
While people are now using peer-to-peer (P2P) applications for various 
processes, such as file sharing and video streaming, many research and 
engineering issues still need to be tackled in order to further advance P2P 
technologies. Peer-to-Peer Computing: Applications, Architecture, 
Protocols, and Challenges provides comprehensive theoretical and 
practical coverage of the major features of contemporary P2P systems and 
examines the obstacles to further success.

Setting the stage for understanding important research issues in P2P systems, 
the book first introduces various P2P network architectures. It then details 
the topology control research problem as well as existing technologies for 
handling topology control issues. The author describes novel and interesting 
incentive schemes for enticing peers to cooperate and explores recent 
innovations on trust issues. He also examines security problems in a P2P 
network. The final chapter addresses the future state of the field. Throughout 
the text, the highly popular P2P IPTV application, PPLive, is used as a case 
study to illustrate the practical aspects of the concepts covered.

Features 
•	 Discusses problems arising from the different aspects of P2P 

computing and offers potential solutions
•	 Emphasizes incentives as the most fundamental component in 

a P2P system
•	 Covers theoretical and practical aspects of key P2P components,  

such as architecture, peer selection, and topology control 
•	 Proposes important research and development directions for  

even more successful P2P applications

Addressing the unique challenges of P2P systems, this book presents 
practical applications of recent theoretical results in P2P computing. It also 
stimulates further research on critical issues, including performance and 
security problems. 

Computer Science

ISBN: 978-1-4398-0934-1

9 781439 809341

90000

Peer-to-Peer C
om

puting
Kw

ok

w w w . c r c p r e s s . c o m

K10464

www.crcpress.com

K10464 cvr mech.indd   1 7/7/11   10:51 PM



Peer-to-Peer
Computing

Applications, Architecture, Protocols, and Challenges



Chapman & Hall/CRC 
Computational Science Series

PETASCALE COMPUTING: ALGOrIThMS ANd APPLICATIONS
Edited by David A. Bader

PrOCESS ALGEbrA fOr PArALLEL ANd dISTrIbUTEd PrOCESSING
Edited by Michael Alexander and William Gardner

GrId COMPUTING: TEChNIQUES ANd APPLICATIONS
Barry Wilkinson

INTrOdUCTION TO CONCUrrENCY IN PrOGrAMMING LANGUAGES
Matthew J. Sottile, Timothy G. Mattson, and Craig E Rasmussen

INTrOdUCTION TO SChEdULING
Yves Robert and Frédéric Vivien

SCIENTIfIC dATA MANAGEMENT: ChALLENGES, TEChNOLOGY, ANd dEPLOYMENT
Edited by Arie Shoshani and Doron Rotem

INTrOdUCTION TO ThE SIMULATION Of dYNAMICS USING SIMULINK®

Michael A. Gray

INTrOdUCTION TO hIGh PErfOrMANCE COMPUTING fOr SCIENTISTS  
ANd ENGINEErS, Georg Hager and Gerhard Wellein

PErfOrMANCE TUNING Of SCIENTIfIC APPLICATIONS, Edited by David Bailey, 
Robert Lucas, and Samuel Williams

hIGh PErfOrMANCE COMPUTING: PrOGrAMMING ANd APPLICATIONS 
John Levesque with Gene Wagenbreth

PEEr-TO-PEEr COMPUTING: APPLICATIONS, ArChITECTUrE, PrOTOCOLS, ANd ChALLENGES 
Yu-Kwong Ricky Kwok

fUNdAMENTALS Of MULTICOrE SOfTwArE dEvELOPMENT
Victor Pankratius, Ali-Reza Adl-Tabatabai, and Walter Tichy

PuBLiSHED TiTLES

SERiES EDiToR

horst Simon
deputy director

Lawrence berkeley National Laboratory

berkeley, California, U.S.A.

