and will
return to the requesting peer a list of potential candidate partners. The requesting
peer will contact these candidate partners to establish suitable trades.

There is one problem with the approach in this system: a peer must remember
the list of peers it has traded with, i.e., its partners.

Fairness Fairness is the focus point of Cooperative Backup Scheme. Building on
the base of symmetric trading, there are a number of mechanisms dealing with free-
riding and malicious peers.

Replacing a bad partner is the first step. If a partner loses data or does not keep its
uptime promises, a peer will drop the partner and prefer to look for a new partner.
The misbehaved partner will be kept in a black list so as to avoid adding these
partners in the future. Of course, a peer does not drop its partner on its first failure,
since the partner may be temporarily experiencing downtime or crashing, in order
to take this into account, peers will wait for a time interval before deciding that the
partner is “bad”.

In order to locate bad partners, a peer needs to check their partners periodically
whether they are still holding the required backup data and whether they are still in
their up time as they agreed. The peer will request random blocks now and then to
make sure the partner is doing well.

9.2.3 Pastiche

Pastiche [84] combines the features of the previous systems, though itself has no
direct connection with either of them. Pastiche resembles pStore in terms of the way
backup data is managed and overlap is exploited. Files to be backed up are split into
blocks which are encrypted using convergent encryption to support sharing of blocks
between peers. Metadata is considered a special block which will never be split.
However, during the process of distributing the data blocks, Pastiche is more similar
to the Internet Cooperative Backup Scheme. Pastiche uses DHT routing to discover
backup “buddies”, which will store data for each other. There is a restriction for
peers to become buddies: they need to show a very high overlap in their backup
data, so that this enables them to create a complete backup for each other by only
exchanging a small set of blocks not present at the partner. In this way, symmetric
trading is formed, with each partner storing data for the other.
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Fig. 9.8 Buddy searching process in pastiche

Discovering Buddies During the process of finding the partner, one important crite-
ria is the overlapping data in backup sets. The reason is that the higher the overlap
between buddies the less data they need to exchange. Discovering matching peers is
done in a distributed scheme with the help of a central server which is also used by
Cooperative Internet Backup Scheme.

Each peer joins two Distributed Hash Tables (DHT). The first DTH is organized
by network proximity and the second DHT is organized by coverage rate, based on
an estimate of overlap between peers. The second DHT is used only when discov-
ering partners in the first DHT fails.

The process of partner discovery works as following (Fig. 9.8):

1. A host first calculates an abstract of its file system. The abstract consists of
checksums of a small randomly chosen set of files which is used as a fingerprint
of the host’s data.

2. With the abstract obtained, the host initiates a search in the network proximity
DHT (i.e., the first DHT) by doing a lighthouse sweep.

3. If the lighthouse sweep fails, a search in the coverage DHT (i.e., second DHT)
is used as a backup. Inside the coverage DHT, instead of using the lighthouse
sweep, the request is forwarded towards hosts with higher coverage at each hop
during a single search.

4. Finally, when a high-overlapped partner has been found, the set of different data
blocks are exchange between the established partners.

Data Sharing and Replication All peers need to split their data so as to produce
similar sets of blocks for files with minor differences. In Pastiche, instead of splitting
a file at regular intervals, content-based indexing is used to split the file every time
a “magic” pattern is encountered. The pattern is called anchor [214]. By relying
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Fig. 9.9 Robustness of anchors during file modification

on patterns to discover block boundaries, only directly affected blocks are changed
during an update process of the file, while the rest blocks are undisturbed (Fig. 9.9).

Security and Fairness The security of Pastiche is same as pStore: blocks are en-
crypted with convergent encryption, an owner list for each block is kept and keys
are stored in its metadata structure. Pastiche offers a periodic-challenge model with
probabilistic punishment, to ensure safekeeping of the backup data at partners,
which is an improvement in terms of fairness. Further improvements for fairness
enforcements are proposed by Samsara [85].

9.2.4 Samsara—Fairness for Pastiche

Samsara is an improved system for Pastiche, which enforces users to contribute
storage to the system, proportionaly according to their consumption of the system
resource. The main aim of Samsara is to convert asymmetric trades that have been
established by different pairs of partners into symmetric ones, with the usage of
Storage Claim.

A storage claim is a place-holder to indicate the unused storage space. When a
host requests storage from peers, it must store a storage claim of the same size in
return, which means reserving the same amount of space for future use by partner.
In the situation when a peer has no data to store at a trade partner at the time of
establishing trade, it issues a storage claim, saving the storage for later use. It is also
possible that in the end the partner never has any data to store for his storage claim,
if this happens, storage claims will not be removed from the system which leads
to reduced available storage, instead, Samsara incorporates the idea of forwarding
storage claims. During a trade, a peer may forward a foreign storage claim (claims
are supposed to be of equal size) or to replace one of his previously issued storage
claims by a foreign one later on. These scenarios are depicted in Fig. 9.10.
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Fig. 9.10 Generation and forwarding of storage claims in samsara

9.2.5 Other Systems

There are a number of other Peer-to-Peer backup systems which are similar in one
or another way to the above four systems. Here is a brief description for each of
them:

− PeerStore [188] is a peer-based backup system that decouples the management of
metadata and backup data. This separation allows different mechanisms to be ex-
ploited to optimize the design of the system. For the metadata, a DHT structure is
employed to efficiently detect duplicates and track backup locations. Using DHT
also enables aggressive maintenance of the metadata accuracy at a low over-
head. For the actual data backup, a symmetric trading scheme in an unstructured
network is adopted to preserve fairness among peers. The reported experimen-
tal study showed that PeerStore realizes fairness without excessive maintenance
overhead.

− SwarmBackup [157] is a commercial Peer-to-Peer backup system. The system
is based on a distributed hash table implementation similar to Kademlia [218].
The system employs small-scale broadcast queries (trying a routed query first)
to increase flexibility in data placement inside the DHT. A kind of error coding,
most likely erasure coding, is used to provide replication. Data is encrypted using
convergent encryption.
The system is to be deployed into a corporate environment, which has special
monitoring and administration hosts that can affect how much data is stored at
each peer. This implies that SwarmBackup has no explicit mechanism against
free-riding, which make it unsuitable for use in a large open network such as
Internet.

− Venti-DHash [296] is a system built on top of DHash, a replication-enabled dis-
tributed hash table proposed in [65]. Venti implements snapshot-based backup
at the disk-block level. The DHash back-end stores data blocks created by the
Venti system in a modified Chord DHT [173]. Convergent encryption is also
used to ensure security. It uses erasure code to store replicas at consecutive hosts
in the identifier space. However, it offers no fairness mechanism, which makes it
improper for the use in an environment without trusted peers.

− Distributed Internet Backup System [217] is a small-scale Peer-to-Peer backup
system relying on trusted peers. However, the system requires manual configura-
tion for the relationships of the peers. The design of the system does not include
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mechanisms for peer discovery, metadata management and fairness, which limits
its applicability.

− MagicMirror Backup [107] is a system that simply enables copying files to re-
mote machines, which the user has to select manually. In exchange, these ma-
chines may copy their data to the host. There is no specific encryption techniques
and no fairness mechanism to be employed.

− Dynamo [101] is a commercial key-value storage system that some services of
Amazon [25] deploy on. The system partitions and replicates data by consistent
hashing to achieve scalability and availability. The consistency of replicas are
maintained by data versioning.

9.2.6 Analysis of Existing Systems

Here, we shall discuss the suitability of three existing Peer-to-Peer backup systems:
pStore, Cooperative Internet Backup Scheme, and Pastiche in terms of their advan-
tages and disadvantages when used in a global scenario: A world-wide Peer-to-Peer
backup network of anonymous users, cooperating in a way similar to current Peer-
to-Peer file-sharing systems. Any interested user can join the Peer-to-Peer network
and distribute her backups on arbitrary peers.

In the global scenario, there are a number of problems that need to be taken care
of: First, a fairness mechanism is needed to ensure safekeeping and fair contribution
to avoid a breakdown of the service due to malicious and free-riding peers; Second,
duplicate removal is also important in order to reduce the resource consumption in
the global environment in networks with a high degree of overlap; Lastly, support
for peer heterogeneity is also important since in the global environment peers with
different free space and different network bandwidth can join at any time.

pStore With Distributed Hash Table (DHT), pStore can detect blocks already exist-
ing in the system efficiently. DHT also offers a nice mechanism for data distribu-
tion. However, fairness and node heterogeneity, which are two important criterions
in judging a Peer-to-Peer backup system, is not supported explicitly by pStore. The
reason lying behind is because pStore chooses to store actual data blocks inside
the DHT. This decision restricts a peer from selecting peers to store replicas freely
because this design binds a block’s storage location to the block identifier. As a re-
sult, every peer has the same chance of being selected to store a block, leading to
its inability to deal with heterogeneity. Fairness is also hard to implement in this
restricted design as there is no way for a peer to punish a misbehaving partner by
dropping its data. The other main problem of pStore is the high maintenance cost
generated by DHT in an unstable network. Peers join and leave the network fre-
quently in the network and thus cause two types of maintenance cost: update traffic
of routing tables of the DHT and data migration between peers. The latter has not
received much attention from the recent research works in Peer-to-Peer backup.

So far most research works focused on the routing-maintenance cost, which is
the traffic needed to keep the routing tables of peers up-to-date. However, when
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Fig. 9.11 Data migration in distributed hash table

DHT is used to store data items indexed by keys, additional maintenance cost, and
probably the more dominant cost, will rise: data migration cost. Whenever a peer
joins or leaves the network, it forces a reorganization of the key mapping in DHT
which causes data items to become misplaced. As a result, a number of data items
will be stored at a peer that is no longer responsible for them. In order to ensure
correct retrieval of these misplaced data items, they need to be moved to the peer
that is now responsible for them. As depicted in Fig. 9.11, without this process,
more and more data items in the DHT would not be retrievable as queries for them
will eventually reach the wrong responsible peer.

In order to show the dominance of the data migration cost comparing to the
routing-maintenance cost, we carried out an experiment over a 50 PCs network,
which is explained in details in Chap. 5. From the results obtained, we were able to
conclude that storing large amounts of data in a DHT causes high maintenance cost
the majority of which comes from the data migration cost. Especially, as the amount
of data in the DHT grows, data migration will become more and more dominant.
As a conclusion from the experiment, to achieve good performance in unstable net-
works, a Peer-to-Peer system should aim to minimize the amount of data stored in
the DHT.

Cooperative Internet Backup Scheme Regarding the suitability for global scenario
defined at the beginning of this section, the Cooperative Internet Backup Scheme
does not look like a good choice. There are two major problems with this system: the
centralized server and the high maintenance cost when enlarging the set of partners
of a peer.

The advantage and probably the property that we can utilize in the proposed sys-
tem is the symmetric-trading scheme. It is a good way to enforce both safekeeping
and fair contribution, which are two important aspects of the fairness of a Peer-to-
Peer backup system. However, when adding new backup partners, its strict rules for
replica replacement will cause problems and make the system unsuitable for large
dynamic unstable networks, resulting in a high maintenance cost. The other dis-
advantage is that it does not provide any mechanisms for duplicate checking and
removal, which pStore does. This may consume too much bandwidth in a network
that contains highly overlapped backup data.
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In conclusion, the symmetric-trading mechanism can be one useful idea that we
can apply into the new system that we will be working on.