AiMS AND SCoPE

This series aims to capture new developments and applications in the field of computational science through the 
publication of a broad range of textbooks, reference works, and handbooks. books in this series will provide introduc-
tory as well as advanced material on mathematical, statistical, and computational methods and techniques, and will 
present researchers with the latest theories and experimentation. The scope of the series includes, but is not limited 
to, titles in the areas of scientific computing, parallel and distributed computing, high performance computing, grid 
computing, cluster computing, heterogeneous computing, quantum computing, and their applications in scientific 
disciplines such as astrophysics, aeronautics, biology, chemistry, climate modeling, combustion, cosmology, earth-
quake prediction, imaging, materials, neuroscience, oil exploration, and weather forecasting. 



Peer-to-Peer
Computing

Yu-Kwong Ricky Kwok

Applications, Architecture, Protocols, and Challenges

A CHAPMAN & HALL BOOK



CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2012 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Version Date: 20110627

International Standard Book Number-13: 978-1-4398-0935-8 (eBook - PDF)

This book contains information obtained from authentic and highly regarded sources. Reasonable 
efforts have been made to publish reliable data and information, but the author and publisher cannot 
assume responsibility for the validity of all materials or the consequences of their use. The authors and 
publishers have attempted to trace the copyright holders of all material reproduced in this publication 
and apologize to copyright holders if permission to publish in this form has not been obtained. If any 
copyright material has not been acknowledged please write and let us know so we may rectify in any 
future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, 
transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or 
hereafter invented, including photocopying, microfilming, and recording, or in any information stor-
age or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copy-
right.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 
Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that pro-
vides licenses and registration for a variety of users. For organizations that have been granted a pho-
tocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are 
used only for identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com



Contents

List of Figures ix

List of Tables xiii

Preface xv

1 Introduction 1
1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Road Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 P2P Applications 5
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Distributed Processing . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 Internet Computing . . . . . . . . . . . . . . . . . . . 8
2.2.2 Wireless Sensor Networks . . . . . . . . . . . . . . . . 9

2.3 File Sharing . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4 Voice over IP and Instant Messaging . . . . . . . . . . . . . . 14
2.5 Video Streaming . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.7 Case Study: PPLive . . . . . . . . . . . . . . . . . . . . . . . 27
2.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.9 Review Questions . . . . . . . . . . . . . . . . . . . . . . . . 28

3 P2P Network Architectures 29
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2 Structured P2P Systems . . . . . . . . . . . . . . . . . . . . 30

3.2.1 Chord . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.2.2 CAN (Content Addressable Network) . . . . . . . . . 35
3.2.3 Other Structured Approaches . . . . . . . . . . . . . . 37

3.3 Unstructured (Mesh) P2P Systems . . . . . . . . . . . . . . . 39
3.4 Hybrid P2P Systems . . . . . . . . . . . . . . . . . . . . . . 41
3.5 Network Architecture with QoS Provisioning . . . . . . . . . 43

3.5.1 AAA Tasks . . . . . . . . . . . . . . . . . . . . . . . . 47
3.5.2 Charging . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.5.3 Dynamic QoS . . . . . . . . . . . . . . . . . . . . . . . 47
3.5.4 Service Brokerage . . . . . . . . . . . . . . . . . . . . 48

v



vi Contents

3.5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.6 Video Streaming Network Architecture . . . . . . . . . . . . 49
3.7 Case Study: PPLive . . . . . . . . . . . . . . . . . . . . . . . 51
3.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.9 Review Questions . . . . . . . . . . . . . . . . . . . . . . . . 53

4 Topology Control 55
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.2 A General Framework for Distributed Topology Control . . . 58
4.3 Structured Topology Control . . . . . . . . . . . . . . . . . . 59
4.4 Unstructured Topology Control . . . . . . . . . . . . . . . . 63
4.5 Network-Coding-Based Distributed Topology Control . . . . 69
4.6 Energy Efficient Distributed Topology Control in a Wireless