Pastiche with Samsara Pastiche’s buddy system has the nice property for supporting
peer heterogeneity, that allows peers with different resources (hard disk free space,
network connection bandwidth, etc.) to participate in the system accordingly. Since
the backup buddies need to have large overlaps between their backup data, this ef-
fectively serves as a mechanism for duplicate removal for both backup partners,
which largely saves the network traffic and lowers the resource consumption. The
periodical challenges, together with the probabilistic punishment model enforces the
safekeeping of partner’s backup data. The storage claim is another elegant aspect of
the system which makes the whole system more fair in terms of peer contribution.

Disadvantages of Pastiche just come from its advantage: In order to make a trade,
peers need to have a high degree of overlap in their data, which may be rare in most
of the cases. Storage claim can possibly reduce the availability of blocks if a block
is part of a forwarding chain and might wrongly punish a peer.

In conclusion, Pastiche has several nice features in terms of fairness and suitabil-
ity for large unstable networks, but the way these features are provided has internal
problems which need to be taken care of.

9.3 Data Management

Supporting data management features, such as high-level complex query processing,
meta-data management, and user management in P2P systems is a natural extension
to file sharing systems. In this section, we first discuss two architectures for data-
base sharing applications. After that, two specific data management tasks on top
of overlay networks, i.e., XML data routing and continuous query answering, are
introduced separately.

9.3.1 Architectures for P2P Data Management Systems

9.3.1.1 PIER

The problem of query processing in P2P systems is firstly presented in [153], in
which the authors argue that query processing should be studied first, before other
P2P database issues are addressed. Furthermore, a framework based on distributed
hash table (DHT), for answering complex queries, is introduced. The framework
suggests to use an enhanced DHT layer over data storage to support query process-
ing. The tables, tuples, and fields are suggested to be organized in hierarchical
namespaces on top of the flat identifier space provided by DHTs. The PIER sys-
tem, which is developed according to the framework, tends to provide traditional
relational database operators under the communication expensive, parallel, and on-
line themes. In [159], the framework is presented as shown in Fig. 9.12.

In PIER, the Content Addressable Network (CAN) [266] is employed as the DHT
layer for providing routing and storage functions in Overlay Routing and Storage
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Fig. 9.12 PIER architecture

Manager modules. The namespace, resourceID, and instanceID are used to uniquely
identify an object, and the namespace and resourceID are used to calculate the DHT
key [159]. In implementation, namespaces are relation names, while resourceIDs are
by default the values of primary keys, and instanceIDs are used to separate objects
with the same namespace and resourceID. This CAN-based DHT layer is enhanced
to provide following operators in Provider module:

− Item←get(namespace, resourceID) It retrieves objects based on their name-
spaces and resourceIDs.

− Put(namespace, resourceID, instanceID, item, lifetime) It locates the site based
on an object’s namespace and resourceID, and puts the object to this site. It
should be noted that this operator accepts a parameter lifetime, which means the
low bound of the period of time the object should be stored.

− Bool←renew(namespace, resourceID, instanceID, item, lifetime) It informs the
site storing an object to keep the object for another period of time, as it is denoted
in the lifetime parameter.

− Multicast(namespace, resourceID, item) It multicasts to neighboring peers for
contacting the peers holding data in the namespace.

− Iterator←lscan(namespace) It provides scan access to all data in the namespace
through the iterator.

− Item←newData(namespace) It informs the application when a new data object
is inserted into the namespace.

The Query Processor module is implemented in a “boxes-and-arrows” style
[159]. A push-and-pull model is employed. The results are produced by an oper-
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ator and enqueued by push. The data can be retrieved for the next operator by pull.
In the design of PIER, the queue is in charge of the networking issues. Furthermore,
it is reported that system catalogs, an extensible operator interface, and declarative
query parsing and optimization will be added to the Query Processor module as
future work [159].

9.3.1.2 BestPeer

While PIER focuses most on complex queries over structured P2P networks, a more
recent system, BestPeer v2.01 advocates a practice-oriented peer data management
system. In [99], the authors present the vision, implementation, and test results for
a practical PDMS.

One of the scenarios that BestPeer v2.0 starts from, is that of a Supply Chain
Management application, where different participants (i.e., peers) need to share
data for mutual advantage (Fig. 9.13). Consequently, apart from the “traditional”
PDMS areas of interest (query processing, index management), BestPeer v2.0 also
addresses issues of access control and data synchronization (Fig. 9.14) in order to
protect each participant’s private data stored, for instance, in an internal ERP2 sys-
tem.

Fig. 9.13 Vision for a
corporate PDMS

Fig. 9.14 Layered structure
of the Bestpeer v2.0 PDMS

1http://www.bestpeer.com.
2Enterprise Resource Planning.

http://www.bestpeer.com
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Table 9.4 Index types for BestPeer v2.0

Type Key Indexed Value

Table index Table name Peer list

Column index Column name Peer list

Data Index Data Value (Column Bitmap & Peer IP) list

BestPeer v2.0 relies on a global schema, to which all participants must adhere.
That does not mean that each enterprise needs to change its internal data storage,
but simply that they must provide a mapping from their own data schema to the
global schema. In what follows, we will in general refer to this global schema when
mentioning tables or columns, unless otherwise specified.

The underlying structure of this system is BATON [166]. As in PIER, one of the
most important things to consider when choosing the underlying structure is whether
or not it can support efficient range queries. It is definitely the case of BATON and,
in addition, it also comes with a native load balancing mechanism.

To speed up query processing, be they range or otherwise, BestPeer v2.0 uses
three types of indices: table index, column index, and data index. Table 9.4 shows
their formats. The first two types (table and column) are rather straightforward:
they maintain a list of peers that store that particular table or column. For the data
index, the idea used by this system is to assign an ID to every column and to map
this ID to a position in a bitmap. Then, when indexing a particular data value, the
generated bitmap contains values of 1 only where the data appears as a value in the
corresponding column.

Maintaining three types of indices would seem like an overhead, but it is just a
design choice, balancing index management with query processing times. However,
in the case of the data index, it may result in a particularly high management cost,
since the data space is potentially unbounded (e.g., if we consider product codes—
there are limitless possibilities in data values). BestPeer v2.0 indexes data values
only upon request of the user (a similar strategy to that of centralized DBMS).

Using these three types of indices, the system’s query processor takes responsi-
bility for collecting statistics, generating a query plan, and executing it. A simple
query may involve only one table, and in that case, the query processor first identi-
fies the peers that have data for that table, sends them individual requests, and then
collects and merges the answers. It is more interesting when a query involves join-
ing operations between tables on different peers. In this case, the query processor
rewrites the query into some subqueries, where each subquery can be processed by
a peer individually. The processed result is stored in the local DBMS of the peer
as a temporary table. Then a bloom filter join algorithm is used: all peers that store
one of the two tables compute a bloom filter and send it to all peers that contain the
other table. These latter ones compute the join and send the data back to the peers
storing the first table, where the actual final result is computed.

In [99], the authors compare the performance of the BestPeer v2.0 system and
a centralized DBMS in terms of response time, throughput, maintenance costs, and
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scalability. Because of its distributed nature, BestPeer v2.0 is able to outperform the
centralized system in terms of response time, throughput and even index mainte-
nance costs, as well as scale smoothly as the number of participants increases. The
disadvantages of the system include an increase in the bandwidth overhead. This is
to be expected, since join operations have to send data across the network.

BestPeer v2.0 seems to be the first attempt at a truly practical, comprehensive,
peer data management system. Though bandwidth consumption is increased overall,
this is something that can be easier to share among participants, compared to the
costs of a centralized server.

9.3.2 XML Content Routing Network

The idea of an XML routing network is first presented in [300], driven by the mo-
tivation of data distribution technologies to deliver information to data consumers.
XML routing networks are proposed to be useful in many real-life applications, such
as real-time trading systems, or live media transmitting.

In an XML-routing network, data is organized into XML packets, each of which
is a single XML document, maybe with corresponding DTD. A sequence of XML
packets forms an XML stream. The XML streams are transferred from peers to peers.
There are different roles that a peer may take: As a root router, a peer produces XML
packets, and sends them to downstream peers. An internal router is a peer receiving
XML packets from upstream peers, and it forwards them to one or more down-
stream peers after a set of operations on each packet. The forwarding is stopped
when the XML packets arrive at the client, who consumes the XML data without
further distribution.

Two different configuration schemes exist in XML content routing networks.
A static configuration requires that each internal router forwards the XML packets
without modification or elimination, while a dynamic configuration allows internal
routers to forward only the packets needed by downstream peers. Static configura-
tion may cause wasted bandwidth cost, a problem which is especially serious when
downstream peers are interested in very specific packets. However, dynamic config-
uration also has its own disadvantages in that it adds additional burden to internal
routers, which should store the queries from the downstream peers, and judge if
a packet is useful for a specific downstream peer. Furthermore, when a new client
comes, the needed packets may be temporarily unavailable in dynamic configuration
scheme. The problem can be solved by reconstruction of the network.

Several techniques are developed for enabling the processing on the routers.

9.3.2.1 Mesh-based Content Routing

Mesh-based content routing is proposed for establishing and maintenance of the
XML content routing network [300]. The approach is based on diversity control
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protocol (DSP), which is at the same level of the internet protocols stack as TCP.
DSP ensures the global ordering of the packets from the same original stream from
a root router. Thus, a router may reassemble a stream even if the packets are sent
from two or more different internal routers. Each router has three primitives [300]:

− Join(Q) The current peer adds a down-stream peer with query Q.
− Children(Q) The current peer returns all its down-stream peers whose query is a

subset of Q.
− Parents The current peer returns all of its up-stream peers.

Thus, when a new peer comes, it initializes its queries and finds the root routers.
Then the peer sends Join(Q) requests to the root routers. If a request is approved,
the router is added as an upstream peer. Otherwise, the children of the root router
are queried by Children(Q), and the Join(Q) request is sent to these chil-
dren. The newly arrived peer iteratively requests to be the downstream peer of the
subsequently downstream internal routers as long as the request is not approved, or
the number of parents threshold is reached. Furthermore, each peer remembers its
level when it joins the network, which is the maximum level number of its upstream
peers plus one.

When a peer finds that one of its upstream peers has failed, it finds another up-
stream peer to take the place of the failed one using the same method as joining the
network, except that only routers with smaller level numbers are considered. If such
substitutive upstream peers cannot be found, the peer must disconnect all its down-
stream peers, and rejoin the network. Therefore, the overlay network established by
the above method is resilient, in the sense that neither peer nor connection failure
may cause the entire network to be reconfigured.

9.3.2.2 View Selection

In an XML content routing network, a router needs to evaluate the queries of down-
stream peers, such that which packets should be sent to which downstream peers can
be determined. However, evaluating the queries over XML documents, e.g., XPath,
is a time consuming process. Gupta et al. propose to employ views as headers of
XML packets to accelerate the evaluation process [142, 144].

A view is an XPath expression. The value of the view given to an XML docu-
ment is the offset of the first byte of the fragment satisfying the XPath expression, or
NULL, if no such fragment exists. A view collection is an ordered set of views, and
its value is an ordered set of offsets, respectively. Intuitively, a good view configu-
ration is one that maximizes the throughput given the header size, or minimizes the
header size given the throughput. The problem for finding such view configurations
is denoted as view selection in [142, 144].

The views can be selected online or offline [142]. In offline mode, the workloads
are assumed to be known by a centralized server. The view selection is done by the
centralized server, and root routers generate the views according to the view config-
uration. In online mode, each root router generates a view configuration according
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to the feedback of the downstream peers. Currently, only the method for offline view
selection is reported in [142, 144], while the online view selection remains an open
problem.

In fact, the online view selection problem is proved to be NP-complete [142,
144], and greedy algorithms are suggested for determining the view configuration.

9.3.2.3 XML Data Filtering

On each router, the XML packages should be parsed and evaluated according to
the workload, so that the router knows where the package should be forwarded to.
Several techniques are developed for such XML stream processing systems [24, 68,
106, 137, 143].

Altinel and Franklin proposed that an XPath expression be represented as a finite
state machine (FSM). They employ a hash index to navigate the matching between
the query and the XML document [24]. Chan et al. [68] proposed to index sub-
strings of path expressions that only contain parent-child operators. This way they
can share the processing of these common substrings for different queries. Diao et
al. developed YFilter [106] which converts the entire workload into a lazy determin-
istic finite state automaton (DFA). Green et al. [137] prove that the problem can be
resolve by DFA. Another alternative is XPush [143], which precomputes the entire
workload and converts it into a pushdown machine. All these methods can judge
if an XML document can satisfy a given query. They can be used in the routers to
determine the downstream peers.

9.3.3 Continuous Query Processing

Continuous queries, or continual queries, are long-running queries that are used
to monitor specific data semantics. Usually, continuous queries need to be evalu-
ated on data streams. Driven by the applications of information monitoring, much
work has went into building systems for continuous query answering. Existing such
systems include OpenCQ [197], CACQ [211], Aurora [62], AdaptiveCQ [316], Ni-
agaraCQ [71], TriggerMan [151], and TelegraphCQ [69].

Some applications involve nodes spread in a large-scale distributed environment,
or even Internet. In such applications, a large portion of nodes may generate data,
while each node may issue (continuous) queries. Usually, a query is to monitor the
data satisfying a specific condition. The data to be queried in most cases reside on
nodes other than the querying one. Each query needs to be evaluated for a long pe-
riod of time. Furthermore, in some of such applications, e.g., routing networks mon-
itoring and Web server log monitoring, data are generated fast, so that they should
be treated as data streams, which means their volume is large, and it is impossible
to store the whole data set.

Three prototype systems are reported for evaluation of continuous queries under
such circumstances. They are PeerCQ [129], CQ-Buddy [233], and Medusa [73].
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These systems aim at low-degree duplication of data transmitting, high-speed re-
sponse of event reporting, and heterogeneous-aware scheduling for workload bal-
ancing.

9.3.3.1 PeerCQ

PeerCQ [129] is a prototype system developed for fully decentralized information
monitoring. The system is developed in a two-tier architecture. The PeerCQ Proto-
col Layer extends the traditional DHT functions of overlay networks, in which the
peers are organized in an identifier circle. First, the number of identifiers assigned to
one node (peer) is consistent with the volume of resource the peer shares. Second, to
map a continuous query to a specific identifier, the data to be monitored is mapped
to the first part of the identifier, while the peer’s properties, such as IP address, are
mapped to the second part. Gedik and Liu make the assumption that the number
of queries is usually larger than the number of peers [129]. Thus, similar queries
have large probabilities to be mapped to the same peer. By similar queries, we un-
derstand queries with the same interests in data, i.e., same data sources and same
monitored data items. Last, a query may be assigned to a peer without the mapped
identifier in its identifier list. However, that peer should satisfy a heuristics-based
condition according to its cached data, its connection to the peer corresponding to
the mapped identifier, and its current workload burden. Thus, no peer in the system
would be overloaded. The Information Monitoring Layber is application-dependent.
It provides functions for further processing of monitored events.

The advantage of PeerCQ is that it can ensure the workload balancing. Further-
more, the extended DHT functions improve the probability that similar queries find
the same useful peer, such that duplicated processing can be eliminated. In PeerCQ,
only queries with same querying objects, i.e., data sources and data items, are con-
sidered as similar. Last but not least, the workload balancing scheme in PeerCQ con-
siders the heterogeneous nature of peers. However, in real applications with complex
queries, the result of one query may be useful for another query’s evaluation. Cur-
rently, PeerCQ does not support these kinds of processing sharing. In other words,
PeerCQ supports intrapeer process sharing but no interpeer processing sharing.

9.3.3.2 CQ-Buddy

CQ-Buddy [233] is another continuous query processing prototype system designed
for P2P-based environments. Similar to PeerCQ, it aims at duplicated processing
elimination and workload balancing. However, it uses a different scheme which
enables both intrapeer and interpeer sharing of processing.

First, CQ-Buddy uses a different definition of similar queries. The similar queries
are defined based on the similarity of selective predicates. Two selective predicates
are similar if and only if they share the same interest attribute and operation (one
of ≤,≥, �=,=). Second, a query can be partitioned into subqueries. The subqueries
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can be assigned to intermediate peers. Thus, a peer can use answer queries by itself,
or ask intermediate peers to help to answer the queries. Last but not least, a new
arriving query may choose to evaluate the query by the peer itself, or assign the task
to a peer with similar queries, or simply ask other peers to help evaluate the query.
Thus, CQ-Buddy provides different granularities of processing sharing.

9.3.3.3 Medusa

Medusa [73] is designed to be a distributed infrastructure for service delivery among
autonomous nodes, which is an extension to Aurora [62] for inter-participant fed-
erated operation. Aurora is a centralized stream processing engine using a boxes-
and-arrows model, in which the operators are implemented as boxes accepting and
producing data streams as input and output. A Medusa node (peer) can be a device
running Aurora, a PC or PDA consuming the result, or sensor networks generating
data streams. Peers in Medusa run according to economic principles. Each stream is
organized in messages. A positive value is attached to each message. The receiver
of the message should pay the sender according to the value of the message. If a
stream is processed by a box, the value is increased, and the message can be sold to
other peers.

Similar to PeerCQ, Medusa is built upon a structured overlay network using
DHT. However, for workload balancing, the boxes in the processing workflow can
be slided from one peer to another or be splitted. Three different kinds of con-
tracts exist, which are used to determine the upstream and downstream relationships
among peers. A content contract determines the specific stream to be transmitted
from a sending peer to a receiving peer, its quality, and the cost. A suggested con-
tract provides an alternative stream that can supply same content to the stream of
the suggesting sending peer. The suggested contract may be ignored by the receiving
peer. Finally, a movement contract provides functions of box sliding, for workload
balancing. However, whether a movement contract is accepted should be decided by
an oracle on each side of the contract.

9.4 Peer-to-Peer-Based Web Caching

As mentioned previously, P2P computing enjoys many desirable characteristics that
can be employed to cater to many newly emerging demands. Recently, this comput-
ing paradigm has been successfully deployed in the application of Web caches. In
this section, we will first introduce the background of Web caching. Next, we will
present two P2P-based web caching systems, i.e., Squirrel and BuddyWeb.

9.4.1 Background of Web Caching

Web caching is a popular technique implemented at the boundary of an intranet or
Internet service provider. It can reduce the bandwidth consumption of the Internet,
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alleviate the workload on web servers on the Internet, and eventually improve the
response time for the web browser [60, 239, 328]. To obtain an Internet object (e.g.,
an HTML page), a web browser usually fires an HTTP GET request to the local
browser cache, web cache or the original web server. On receiving such a request,
the local browser cache or the web cache will first determine the exact situation: (i)
the target is uncacheable; (ii) the cache is lost; or (iii) the target is cached. If the
target is uncacheable or the cache is lost, the request is routed to the next level of
cache towards the original web server. If the target is cached, the cache is returned
as the answer to the request if it is verified to be fresh. If it is not considered to be
fresh, a conditional GET (Abbr. cGET) corresponding to the request is forwarded
as the first two cases. The cGET is answered (by a further cache or the original
server) with either an entire fresh object or an “unmodified” message if the cached
object has not been updated. Note that the freshness of an object is determined by
the expiration policy of the web cache.

Traditionally, web caching is based on a centralized architecture, where it is
commonly deployed on one or several dedicated powerful machines. This can be
expensive, function of to the cost of infrastructure purchase, maintenance and ad-
ministration. Furthermore, this architecture invariably suffers from a single point of
failure, bottleneck of scalability, slashdot, and other limitations. On the contrary, in
a P2P-based caching application, such as Squirrel [163] and BuddyWeb [330], the
(computing, bandwidth and cache) resources within an intranet can be exploited to
achieve the same functionality and performance as the centralized one. More in-
spiringly, it can overcome the inherent limitations of the centralized architecture. In
the following, we will introduce two pioneers of this sort of novel application, i.e.,
Squirrel and BuddyWeb.

9.4.2 Squirrel

Squirrel is a P2P-based caching utility that enables the browsers of PCs in an in-
tranet to export their cache objects to each other. As a result, a large virtual web
cache is naturally formed. Each peer (i.e. a PC with the Squirrel software installed),
can act as a web browser and a web cache at the same time. In the system, each
peer runs a Squirrel instance employed as local proxy cache, and adopts a stan-
dard expiration policy. This application has inherited many desirable features from
its supporting infrastructure Pastry [275], such as lack of administration, resilience
to node failures and reliability. Moreover, Squirrel enjoys the performance compa-
rable to a centralized web cache in term of response time, hit ratio and external
bandwidth consumption, i.e., armed with the Squirrel, the intranet can collectively
reuse a larger set of already retrieved pages and will re-fetch a smaller number of ob-
jects from outside. In the following two subsections, we will discuss its supporting
infrastructure and working mechanism.
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9.4.2.1 Pastry: The Supporting P2P Infrastructure

Pastry is a self-organizing, fully decentralized P2P system that provides functional-
ities of routing, locating and storing. Armed with a scalable distributed hash-table
(DHT), it maps any given key of digital object to the location of an active peer in
the network, based on the numeric closeness of hash values of both identifiers (or
keys). According to [275], Pastry has many desirable characteristics:

(1) The routing cost is bounded by O([log2 bN ]) hops. When inserting or searching
for an object, the message can be routed to the target peer within an expected
[log2 bN ] hops, where N is the total number of peers in the system;

(2) It is resilient to concurrent node failures. A message can still be routed to its
target even if [l/2] adjacent neighbors failing, where l is typically of 8∗ log16 N ;

(3) It provides a “leaf” set (consisting of l peers of numerically nearest identifier
centering around the local peer), which determines the status of neighbors and
replicate objects among them.

Here, we have just briefly introduce some important characteristics of Pastry to
help readers to obtain a high level concept of the infrastructure of Squirrel. For
detailed information of Pastry, please refer back to Sect. 3.3.3 or to [275].