P2P System . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.7 Case Study: PPLive . . . . . . . . . . . . . . . . . . . . . . . 72
4.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.9 Review Questions . . . . . . . . . . . . . . . . . . . . . . . . 73

5 Incentives 75
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.2 Incentive Issues in P2P Systems on the Internet . . . . . . . 78

5.2.1 File Sharing Systems . . . . . . . . . . . . . . . . . . . 78
5.2.1.1 BitTorrent . . . . . . . . . . . . . . . . . . . 79
5.2.1.2 Hierarchical P2P Systems . . . . . . . . . . . 80
5.2.1.3 Payment-Based Systems . . . . . . . . . . . . 80
5.2.1.4 Cost of Sharing . . . . . . . . . . . . . . . . 82
5.2.1.5 Reciprocity and Reputation-Based Systems . 84
5.2.1.6 Penalty-Based Approaches . . . . . . . . . . 86
5.2.1.7 Game Theoretic Modeling . . . . . . . . . . . 87
5.2.1.8 Auction-Based Approaches . . . . . . . . . . 91
5.2.1.9 Exchange-Based Systems . . . . . . . . . . . 93

5.2.2 Media Streaming Systems . . . . . . . . . . . . . . . . 95
5.2.2.1 Layered Many-to-One Streaming . . . . . . . 95
5.2.2.2 Multicast One-to-Many Streaming . . . . . . 99
5.2.2.3 Coalition-Based Media Streaming . . . . . . 105

5.3 Incentive Issues in Wireless P2P Systems . . . . . . . . . . . 110
5.3.1 Routing and Data Forwarding . . . . . . . . . . . . . . 110
5.3.2 Wireless Information Sharing Systems . . . . . . . . . 112
5.3.3 Network Access Sharing . . . . . . . . . . . . . . . . . 115
5.3.4 Wireless P2P Media Streaming . . . . . . . . . . . . . 117

5.3.4.1 System Model . . . . . . . . . . . . . . . . . 117
5.3.4.2 Two Neighboring Clients . . . . . . . . . . . 121
5.3.4.3 Three Neighboring Clients . . . . . . . . . . 123
5.3.4.4 The General Scenario . . . . . . . . . . . . . 125

5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126



Contents vii

5.5 Case Study: PPLive . . . . . . . . . . . . . . . . . . . . . . . 127
5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
5.7 Review Questions . . . . . . . . . . . . . . . . . . . . . . . . 128

6 Trust 129
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.1.1 Trust Modeling . . . . . . . . . . . . . . . . . . . . . . 129
6.2 EigenTrust . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
6.3 PeerTrust . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
6.4 Trust-χ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
6.5 FuzzyTrust . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
6.6 Game Theoretic Analysis on Trust Management . . . . . . . 144
6.7 SuperTrust . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
6.8 PowerTrust . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
6.9 GossipTrust . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
6.10 Trust Establishment in Wireless Sensor Networks . . . . . . 150

6.10.1 Symmetric Key-Based Approaches . . . . . . . . . . . 150
6.10.1.1 Deterministic Key Pre-Distribution Schemes 150
6.10.1.2 Probabilistic Key Pre-Distribution Schemes . 151

6.10.2 Asymmetric Key-Based Approaches . . . . . . . . . . 153
6.11 Case Study: PPLive . . . . . . . . . . . . . . . . . . . . . . . 155
6.12 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
6.13 Review Questions . . . . . . . . . . . . . . . . . . . . . . . . 156

7 Security Issues 159
7.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
7.2 Content Pollution . . . . . . . . . . . . . . . . . . . . . . . . 159
7.3 Buffer Map Cheating . . . . . . . . . . . . . . . . . . . . . . 163
7.4 Sybil Attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
7.5 DDoS Attacks . . . . . . . . . . . . . . . . . . . . . . . . . . 166
7.6 P2P Worm Propagation . . . . . . . . . . . . . . . . . . . . . 167
7.7 P2P SIP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
7.8 Collusive Piracy . . . . . . . . . . . . . . . . . . . . . . . . . 168
7.9 Case Study: PPLive . . . . . . . . . . . . . . . . . . . . . . . 169
7.10 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
7.11 Review Questions . . . . . . . . . . . . . . . . . . . . . . . . 170