9.4.2.2 How Squirrel Works

When searching an object, a web browser initiates a request to the locally embedded
Squirrel proxy, which will first decide whether the object is cacheable in the intranet
or not. If not, it will route the request out of the intranet to the original web server.
Otherwise, the peer will try to obtain the fresh answer locally or from other peers
within the same organization. To obtain an answer from other peers, a peer should
first calculate the SHA-1 [16] hash value of the answer’s key (URL) and use it
to decide which peer maintains the answer (home-store, defined later) or has the
knowledge of the location of the answer (Directory, also defined later). To facilitate
the description, we shall introduce three important definitions firstly.

(1) Home peer. If the identifier of peer P is numerically closest to (a 128-bit) hash
value of a caching object O , then P is defined as the home peer of object O;

(2) Home-store. If object O is really maintained by its home peer, then the man-
agement scheme is defined as home-store; and

(3) Directory. If the home peer of object O just maintains an index on the set of
peers storing the object, then the management scheme is defined as directory.

In the following, we will discuss how Squirrel works on the two different man-
agement schemes:

Home-Store. In the first scheme, internet objects are stored at both common peers
and their home peers. When searching a given object, if the current peer cannot
find the fresh object locally (due to either having a stale copy or having none at
all), it sends a request to the object’s home peer. The latter will in turn reply with
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a fresh object or a “not-modified” message, if it has the fresh copy. Otherwise,
if the home peer also has just a stale copy or no copy at all, it will fire a cGET
or GET request to the original web server. If the home peer receives a cacheable
object from the server (or a “not-modified” message), it will update its local
cache (or freshness information) and answer the requestor accordingly. If the
object is uncacheable, the original server just replies the requestor directly away
from the home peer. Note that, since all external requests are touted outside
through the corresponding home peers, the home peers maintain the most up-to-
date copy in most cases.

Directory. The rationale of “directory” is that a peer having recently queried an ob-
ject can be employed to satisfy the same request from other peers. Managed with
this scheme, the home peer of an object manages a small index of up to (system-
widely predefined) k pointers to the object’s delegates, i.e., those peers that have
most recently requested the object. Consequently, an object might be stored at
than one (or even k) delegates. However, these copies (of the same object) are
of the same version and go stale independently and simultaneously. As for the
directory, it manages the necessary metadata of the homed objects, including the
ETag, fetch time, last modified time, TTL and cache-control information.
Let us now go on to present the procedure of how a HTTP request is satisfied
in Squirrel. When looking for an object, a peer will first try its local cache and
forward a corresponding cGET or a GET request to the home peer of the object,
which is the same as the processing in the home-store scheme. When receiving
such a cGET or GET message, the home peer will take different decisions and
take different corresponding actions based on the situation:

− Never met the object before. If the home peer has never met the requested
target before, it has not created a directory for the object. It creates a new
one for the object with unknown Etag and metadata (as discussed above) and
informs the requestor of its actions with a message. The requestor will fetch
the object from the original sever and fire a message (containing the meta-
data) to the home peer and the home peer accordingly updates the directory.
However, if the object is uncacheable, the home peer deletes the directory.

− Directory pointing to fresh copies. The home peer has already stored a direc-
tory pointing to several delegates containing fresh copies. When receiving a
cGET message from the requestor and finding the ETag matched, the home
peer replies the requestor with a “not-modified” message to the requestor.
Otherwise, the home peer randomly forwards the request to one of the dele-
gates and updates the delegate set with the requestor.

− Directory pointing to old copies. When receiving a cGET request, the home
peer informs the requestor to fetch the object from the original sever. After
fetching the target, requestor will help the home peer to update the directory.
If receiving a GET message, the home peer randomly forwards the request to
one of the delegates, who in turn fetches the object from the original server.
Then the delegate will send the object directly to the requestor and helps the
home peer to update the directory.
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According to [163], both schemes perform equally well; furthermore, they are
shown to be comparable to the centralized approach. Indeed, it is hard to explicitly
claim which one is better than the other, since “home-store” is simpler and more
elegant, while the “directory” can theoretically offer better workload balance in the
network.

9.4.3 BuddyWeb: A P2P-based Collaborative Web Caching System

By early 2002, BuddyWeb, a P2P-based Collaborative Web Caching System [330]
has been implemented through the collaborative efforts of the Fudan University in
China and the National University of Singapore. This system does not only improve
the performance of web search and the reliability of intranets, but also saves on the
expenditure of enterprises. Unlike existing web caching techniques that typically
are managed by the proxies, BuddyWeb exploits local caches of nodes (i.e., the
browser of PCs) within an enterprise network to satisfy repeated searches. Note that
one of the major difference between enterprise-based P2P systems and Internet-
wide systems is that the former is not as exposed to security threats as the latter
as peers within an intranet are protected by a firewall. In addition, the intranets are
well manageable and controllable. To illustrate the situation, consider the campus
network at the Fudan University, where there are thousands of PCs, each with a
web browser installed. Here, the network is shielded from the “outside world” by
its firewall, where any incoming and outgoing requests must go through its central
proxy. Furthermore, there is a quota policy (in Fudan University) to restrict the
amount of bandwidth each member of the university community can utilize, and
every bit of external data transferred will be charged! In the current web browser
architecture, since there is no cache sharing among different browsers, any request
must be sent out of the intranet to fetch its answer, even if the requested information
has already been available in nodes within the campus network, which results in
long response time and supererogatory cost as well. BuddyWeb, the novel P2P-
based application, which can facilitate the sharing of local caches among browsers
within the same Intranet, can solve the problems described above very well.

Compared to the existing Peer-to-Peer systems, BuddyWeb enjoys many distin-
guished characteristics, summarized as follows:

− Peers in the BuddyWeb network can dynamically reconfigure their neighborhood
based on the similarity of interests. In other words, as time goes on, it could be
expected to naturally generate communities of interests (e.g., community with
interest in database studies, community with interest in bioinformatics studies
etc.);

− A novel routing strategy that is based on the similarity of peers’ contents is
employed in BuddyWeb. Therefore, queries will be routed from a peer to its
neighbor that has the highest similarity of content, so that their answers can be
obtained in a small scope and query fewer peers;
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− BuddyWeb has adopted a self-adaptive multi-hop strategy, in which the TTL
(Time-To-Live) of a query message is automatically adjusted to maximize the
positive search results while minimizing the consumed bandwidth.

In the remaining subsections, we will discuss the architecture of BuddyWeb
and its novel mechanisms, i.e., similarity-based reconfiguration and similarity-
based routing and self-adaptive hopping. Note that since BuddyWeb is imple-
mented upon BestPeer, its protocol is inherited from the platform (i.e., BestPeer)
described in Chap. 2.

9.4.3.1 Architecture of BuddyWeb

The architecture of BuddyWeb is presented in Fig. 9.15. The figure on the left de-
picts the architecture of an autonomous peer in BuddyWeb.

The web browser serves as the front-end interface to the user. Thanks to its
transparency, users are not aware of any difference between the BuddyWeb-enabled
browser and the common one. In the BuddyWeb enabled browser, there is a personal
proxy that works with the local cache and a HTTP daemon to support HTTP re-
quests. The cache, in collaboration with the BestPeer platform [234], is responsible
for sharing cached data with other peers in the BuddyWeb network. The low level
communication between peers is managed by the BestPeer platform. Whenever the
web browser submits an URL query, the local proxy will receive and rewrite the
query into the input format of the BestPeer platform. The query will then be passed
to the BestPeer platform. Based on the requirement, BestPeer generates several mo-
bile agents and dispatches them to the BuddyWeb network to search for matching
documents. Upon receiving a match, BestPeer returns the information, i.e., docu-
ment location, back to the personal proxy. In this way, the personal proxy will issue
HTTP daemon directly to the peer that has the desired documents. The answer con-
tributor, upon receiving the HTTP request, will process it by the HTTP daemon and
send the requested documents to the requester.

Fig. 9.15 The Architecture of BuddyWeb
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9.4.3.2 Similarity-Based Reconfiguration

Instead of directly inheriting the default reconfiguration strategies (i.e., Maxcounts
and Minhops) from BestPeer [234], BuddyWeb makes good use of its LIGLOs to fa-
cilitate the processing. Each registered peer is responsible for sending its supervising
LIGLO (LIGLO is a super-peer that manages meta-data of peers) its IP address and
extra surfing information. Indeed, such surfing information will reasonably reflect
the peer’s interests tendency, which will be defined later.

To determine the interest tendency of a peer, the pages that it has browsed are
examined. Different schemes from the IR field can be adapted here. With the con-
sideration of performance and storage consumption, the extracted information from
the browsed pages must be representative as well as brief. One simple strategy is to
send some useful metadata (say, <TITLE> < /TITLE>) of the surfed pages to the
peer’s associated LIGLO. Alternatively, an user can provide feedback in the form of
highlighting some keywords in the browsed pages.

The peers’ interest tendencies can be represented as word lists maintained in their
LIGLO. Dynamic reconfiguration could be facilitated on the basis of those word
lists, which are referred to as Peer-Tendency. Keeping reconfiguration in mind, we
could view all the words in Peer-Tendencies as a word bag, which could be used to
construct a vector space. Each Peer-Tendency will be transformed to a correspond-
ing vector in such a vector space according to some weighting schemes. Note that
each LIGLO only holds information of the peers registering to it. Thus, a negotiation
must be held among all the LIGLOs to determine which LIGLO receive the Peer-
Tendencies of all the peers. An alternative approach to address this problem is to
use a hash method, which could avoid vector computation in a single server. How-
ever, in the BuddyWeb network there are relatively fewer LIGLO severs. Besides,
the Peer-Tendencies are rather “light-weight” files. Therefore, the former scheme,
i.e., the Vector Space Model-based (Abbre., VSM-based) strategy has been adopted.

A proper similarity function, e.g., cosine function, could be defined using Vec-
tor Space Model (VSM). To keep most beneficial peers as its neighbors, each peer
should maintain those peers with which it shares the highest similarity value. How-
ever, the computation of all pairwise peers is a time-consuming task, especially
where there are a large number of peers in the network. A simple alternative way
to solve this problem is to distribute the similarity computation to every peer, while
the responsible LIGLO computes only all the vectors in VSM. After peers finishing
their processing, those vectors will be sent to their LIGLO server, respectively.

In summary, the reconfiguration procedure is as follows:

− After a certain period (say, every midnight), the LIGLOs will negotiate with one
other to decide which one is responsible for computing the vectors of all the
peers. After the processing, each of them will hold the computed vectors of all
the peers.

− When a peer logs in to the network, it will communicate with its registering
LIGLO, and send its current IP address. It will also request all the other peers’
vectors. Similarities with all the other peers will be computed by the peer locally.
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− The k peers with the highest value of similarity will be kept as the directly con-
nected neighbors, where k is a system parameter that can be adjusted by individ-
ual participants according to their capacity and current workload status.

It is necessary to point out that effective clustering algorithms could be easily
deployed to group peers sharing common interests into clusters. This gives us a way
to discover the peer communities appearing in the BuddyWeb network.

9.4.3.3 Similarity-based Routing and Self-adaptive Hopping

In BuddyWeb, the dynamic reconfiguration is facilitated by the use of a similar-
ity computation, which provides a reasonable measurement of the relationships be-
tween peers. Consider, for instance, the situation in which a query has to be for-
warded to one of the neighbors to which the current peer is directly connected, and
that this peer maintains similarity values with its neighbors. Instead of forwarding
the query to all direct neighbors, the peer could select the neighbor with the highest
similarity value. Note that the query from the initial node will be propagated to all
directly connected neighbors and that the similarity-based routing policy will only
adopted when further forwarding.

Another benefit of using a similarity metric is that query agents could determine
themselves the number of hops they need to take. Previous P2P systems have to
pre-determine the number of hops of queries (i.e., TTL). If the number of hops is
set too low, the process of search will be confined within a small scope. On the other
hand, if it is set too high, the traffic over the peer network will be rather heavy. An
appropriate tradeoff is hard to be achieved because the TTL value of queries are set
to one-size for all.

The self-adaptive hopping strategy works as follows:

− A peer initiates a query agent with a parameter s instead of a TTL value, where
s is predefined by the P2P network. The diameter of the peer network is denoted
by D, which will be obtained in the process of facilitating the dynamic reconfig-
uration.

− When a query agent is forwarded to the directly connected neighbor by a peer, it
“remembers” the distance value between the peer and its neighbor. The value is
summed with the previous remembered distance values along the routing path.

− If the sum value exceeds the value of s • D, the hopping will stop. Otherwise,
the peer will forward the query agent to its neighbor further.

As such, the system does not need to have a fixed hop number for all the queries.
With the parameter s given by the system, the number of hops of each query will be
self-determined according to its searching scope in the concept space. The parameter
s reflects the extent of scope the system likes its peers to search in, and thereby
enables BuddyWeb to find a proper tradeoff between network traffic and search
completeness in a dynamic way.
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9.5 Communication and Collaboration

As peer-to-peer can arguably be defined as a technological parallel to day-to-day
human interaction, the communication and collaboration platforms are possibly one
of the most obvious applications. Still, even in this case, the number of applications
is limited. We will describe a few in what follows.

9.5.1 Instant Messaging

In general, instant messaging is not considered as a vital application. Thus, even
with the stigma of “unreliability”, peer-to-peer technology has been able to suc-
cessfully penetrate this market. Even more, with voice and video now a common
feature in instant messaging applications, the increased bandwidth needed to pass
along multimedia, has encouraged application developers to move to a peer-to-peer
architecture.

9.5.2 Jabber

Jabber is the original IM service that eventually resulted in the open standard
XMPP3 (eXtensible Messaging and Presence Protocol), and at the same time, it’s
main user. The protocol was invented by Jeremie Miller as Jabber in 1998 and the
first server, clients and libraries were available on year later, followed by many more
open source and commercial extensions since then.

The official standardization came under the IETF (Internet Engineering Task
Force) between 2002 and 2004 as a series of RFCs (most notably of which:
RFC39204). As a consequence of this standardization, many software producers
have created or adapted their products to this new standard (among them, big names
such as Apple, Google, Nokia, or Cisco).

The idea at the core of XMPP is to provide a standard way in which applica-
tions can communicate simple messages with each other and inform each other of
their status. It is based on XML and has two main components: XML Streams (the
communication channels) and XML Stanzas (the communicated informations). As
such, XMPP is not in itself a peer-to-peer protocol (it actually defines itself as a
client-server protocol), but, because it is quite flexible, there are already a number
of extensions that allow it to provide peer-to-peer communication.

3http://xmpp.org.
4http://tools.ietf.org/html/rfc3920.

http://xmpp.org
http://tools.ietf.org/html/rfc3920
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9.5.2.1 Jingle

Jingle is an extension protocol under review by the XMPP Standards Foundation as
XEP-0166 [203] and it addresses the fact that XMPP was not originally designed
to support data streams. In fact, Jingle defines the set of messages that two parties
need to exchange to set up a direct connection between them. What is transfered on
this connection is irrelevant for the protocol itself.

9.5.2.2 Serverless Communication

Serverless communication allows XMPP clients to contact each other directly with-
out going through the standards authentication mechanism via a server. Like Jingle,
it is also defined as an XMPP Extension protocol [282].

Without using servers, the client needs to advertise its presence and discover the
presence of others. It does so using DNS-based Service Discovery (DNS-SD [74])
and Multicast DNS (mDNS citemdns). As such, this advertisement only works on
the local network and communication can only take place within this local network.
This may be a limitation, but it is a security feature as well.

9.5.3 Skype

The widely popular communication service is probably the most visible success
story of a peer-to-peer application. With millions of users online 24 hours a day and
365 days a year, it has been the focus of attention for international media throughout
its 6 year history. It has also been a success story for its creators, when eBay acquired
it only after little more than 2 years from its original release, in September 2005,
paying for it no less than $2.6 billions.

The Skype protocol is not opened and little more than a one page description
on their website is available to the world to understand how it works. However,
in 2006 three researchers from Cornell University and Google Inc. have published
an experimental study that tried to, in a way, reverse-engineer the architecture of
the Skype service from connection and traffic logs monitored over a period of 4.5
months [140].

Considering that the Skype was founded by the same people that founded Kazaa
and their initial staff overlapped to a large extent, one can easily take as an initial
assumption the fact that Skype must be using a hybrid approach, where a set of
super-peers have more responsibilities than the vast majority of the other peers. In
fact, Skype briefly mentions this on their website, when describing their decentral-
ized user directory.5

5http://www.skype.com/intl/en/help/guides/p2pexplained/.

http://www.skype.com/intl/en/help/guides/p2pexplained/
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One of the most interesting observations that Guha and his colleagues made in
their experimental study is that Skype differs significantly from file-sharing net-
works in terms of predictability of peer behavior. In fact, with Skype, most clients
will be available during the daytime and off at night. With a worldwide coverage,
that results in a relatively constant and predictable number of users present in the
network at all times. It may be that this is what gave the network the extra push to
become the most successful P2P application to date.

9.5.4 Distributed Collaboration

A step forward from instant messaging, in terms of business applications, is collab-
oration. In many situations nowadays, documents within one organization need to
circulate, be edited or approved by employees located at more or less great distances
from each other. This can obviously be done in a centralized fashion, where an en-
terprise server collects and distributes all information. However, in this scenario, of
enterprise collaboration, peer-to-peer has a distinct advantage: the peers are reliable
and their action predictable (i.e., regulated by office hours). There is little point in
having a central server to mediate communication if you know that after 5pm there
will be no one to talk to. A peer-to-peer system will then be able to provide all
the services that a centralized approach would (notably reliability and robustness),
without the costs associated with the maintenance of an enterprise server and of
upgrading it together with the entire IT infrastructure of the company.

We chose three examples to showcase this idea: JBuilder is a software develop-
ment tool, MS Groove is the descended of Groove Networks, after it was acquired
by Microsoft and Collanos Workplace is a peer-to-peer collaboration tool developed
by an innovative start-up company.

9.5.4.1 JBuilder

Since its 2006 version, JBuilder, a software development tool, has included a peer-
to-peer collaboration to enhance its development environment and increase the per-
formance of widely spread teams of software engineers. This kind of collaboration
is more than communication or versioning. The idea is to allow two programmers
to work in real time over the same piece of code. In this sense, though details on the
precise architecture are not released, JBuilder is peer-to-peer in the sense that pairs
of users can collaborate directly without going through a server, but it is unlikely
that this communication travels over many hops in a structured P2P network, or,
even less likely, an unstructured P2P network.

9.5.4.2 MS Groove

Groove Networks started from the vision of its founder, Ray Ozzie, inventor of Lotus
Notes, but never quite reached a successful business until it was bought over by
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Microsoft in 2005 and incorporated into its Office suite in 2007. Somewhat similar
to the JBuilder P2P approach, a client in Groove will first contact a known server and
then, if the destination party is also online, it will instantiate a direct communication
channel between the two.

In this environment, emphasis is placed on collaboration on documents, synchro-
nization of work done while offline and less on instant communication or simulta-
neous editing.

9.5.4.3 Collanos Workspace

Collanos workspace is similar to MS Groove, but it is worth mentioning here be-
cause it is a very interesting example of different open source technologies put
together towards a [potentially successful] collaboration tool. For its peer-to-peer
technology it relies on JXTA (see Chap. 8), while for the rest it is based mainly on
an innovative way to use the Eclipse software development platform as a collabora-
tion platform.

9.6 Mobile Applications

As the handheld devices become more and more powerful and connected, we begin
to see a trend of moving applications from PCs to PDAs and cellphones. We see this
for email, office documents, web browsing, etc. It is not hard to imagine then, that
peer-to-peer applications will also make their way towards smaller, portable devices.
In this section, we will present two types of applications for mobile devices: file
sharing and text messaging and voice communication. We begin in chronological
order, with the latter ones.

9.6.1 Communication Applications

Peer-to-peer applications that aim to by-pass mobile services providers have ap-
peared as far back as 2002 [347]. More recently, the Swedish company TerraNet
(www.terranet.se) has proposed a system to provide multi-hop wireless voice com-
munication for areas where the mobile operators do not have cellular towers. They
planned to commercialize it in 2008, but in June 2009 there was still no update on
the outcome of the venture.

Such applications, despite their apparent utility, have a hard time imposing them-
selves onto the users for two reasons:

1. Given that mobile communications provided by mobile operators are relatively
cheap and generally of high quality, it is hard to motivate a user to use an unre-
liable connection that will most likely drain the power of the cellphone as it acts
as an intermediary for other users’ communications.

http://www.terranet.se
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Fig. 9.16 Communication via ad-hoc network and proxies to Internet and other telephony services

2. The mobile networks operators are even more reticent of such applications, even
if the claim is that it will be used only in areas where they are not present: if the
application works, there is no reason for which a user will not use it even in areas
where there is network coverage, thus chipping away the profits of the operators.

As shown in Fig. 9.16, the mobile devices create an ad-hoc network and then
use a dedicated gateway to connect to the Internet or to a regular telephony services
provider. To be practical, the mobile devices must be able to connect directly at dis-
tances far greater than the current Bluetooth standards (at most 100 m). TerraNet’s
claim is that their devices can communicate directly at 1000 m, and we can only
assume that they use something else than Bluetooth or Wi-Fi.

9.6.2 File Sharing Applications

File sharing applications have appeared later on mobile devices, mainly because
until only a few years ago, there was not enough storage on a handheld to keep
enough information to be worth creating a peer-to-peer network for. Nowadays,
with phones frequently acting as entertainment devices, holding music, photos, and
videos, the idea of peer-to-peer file-sharing that was at the base of Napster 8 years
ago has a new development ground.

There are two trends that seem to have appeared recently: first, commercial ap-
plications that advocate file sharing through a social network, peer-to-peer in spirit
but not in implementation, as they use a central server to manage content. Second,
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research systems that are fully peer-to-peer and attempt to solve the unique issues
that occur in a mobile environment.