8 Conclusions 171
8.1 Where Are We Now? . . . . . . . . . . . . . . . . . . . . . . 171
8.2 Peer into the Future . . . . . . . . . . . . . . . . . . . . . . . 172

Bibliography 175

Index 197



This page intentionally left blankThis page intentionally left blank



List of Figures

2.1 A general architecture of a P2P application. . . . . . . . . . . 6
2.2 Approaches for mixing and distributing VoIP data in a multi-

party scenario. . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3 A generic architecture of a P2P video streaming engine. . . . 18
2.4 A general information exchange process in a P2P video stream-

ing system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1 An example Chord identifier-ring with three nodes currently in
the network. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2 Finger tables of the three nodes in the Chord ring. . . . . . . 34
3.3 Updated finger tables of the four nodes in the Chord ring after

node 6 joins. . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.4 Updated finger tables of the three nodes in the Chord ring after

node 3 leaves. . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.5 An example CAN with six nodes organized into a 2-dimensional

space in which node 1 routes through 4 to reach a given point
(x, y). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.6 The updated situation of the CAN after node 7 joins. . . . . 37
3.7 An internetwork of DHT systems. . . . . . . . . . . . . . . . . 38
3.8 An example protocol stack supporting the implementation of

an internetwork of DHTs. . . . . . . . . . . . . . . . . . . . . 38
3.9 A truncated pyramid P2P network architecture internetworking

several local overlays. . . . . . . . . . . . . . . . . . . . . . . . 39
3.10 A semi-structured P2P network architecture. . . . . . . . . . 42
3.11 Protocol architecture of UBCA. . . . . . . . . . . . . . . . . . 43
3.12 UBCA components. . . . . . . . . . . . . . . . . . . . . . . . 44
3.13 The Bristle hybrid P2P network architecture. . . . . . . . . . 45
3.14 A carrier-grade P2P network architecture. . . . . . . . . . . . 46
3.15 A dynamic QoS provisioning scenario. . . . . . . . . . . . . . 48
3.16 The SIMS/MIMS network architecture . . . . . . . . . . . . . 50
3.17 The MIIS network architecture . . . . . . . . . . . . . . . . . 51
3.18 The FAMS network architecture . . . . . . . . . . . . . . . . 52

4.1 An illustration of the topology mismatch problem: unnecessary
and inefficient overlay connections are made between peers. . 57

ix



x List of Figures

4.2 Algorithm for locating a new parent as a result of peer depar-
tures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.3 All shaded nodes are considered as candidate parents for node
with depth 3, including the one with depth 3.1 if it reduces its
depth value. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.4 A semi-structured P2P network architecture. . . . . . . . . . 62
4.5 An example of location-aware topology matching (LTM). . . 67
4.6 Illustrative example. . . . . . . . . . . . . . . . . . . . . . . . 70

5.1 A super-peer-based token accounting system for P2P file shar-
ing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.2 A graph depicting the perceived reputation values among peers
(C denotes a colluder). . . . . . . . . . . . . . . . . . . . . . . 85

5.3 Payoff table in the introduction stage. . . . . . . . . . . . . . 88
5.4 Payoff table in the settlement stage. . . . . . . . . . . . . . . 89
5.5 Two file requesting peers (N1 and N2) compete for uploading

bandwidth of a source peer (NS). . . . . . . . . . . . . . . . . 90
5.6 The request forwarding process. . . . . . . . . . . . . . . . . . 91
5.7 An example of the auction process in request forwarding. . . 92
5.8 An example of a fully decentralized auction. . . . . . . . . . . 94
5.9 Different feasible forms of exchanges. . . . . . . . . . . . . . . 95
5.10 Request cycle detection using the request tree data structure

maintained at each peer. . . . . . . . . . . . . . . . . . . . . . 96
5.11 Asynchrony and heterogeneity of media streaming peers. . . . 98
5.12 Layered streaming with buffering for serving asychronous re-

quests. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
5.13 Layered video streaming using multiple multicast trees. . . . 100
5.14 A multicast streaming structure is better off for every peer. . 102
5.15 An illustration of the strategic natural selection process in con-

necting streaming sources and destinations (BSE is the boot-
strap entity providing service information). . . . . . . . . . . 103