9.6.2.1 Peer-to-Peer in Spirit

We identified three applications that offer their customers the possibility to share
files from their handheld devices. All of them have a social network component,
whereby a user can specify a list of friends to share the files with. Also, all of
them use the network operator’s internet services, or a Wi-Fi connection if one is
available, but do not link directly between two devices.

CloudTrade6 allows a user to store up to 1 Gb on their servers, and each file can
be either private, shared with friends or public. The other users can freely download
any file that is available to them, without any charge, as the system is supported by
advertisements.

Nareos’s peerboxmobile7 is fairly similar, except it does not impose a limit on the
size of the data that can be uploaded and also does not allow a user to store private
files, as everything is made available to all the users as soon as it is uploaded.

Melodeo’s nuTsie8 is a program to share and listen to one’s iTunes library via
the mobile phone. It extends iTunes’s music sharing, which only works on a LAN,
to the entire Internet and makes it available on mobile phones. As in iTunes, the
user can see and listen to other songs, but he or she cannot save them for later use.
Instead, the user is redirected to a web store from where the song can be acquired.

None of these applications allow files to be shared freely, as a consequence of the
lessons learned from Napster: because they use central servers to manage the data,
they are vulnerable to legal action from copyright owners.

9.6.2.2 Peer-to-Peer in Implementation

Contrary to the commercial trends described above, the research environment has
been looking more at truly integrating the mobile device into the peer-to-peer net-
work, at a deeper level than just conceptually. There are three trends that one can
observe in this sense:

1. Integrate the mobile device into an already existing peer-to-peer network. Ex-
amples of such systems are Symella9 or Symtorrent10 which connect to Gnutella
and to BitTorrent, respectively. These applications are implementations for the
Symbian mobile platform of the usual peer-to-peer client software. As such, they

6http://www.cloudtrade.com.
7http://www.peerboxmobile.com.
8http://www.nutsie.com.
9http://symella.aut.bme.hu.
10http://symtorrent.aut.bme.hu.
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appear to the network as regular nodes, without any distinction for the other
nodes that reside on PCs.

2. Create an ad-hoc, single-use, peer-to-peer network for devices that are tem-
porarily collocated. It is not hard to imagine how people would have to spend
relatively long amounts of time collocated, on public transport, in the office, at
conferences, etc. It is then useful to design a multi-hop connectivity framework
to allow them to share useful data without going through the Internet to do so.
Hyper-M [205] is such a system, whereby peers use bluetooth communication to
create a structured peer-to-peer overlay.

When creating such a network, one must keep in mind that its existence is
limited in time, as such communities do not last together for more than a few
hours. It is then imperative to be able to share data fast, while still allowing it to
be retrieved accurately, without querying all the peers. Hyper-M achieves this for
multi-dimensional data (images, sounds) by applying a combination of discrete
wavelet transform (DWT [98]) and clustering.

3. Use the mobile devices as physical carriers of content. The idea of having the
mobile devices act as physical transporters of information has appeared recently
and has been promoted by some of the handphone manufacturers [34]. However,
as long as there is no consensus among all phone manufacturers, it is unlikely that
such a system would gain enough mass to provide real utility to the users. For
this, there is a need for standards and one direction that research should look into
is Delay Tolerant Networks [66] protocols currently under discussion at the IETF.
DTN has been proposed in response to the advances of space exploration [57].
In that context, communication delays are caused by astronomical distances and
temporary communication obscurity due to interposing cosmic bodies. The same
protocols can be applied in a mobile environment, where delays are caused by de-
vices being out of reach of each other. There is already an existing project in this
sense, an implementation of the protocols for Symbian-operated phones [249,
256], available at the Networking Laboratory of the Helsinki University of Tech-
nology.11

9.7 Summary

The broad definition of peer-to-peer leaves ample room for applications to be cate-
gorized as “P2P applications”. In this chapter, we, more or less, described applica-
tions that identify themselves as using a peer-to-peer infrastructure. There is a clear
preference for everything that involves sharing disk resources. Such applications
range from simple file sharing tools, to storage sharing and to data sharing. One
type of applications that does not fit into this category is the new, emerging, mobile
applications. Here, even though storage is shared to some extent, what is more im-
portant is the sharing of connectivity. When using an intermediary mobile device to

11http://www.netlab.tkk.fi/~jo/dtn/.

http://www.netlab.tkk.fi/~jo/dtn/
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temporarily store a file and relay it later when within reach of the destination node
or another node closer to the destination, you are not actually sharing storage, but
connectivity. In this case, storage is just a side-effect, a tool to be used.

There are probably many other applications out there that would fit into the peer-
to-peer paradigm. Some even in the commercial world. It is hard to identify those
because companies generally do not release the inner workings of their software
systems, nor do they advertise them as being “peer-to-peer”. This is an interest-
ing point: the term p2p has accumulated so much “bad karma” from the endless
file-sharing legal problems, that, to some extent, it became taboo in the corporate
environment. Even though there is nothing inherently illegal about the technology,
companies seem to shy away from mentioning this in their business meetings.



Chapter 10
Conclusions

In this book, we covered the concepts and principles of P2P computing in the con-
text of data sharing and processing. This chapter summarizes the main issues and
approaches that have enabled P2P computing. There are many interesting problems
that remain open and worthy of further investigation from both theoretical and ap-
plication viewpoints. We shall examine some of these problems and applications in
this final chapter.

10.1 Summary

In this book, we have looked at the issues and solutions of P2P computing. Most
of these mechanisms have been designed to make P2P computing a practical and
useful technology.

10.1.1 Architecture

In general, architectures of P2P systems can be classified into three categories: cen-
tralized, decentralized, and hybrid P2P systems.

− Centralized P2P systems: P2P systems belonging to this type of architecture em-
ploy the traditional client-server architecture where a set of servers are in charge
of managing basic operations such as data indexing and query processing in the
systems. In particular, when a client peer wants to share a resource such as a
file, it sends an insert request to its correspondent server. That server then in-
dexes the shared resource. When a peer wants to search a resource, it sends a
search request to its server. The server looks up indices and returns the result
to the requester peer. The difference between centralized P2P architecture and
client-server architecture, however, is that the servers in centralized P2P systems
are just brokers for client peers. When client peers agree on a transaction, they
execute the transaction independently from the servers.

Q.H. Vu et al., Peer-to-Peer Computing,
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− Decentralized P2P systems: unlike centralized P2P systems, no servers are used
in this type of architecture. Peers in a decentralized system are organized either
arbitrarly (unstructured P2P systems) or accordingly to some topologies (struc-
tured P2P systems) in a flat form (single-tier) or a hierarchical form (multi-tier).
In unstructured P2P systems, it is often that no data is indexed and heuristic al-
gorithms are utilized to broadcast queries to nodes in the systems for processing.
However, in some cases, data is partially indexed to speed up query processing.
On the other hand, in structured P2P systems, data is completely indexed to fa-
cilitate query processing. The difference between a flat form and a hierarchical
form is that in a flat form, peers should have the same load and functionality
while in a hierarchical form, peers are arranged at different tiers each of which
may have different load and functionality.

− Hybrid P2P systems: this is a mix architecture between centralized and decen-
tralized architectures. On the one hand, this architecture is similar to the central-
ized architecture because it has some nodes holding the role of servers serving
other client nodes. On the other hand, these server nodes do not manage all data
indices. They are organized in a decentralized architecture. In this way, the hy-
brid architecture inherits the advantages of both centralized and decentralized
architectures.

10.1.2 Routing and Resource Discovery

Since routing in centralized P2P systems is straightforward, we only focus on rout-
ing strategies in decentralized P2P systems and hybrid P2P systems. In particular,
we have presented three basic routing strategies for decentralized structured P2P
systems, decentralized unstructured P2P systems, and hybrid P2P systems.

− Since there is no control on the topology of the overlay network, unstructured
P2P systems often employ routing techniques such as bread-first search (BFS)
and depth-first search (DFS) for query processing. Moreover, to avoid flooding
the network with query messages, each query is assigned a time-to-live (TTL)
and a query should be deleted when its TTL is expired. Besides the basic routing
strategies, heuristic algorithms such as random walkers, adaptive probabilistic
search and bloom filter based search have also been proposed to improve the
efficiency and effectiveness of query processing.

− Different from unstructured P2P systems, structured P2P systems employ fixed
topologies to organize nodes and index data. As a result, routing in this type of
systems depends on the overlay network topology. In general, there are three
main categories of structured P2P systems: distributed hash table based systems,
skip list based systems and tree based systems. Each has its own strengths and
weaknesses. For example, distributed hash table based systems are often good
in load balancing while systems in the remaining two categories deal well with
range queries.
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− Whether structured architecture or unstructured architecture is employed for
servers in hybrid P2P systems, hybrid P2P systems are still more efficient than
unstructured P2P systems in locating resources while having less constraints in
the network topologies (even if structured architecture is used, only a small part
of the system, servers, are required to follow the topology). The routing strat-
egy in this type of architecture is actually a combination of client-server routing
strategy and structured or unstructured routing strategies.

10.1.3 Data-Centric Applications

File sharing is the most common type of data sharing in P2P systems. Search on file
sharing applications can be conducted at three granularity levels: search on file title,
file description, and file content.

− Search on file title: routing techniques in the previous section are applied i.e.,
if the overlay network is an unstructured P2P system, bread-first search, depth-
first search, and their variants can be employed while if the overlay network is a
structured P2P system, the specific routing algorithm of the system is applied.

− Search on file description: can be done by two basic solutions. The first one is the
straightforward solution that indexes every descriptive attribute and processes a
query from any indexed attribute. The second one, on the other hand, considers
each descriptive attribute as a dimension in a multi-dimensional space. In this so-
lution, data are indexed and queries are processed in the same multi-dimensional
space. To support multi-dimensional index in P2P systems, traditional multi-
dimensional index structures used in centralized systems such as R-Tree and
R+-tree are employed. The difference, however, is that, when these tree struc-
tures are deployed in a P2P environment, it is necessary to avoid the bottleneck
at the root node by mapping the peer to only leaf nodes of the tree structures and
letting leaf nodes maintain information of internal nodes in the path from their
position to the root for routing purpose.

− Search on file content: while file content can be represented as data in multi-
dimensional space, it is necessary to map the data to a lower dimensional space
to avoid a high cost in indexing and query processing. A simple solution for this
purpose is to employ Space Filling Curves. However, since this simple solution
is not efficient, an alternative solution is to rotate high-dimensional data to a
series of low-dimensional data for indexing while queries are also rotated before
processing. On the other hand, in mapping-based approach, high-dimensional
data can be indexed based on its distance to a set of predefined points. In hashing-
based approach, locality hash functions are used to index data. In special cases
where sharing files are textual documents, besides the above general solution,
information retrieval (IR) approaches can also be applied in P2P systems.

Besides file sharing applications, there exist structured data sharing applications
such as relational databases or xml. In this type of application, the most important
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task is to deal with the heterogeneity of different data sources. Basically, there are
four solutions to address this challenge.

− Using schema mediation to create maps between pairs of data sources. These
maps are built by either mapping rules or mapping tables.

− Using information retrieval techniques to search similar annotations specified by
users when they construct data sources. These matched annotations are used to
map data sources.

− Using distributed hash table to hash similar data items to the same bucket.
Queries are processed by looking items similar to the hash values of queries.

− Using distributed catalogs: terms are classified and similar terms are put in the
same catalog. As a result, queries can be processed by searching similar catalogs.

10.1.4 Load Balancing and Replication

Since peers often have different resource capacities and data distribution is often
skewed, load balancing plays an important role in P2P systems. To manage load
balancing, it is necessary to determine when a node is overloaded or underloaded.
There are three possible solutions to monitor peer loads.

− Sampling: periodically, a node samples the load of a number of nodes in the sys-
tem from which it can determine if it has a heavy, light, or normal load compared
to other nodes.

− Histograms: can be constructed and maintained by sampling loads of nodes or
using gossiping algorithm to propagate node’s load. As a result, at any point of
time the approximate load information of nodes in the system can be retrieved
from histograms.

− A monitoring system: can be built to maintain exact load of nodes in the system.
Even though this method incurs a high cost in maintaining, it can provide a bound
of load imbalance between any pair of nodes in the system.

Replication is orthogonal and complementary to load balancing. It is used to im-
prove the performance of query processing and the availability of data in case of
failure, to avoid bottleneck at nodes holding popular data, and to shorten data fail-
ure’s recovery latency. Replication can be done at two granularity levels: file level
(the whole file is replicated) and block level (only a part of a file is replicated). The
biggest challenge in replication is how to keep replicas consistent with the original
data. A simple solution is to refresh replicas after sometime. Otherwise, the system
needs to maintain links between replicas and their original data for update purposes.

10.1.5 Programming Models

The past 10 years of peer-to-peer research have created the need for tools to design,
create, and deploy such overlays faster and without reinventing the wheel whenever
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a new architecture is considered. While low-level network programming offers the
highest flexibility and is already familiar to many distributed systems programmers,
there are also a handful of tools now available to reduce the amount of programming
that needs to be done to deploy a peer-to-peer network. As usual, the simplest are the
most widely used: BOINC, a framework to deploy projects with high computational
needs at the edges of the Internet, is by far the most used system. JXTA, a set of
standards developed with the support of SUN Microsystems over the past 6–7 years
is the next most popular system, and a set of implementations are available, for
structured or unstructured overlays, for mobile devices or for different programming
languages.

As the research community put more emphasis on structured peer-to-peer net-
works, some libraries have started to appear. While many proposals of such systems
come with open-source libraries to develop applications on top of the newly pro-
posed overlay, in this book we have described systems that allow the user to specify
the structure of the overlay itself. Such systems are still in their infancy, mostly
because there is little interest coming from the industry, but we see a potential de-
velopment in the direction of structured adaptable overlays, as a consequence of a
communication framework able to handle different structures in a unified way.

Finally, regardless of how one develops a peer-to-peer application, testing it re-
alistically is a challenge in itself, because simulating multiple machines on only
one is very hard, both for technical reasons (i.e., limited resources available on a
machine), but, more importantly, for conceptual reasons (i.e., loss of realistic oper-
ating environment). PlanetLab is the largest distributed system that offers computing
resources to participating academia and industry. Based on a fair-trade policy, it in-
creases as more participants use it and it offers a realistic testing ground because the
machines are physically located at different institutions across the world. Still, Plan-
etLab does require a cost of entrance to the system, even for academic institutions.
Emulab, on the other hand, is completely free, but because all the machines are lo-
cated at one site, the user faces the same challenge as that of using a single machine:
making sure that the tests simulate accurately a distributed environment, with delays
and interferences. The same problem occurs if one is a commercial entity and thus
does not have access to Emulab and instead is using a commercial system such as
the Elastic Computing Cloud of Amazon.com Inc.

10.1.6 Security Problems

Due to the openness and autonomous nature of nodes in a P2P systems, securing
applications in a P2P environment is a big challenge. Common attacks and solutions
to prevent them are presented as follows.

− To prevent routing attacks means to secure the message routing process so that
a message sent from a nonmalicious node should reach the target nonmalicious
node. This can be done by three techniques (1) secure assignment of node iden-
tifiers so that attackers cannot control the node identifier assignment; (2) secure
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the maintenance of routing tables that they do not contain many malicious nodes;
and (3) secure message forwarding by sending messages to multiple and diverse
routes.

− To prevent storage and retrieval attacks means to guarantee that data could al-
ways be stored in and retrieved from the system. This can be done by a replication
mechanism that guarantees a document have at least (m + k + 1) replicas if k

peers can fail at the same time and there may be m malicious node. Thus, in any
case, there is at least one active replica around.

− To prevent denial of service (DoS) attacks means to protect the availability of a
node from overwhelming requests of malicious nodes. One solution is to provide
each client a quota limit on service resources. As a result, the node is still able to
serve other clients during the attack. The other solution is to detect DoS attacks
at the time they are happening and to disconnect malicious nodes involving the
attacks to recover the system.

− To avoid harmful or incorrect data returned from malicious nodes. A straight-
forward solution is to store and to retrieve data only on trusted nodes. Otherwise,
it is necessary to provide a solution to test data integrity and verification means.
The popular approach is to use hash functions to create identifiers or digests of
data so that they can be used to verify the correctness of data later.

Besides attacks, other problems that may occur in P2P systems and their solutions
are described as follows.

− For P2P systems whose sharing resources are computing resources, it is neces-
sary to verify integrity of computation. The basic solution is to exploit redun-
dancy i.e., to assign each computing task to multiple nodes and compare the
returned results from them.

− Free riding is also a concern in a P2P system. To provide fairness to peers in the
system, the basic solution is to record the contribution and consumption of peers.
Depending on this statistics, the system determines the amount of resources a
peer is allowed to use.

− While P2P systems are open to all users, it is important to maintain the privacy
of data and the anonymity of users. On the one hand, the privacy of data is often
achieved by some encryption techniques. On the other hand, the anonymity of
users can be protected by setting secure channels for routing messages. Finally,
to provide authentication and authorization of resources, techniques based on the
X.509 public-key infrastructure can be used.

10.1.7 Trust Management

Trust is an important aspect of P2P systems. Since peers are anonymous, before
every transaction, peers involved in the transaction often want to know if the partner
can be trusted. Even though trust can be classified in two types: trust in action and
trust in recommendation, people do not usually differentiate them. Actually, when
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a peer trusts another peer, it trusts both action and recommendation from that peer.
In P2P systems, trust can be assigned values at different granularities: single value,
binary values, multiple values, and continuous values, and is verified by two basic
trust models as follows.

− Credential based. In this model, credentials are used to determine trust of a peer.
If a peer has a credential satisfying specified policies, it is trustworthy. Other-
wise, it cannot be trusted. A typical way for checking credential of a peer is
based on the public/private key of that peer.

− Reputation based. The trust value of a peer is based on its reputation i.e. past ac-
tions. In this model, the trust value of a peer changes after each of its transactions.
Furthermore, since the behavior of a peer may be influenced by the behaviors of
others in the society it belongs to, some P2P systems combine both the individ-
ual reputation of a peer and the reputation of its society to derive the reputation
of the peer.

Trust is generally managed by the same overlay network employed by the P2P
system (since trust values are just special data). In particular, if the system uses
centralized P2P architecture, trust values are stored at servers. If the system uti-
lizes unstructured P2P architecture, trust values are maintained at every node and
gossiping algorithm is used to distribute trust values. Finally, if the system builds
on structured P2P architecture, peer identifiers are used as keys for inserting trust
values to the system.

10.2 Potential Research Directions

The research on P2P is still at its infancy, and there are many research problems that
are yet to be solved. We discuss some of them in this section.

10.2.1 Sharing Structured Databases

Even though there have been initial works to support structured data sharing in
P2P systems, these works only focus on solutions for mapping heterogeneous data
sources. Naturally, there are still many open problems.

− Query optimization. Since the execution order of operations in a query has an
important effect on the performance of query processing i.e., a good execution
sequence (query plan) allows a fast processing speed and low consumed band-
width, while a bad execution sequence leads to a slow processing speed and
high consumed bandwidth, it is important to find a near optimal execution se-
quence for a query. In a centralized DBMS, the basic approach to solve this task
is to build an initial query plan for the query from data statistics. The challenge,
however, is that it is not cost-effective to obtain accurate data statistics in P2P
systems.
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− Complex queries. Join query is just a type of query in structured data. Complex
queries such as aggregate queries, top-K queries and skyline queries require a
much more sophisticated query optimizer. The dynamism and autonomy of P2P
systems further complicate the derivation of efficient query execution plan.

− Database transaction: besides queries, it is necessary to support data manipula-
tion operations, which leads to the demand of supporting database transactions.
While applications in centralized systems often require four basic ACID proper-
ties: atomic, consistent, isolated, and durable, applications in P2P systems may
not require strict ACID properties to be enforced because the nature of P2P en-
vironment may make it hard to do this. In general, the context has to be taken
into consideration during the design of the transaction management. Depending
on the specific requests of applications, only some properties are required while
others can be omitted. For example, updates due to migration of data for load
balancing and synchronization updates will require the updates to commit and
be lasting.

Furthermore, current solutions for mapping heterogeneous data sources can only
work well in small-scale systems while P2P systems are often large. New solutions
for this challenge, that can work in large-scale systems, are still needed.

10.2.2 Security

Security is an important aspect in P2P systems. Even though there have been several
proposals to address security issues in P2P systems, it is still an ongoing research
direction. In particular, the following security aspects need to be properly addressed.

− As discussed before, the most critical problem in file sharing P2P systems is the
problem of bad sharing files that contain viruses, spyware, or illegal copyright
files. Current solutions can only identify these files after they have been activated
and caused harm to the users. We need a better solution that identifies and isolates
bad files before they are activated. As the saying goes, prevention is better than
rescue.

− Detecting and eliminating malicious peers: even though existing solutions can
identify malicious peers after they join the system by checking their reputation,
malicious peers can circumvent these solutions by leaving and rejoining the sys-
tem frequently. Everytime these peers rejoin the system, they can change their
identifier, and hence clear their bad reputation in the past. As a result, we need
a new solution that is able to keep track of the reputation of a peer even if they
change their identifier the system. In other words, the solution needs to recog-
nize the behavior of malicious peers so that we can identify them as soon as they
rejoin the system.
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10.2.3 Data Stream Processing

Since there is a huge amount of data transferring amongst peers in P2P systems,
data stream processing plays an important role in these systems. A straightforward
application that needs stream data processing in a P2P system, is system monitoring.
Challenges of stream processing in P2P systems fall in four main aspects as follows.

− Processing speed: even though the amount of data stream is huge, the processing
speed still needs to be fast. Ideally, data should be processed on the fly without
causing any latency.

− Computation cost: in P2P systems, the computation resources such as memory
and cpu are often limited. As a result, it is necessary to have a low requirement
on computation resources.

− Global statistics: while individual data streams can be processed at different
nodes to generate local results, it is necessary to aggregate these local results
to form a global result.

− Consumed network bandwidth: while local results are exchange to obtain a
global result, it should not consume much network bandwidth. In many cases,
the challenge of using network bandwidth is actually in how to put/assign oper-
ations to nodes efficiently.