5.16 Detection and removal of a selfish peer from the streaming mul-
ticast tree. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.17 Charging of network service and reimbursement of data for-
warding. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.18 System model for wireless data access. . . . . . . . . . . . . . 114
5.19 Illustration of network access cost sharing (left), and round-

robin scheduling of proxy (right). . . . . . . . . . . . . . . . . 116
5.20 System model—a media server and a set of mobile clients. . . 117
5.21 Number of subscribed stripes versus the type of a client (n =

10). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
5.22 A scenario with two neighboring clients. (a) Master-slave. (b)

Peer-to-peer. . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
5.23 Master-slave: number of subscribed stripes versus the type of a

client (n = 10). . . . . . . . . . . . . . . . . . . . . . . . . . . 122



List of Figures xi

5.24 Peer-to-peer: number of subscribed stripes versus the type of a
client (n = 10). . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.25 The scenario with three neighboring clients. (a) Master-slave.
(b) Peer-to-peer. . . . . . . . . . . . . . . . . . . . . . . . . . 124

6.1 Trust model for a generic P2P computing system. . . . . . . . 130
6.2 The trust recommendation mechanism. . . . . . . . . . . . . . 131
6.3 Drawback of EigenTrust and a modified situation. . . . . . . 134
6.4 System architecture and data location mechanism in PeerTrust. 137
6.5 Trust-χ architecture. . . . . . . . . . . . . . . . . . . . . . . . 139
6.6 Illustration of fuzzy inference. . . . . . . . . . . . . . . . . . . 140
6.7 Local and global trust management mechanisms in FuzzyTrust. 141
6.8 Illustrative example of FuzzyTrust. . . . . . . . . . . . . . . . 143
6.9 Example of global trust aggregation. . . . . . . . . . . . . . . 144
6.10 Notions of trust . . . . . . . . . . . . . . . . . . . . . . . . . . 144
6.11 Example of secure trust aggregation in SuperTrust . . . . . . 147
6.12 GossipTrust. . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

7.1 System state transitions in the Copy Centric Downloading
model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

7.2 State transitions for a peer in getting a file in the Copy Centric
Downloading model. . . . . . . . . . . . . . . . . . . . . . . . 162

7.3 Based on the social network graph, peers can be classified into
honest nodes and Sybil nodes. . . . . . . . . . . . . . . . . . . 165



This page intentionally left blankThis page intentionally left blank



List of Tables

2.1 A qualitative comparison of different P2P applications. . . . . 26

5.1 Notation used in Varian’s analysis on disincentives for P2P
sharing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.2 A qualitative comparison of different incentive approaches for
P2P file sharing. . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.3 A qualitative comparison of various wireless ad hoc data for-
warding approaches. . . . . . . . . . . . . . . . . . . . . . . . 113

5.4 Technical specifications of a typical server interface. . . . . . 119
5.5 Technical specifications of a typical peer interface. . . . . . . 119
5.6 Symbols. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.1 Notation used in Xiong and Liu’s PeerTrust system. . . . . . 135
6.2 Comparison of popular symmetric trust establishment schemes

in WSNs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
6.3 A qualitative comparison of different trust management ap-