10.2.4 Testbed and Benchmarks

Most of the reported work in the literature have employed simulation in their perfor-
mance study. While simulation models can provide quick insights to performance
of a scheme, they often rely on some assumptions that may not be realistic and they
cannot adequately capture all parameters. Thus, it is necessary to develop a testbed
and a set of benchmarks for P2P systems. In general, the testbed should satisfy the
following properties.

− Simulated network properties: the testbed should be able to capture different
properties of a real system. For example, the testbed should be able to simulate
a system with different topologies, different churn rate, different failure rate,
different resource capability, etc.

− Scalability: this property is an important property of a P2P system. As a result,
it is necessary that the testbed has this property. However, it is important to note
that the testbed should not require many resources to achieve this property. For
example, it is infeasible if the testbed requires one million computers to simulate
a one million node network.

− Statistics: the testbed should be able to provide statistics in different aspects of
the system according to the benchmarks. In particular, a graphical display for sta-
tistics is desirable. Additionally, the statistics should be storable for subsequent
references.
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− Usability: the testbed should be easily used to deploy new P2P systems. Ide-
ally, the testbed should provide a script language so that a new system can be
described for deployment by using the language. Alternatively, the testbed can
provide extendable API for implementing the new system.

10.3 Applications in Industry

Even though peer-to-peer technology has been adopted with enthusiasm by the per-
sonal users, it has been facing a staunch resistance from business users and it has
been very difficult to find a way to monetize the networks generated by the P2P
software.

The successful applications of peer-to-peer have involved using a hybrid techno-
logical approach. In most cases, the P2P technology is usually combined with more
traditional centralized approaches. For example, in the case of Kontiki,1 a P2P deliv-
ery management system, the service developed is partially using P2P and partially
using centralized servers to distribute content. Similarly, Skype,2 probably the most
successful P2P application, uses the overlay to improve transfer rate, but also has a
small set of servers that provide user account management services.

On the corporate side we will probably see the research being applied to enhance
existing products, like McAfee’s Rumor Technology for distributing antivirus up-
dates [219], but it is most unlikely that a corporate client will rely 100% on a pure
P2P solution. Even for SMEs, the best effort that is characteristic of peer-to-peer
networks will prove to be a powerful deterrent that will not resist against centralized
products that are also becoming more commoditized and, consequently, cheaper.
Still, as the “Cloud” paradigm becomes more and more popular, the lessons learned
from P2P technology will be useful to efficiently handle scalability issues in envi-
ronments where the sheer size of the cloud and its required flexibility means that
failures are a constant rather than an exceptional event. In particular, addressing
data scalability issues will require significant attention, with potential solutions in
distributed online aggregation techniques [338].

If we think about P2P uses in industry, we observe two driving forces that may
appear to come from very different angles, but for which P2P is a common solution:

− First, a need to push data towards the end user, especially when there is lots of
data, like in the case of multimedia or software distribution (video on demand,
voice over IP, software updates, etc.)

− Second, a need to retain control over the entire data that the provider makes
available, potentially temporarily, to a set of users. In this case, when there are
several providers, or collaborators, then P2P technology is the only viable solu-
tion if there is no trusted external party.

1http://www.kontiki.com.
2http://www.skype.com.

http://www.kontiki.com
http://www.skype.com
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While the first approach has been implemented with reasonable success, in this
chapter, we will make the case for peer-to-peer as a solution for the second driving
force. In fact, it is not hard to imagine a scenario where companies would benefit
from sharing data with partners, and even competitors, but do not want to give access
to their data centers. The idea here is to automate the transfer of information, by
allowing each participating entity to specify what parts of its data it allows other to
see, and what kind of data it needs from others. The ultimate goal is to make the
peer-to-peer network transparent and let each partner have a global view of the data.

A perfect example for this kind of scenario is a Supply Chain Management appli-
cation: there are potentially many partners (from manufacturer to retailer, maybe via
governmental control institutions), large amounts of dynamic data, as items travel
around the world.

10.3.1 Supply Chain Management Case Study

As enterprises are forced to cooperate across national boundaries, to specialize in
what they do in-house and at the same time diversify their offer to the customers,
they are driven to create stronger links and develop collaborations with other enter-
prises. In this scenario, they need help in managing their relationships with other
entities, be they suppliers, customers or service providers. Companies must be able
to have access to pertinent, updated information as soon as the provider of informa-
tion makes it available.

In the particular scenario of a supply chain management (SCM) application,
a strong demand for a particular item should trigger queries in the entire chain for
parts that make that particular item and identify automatically potential bottlenecks.
Waiting for a human operator to see the request, identify suppliers and send queries
introduces delays that could otherwise be avoided.

Effective and timely sharing of critical data among consumers and suppliers is
very important for SCM. Recently, renouncing monolithic applications, emphasiz-
ing global accessibility and scalability as well as the development of tools to facili-
tate repeatable deployments have been identified as key technology success factors.

A centralized solution may be envisaged, but few companies are willing to store
their data, even if it was previously pruned of possibly sensitive information, on a
machine outside their control. Even more, a centralized solution is hard to deploy
and even harder to maintain when the number of clients grows. What should be
done instead, is distribute the management costs by making each participant entity
responsible for providing a reliable, yet relatively small, server that would act as a
proxy between its internal data structure and the potential partners.

Existing solutions in the market use data centers to manage the shared informa-
tion from all the participants in the supply chain. It has the advantage of reliability,
but the maintenance cost is huge. However, in a context where every participant is
strongly motivated to maintain its presence in the network, the reliability of the en-
tire system will be a consequence of the reliability of the individual participating
entities.
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Fig. 10.1 Architecture of a
peer-to-peer SCM application

We envision an infrastructure for distributed information sharing among different
parties based on Peer-to-Peer technology. Using distributed hash tables, the index-
ing mechanism is both efficient and scalable, but challenges arise due to the hetero-
geneous nature of the data as well as due to the potential security threats that are
characteristic of peer-to-peer networks. We will address these shortly, but first let us
consider why would we even want to use this approach.

The main advantage of a distributed solution would initially appear to be the
cost: it is much cheaper to use off-the-shelf servers than to have a custom made
super-computer. However, this argument does not stand its ground in front of the
traditional view of peer-to-peer networks: unreliable, “best effort” approaches that
target bargain seekers. The fact is that this view is wrong—there is nothing inher-
ently unsafe in a peer-to-peer network, not more than it is in general in the Internet.

However, cost is still not the main decision factor. The true advantage of a
distributed solution is the larger control that it gives to each participating entity.
By not moving data around, but only publishing indexing information, each par-
ticipant maintains full control over its data, who accesses it, when and at what
cost. Such a participant can implement several layers of security and make avail-
able only part of its data, while keeping the rest behind a highly secured fire-
wall.

Furthermore, if data is not moved around, the participants may dynamically join
and depart from the network. When the participant leaves the network, its data
should not be accessed any more. This introduces huge maintenance cost to the
warehouse solution. Instead, we require a nimble, distributed, lightweight, and scal-
able data management system, as an alternative to the centralized data warehouse,
for corporate network applications.
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10.3.1.1 Potential Issues

The heterogeneous nature of the data present at different participating entities con-
stitutes a considerable challenge to this approach of letting each participant manage
its own repository.

First, there is the issue of different schemas: each participant will have its data
in a more or less customized schema and there is a need to merge all these different
schemas. While there is substantial and high quality work in the area of automatic
schema merging in peer data management systems [149], in the case of an SCM
application it seems more appropriate to have one entity define a global schema and
then let each participant define a mapping from its own data to this new schema.
Such an approach would prove to be more reliable than having each participant
define mappings to any other participant (and more scalable). Using an intermediary
approach (e.g., X has a mapping to Y , Y has a mapping to Z, consequently X has
a mapping to Z) is not always feasible and, since each mapping makes certain,
unknown, compromises, a long chain of intermediaries will lead to unpredictable
results.

The global schema approach does not represent a significant diversion from the
peer-to-peer idea. The server managing this global schema needs to be contacted
infrequently (e.g., only upon initial connection to the network) and schema updates
can be broadcast into the network since they are equally expected to be rare occur-
rences.

Apart from the issue of schema mapping, another problem that has to be ad-
dressed with respect to the heterogeneity of the data is that each entity, when storing
data for its own use, makes a number of assumptions that it takes as given and con-
sequently does not store them in the database. A very simple example of this are
measure units or currencies (most enterprises will not store the currency explicitly,
but assume they always work in one particular currency). Consequently, when data
is put together, such assumptions would conflict, resulting in serious errors in the
global database. What is needed here is a way to add these assumptions into the data.
The COntext INterchange (COIN) strategy [135] is an approach to solving the prob-
lem of interoperability of semantically heterogeneous data sources through context
mediation. The existing implementation of COIN uses its own notation and syntax
for representing ontologies. More recently, an extension of the COIN strategy to
the semantic web has been proposed [206] to solve context disparity and ontology
interoperability problems in the emerging Semantic Web both at the ontology level
and at the data level.

Another potential issue that might arise when talking about a peer-to-peer net-
work for business purposes is that of security, privacy, and confidentiality. How-
ever, it is hard to argue why such a network would be inherently less secured than
accessing a central server over the internet. After all, the TCP-IP stack of protocols
also hops over unknown and potentially unreliable intermediary servers and the tun-
neling approach that is used there can equally well be used in peer-to-peer, when
necessary.

To create credentials, the system would require again the presence of a trusted
third party (again, not unlike current practices in the Internet), but even more, the
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access to the actual data would be managed by the individual data providers. While
the trusted third party (i.e., the service provider) could define prespecified roles and
access rights, the ultimate decision remains with the participating entities, since they
have full control over their servers.

10.3.1.2 Queries

We have mentioned so far issues pertaining to the data: who publishes it, how, and
where, as well as access control to this data. We can naturally ask ourselves what
kind of queries would, or should, such a system be able to answer. The starting point
of this line of though would be a traditional data warehouse. One of the reasons, if
not the main reason for having a data warehouse is to provide business intelligence
tools to harness the large amount of information and create reports and forecasts.
While these may be desirable goals even for a distributed SCM application, it is
hard to see how they can be achieved in a distributed context due to two reasons:

1. The data may be incomplete: since every entity decides what to make publicly
available, not all data may be available. Making forecasts on incomplete data is
obviously not recommended practice.

2. Even if we assume that all the data is available, the scale envisioned for this
network (global, with hundreds or thousands of participating databases) would
make most data mining techniques grind to a halt.

However, most queries in a SCM application’s day to day use would be selection and
aggregation queries. A lightweight solution, based on the indexing tools provided
by the distributed hash table infrastructure, would suffice for such queries.

To sum up, the example of the supply chain management application is typical of
potential uses for peer-to-peer concepts. The set of concepts and ideas that are char-
acteristic of the P2P environment are useful, in more or less pure forms, wherever
multiple entities participate as equals. However, a peer-to-peer framework is a dis-
ruptive technology, and the fact that multiple independent participants need to agree
on a set of standards makes it even more difficult to adopt than any actual technical
difficulty. Through this book, we aimed at presenting peer-to-peer for what it is, no-
tably much more than a controversial file sharing technology. It is a complex area,
with many challenges and many opportunities.
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