proaches for P2P systems. . . . . . . . . . . . . . . . . . . . . 156

xiii



This page intentionally left blankThis page intentionally left blank



Preface

Peer-to-peer computing, at least on a conceptual level, is a genuine paradigm
shift—intelligence is at the edge, computing is completely decentralized, and
the network is just there to knit the distributed intelligence together. Indeed,
with advancements in hardware technology, proliferation of the open source
development culture, and abundant information at our fingertips, computing
power and user competence at the edge of the network has risen to an un-
precedented level. Thus, devices at the edge (not restricted to desktop PCs)
can congregate and share their resources (computing power, file data, etc.)
to provide services to participating users in a self-sufficient manner, without
the need of dedicated servers. With potentially up to millions of machines
participating simultaneously (e.g., when some hot events are occurring), the
aggregated computing resources can dwarf any powerful server farm.

Well, well, well, ... this is “conceptual level” thinking as of now. There
are still many road blocks to such a vision, even though we do see millions
of machines working together in a P2P manner (e.g., streaming live video
events). Again, as the old saying goes, the devils are in the details. Thinking
up such a gigantic scale of shared computing resources is one thing, while
implementing the idea is definitely another. Road blocks to the grand vision
of truly global P2P sharing include architectural maintenance problems arising
from the sheer scale of the system, incentives for truthful cooperation, trust
among peers when they need to accept data from remote sources, security
issues caused by the inevitable existence of malicious users, etc.

The purpose of this book is to serve as a first-rate guide to these road
blocks of a grand vision. The problems arising from these different aspects of
P2P computing are first described in detail in the respective chapters. This
is followed by a detailed survey of proposed solutions. A major conclusion of
this book is that there is still much work to do. Perhaps this should not be
a surprise because in a sense we are trying to build a self-governing crowd
of computers sharing resources at will. Sounds like a cyberspace version of
utopia?

The target audience of this book are senior level undergraduate students
and graduating students interested in P2P research. Each chapter of this small
book can be read independently. Contents of the book can easily be used as
materials for a one-semester course.

Many people have helped in making the publication of this book a reality,
possibly unknowingly. Among them I wish to thank my two previous Ph.D.

xv



xvi Preface

students, Dr. Tyrone Kwok and Dr. Carson Hung, who helped in providing ad-
vice and useful information on various topics, even when they were extremely
busy cranking out interesting iPhone apps in their company. Many colleagues
in Colorado State University and the University of Hong Kong also provided
valuable experience and information that I used in the book in numerous
sections. I am also extremely grateful to Ms. Randi Cohen for her patience.
Finally, I would also like to thank my wife, Fion, and children, Harold and
Amber, for their tolerance of my “mental absence” (despite physical presence)
and sporadic outbursts of frustration when I got stuck in the writing of the
book.



Chapter 1

Introduction

1.1 Overview

Modern computing technologies have decentralized data processing power
in an unprecedented manner. An important implication is that user machines,
be it a desktop computer or a handheld PDA (personal digital assistant),
have data processing power, in terms of instruction processing rate, amount
of storage, and reliability, that was inconceivable merely a decade or two
ago. Indeed, computing now occurs largely at the “edge” of networks. Net-
work infrastructure systems have also made tremendous strides thanks to
the ever improving communications technologies. Advancements in comput-
ing and communication, coupled together, enable a recent trend in a new form
of distributed processing—peer-to-peer (P2P) computing [Oram, 2001,Stein-
metz and Wehrle, 2005,Leuf, 2002,Minar and Hedlund, 2001,Milojicic et al.,
2002, Roussopoulos et al., 2004, Schoder and Fischbach, 2003, Smith et al.,
2003].

As its name implies, P2P computing involves users (or their machines)
on equal footing—there is no designated server or client, at least in a persis-
tent sense. Every participating user can be a server and be a client depend-
ing on context. Some people have referred to this as a “democratic com-
puting environment” [Androutsellis-Theotokis and Spinellis, 2004] because
users are free from centralized authorities’ control. This new paradigm of
distributed computing has spurred many high profile applications, most no-
tably in file sharing, such as: BitTorrent [Cohen, 2003], Freenet [Clarke et al.,
2000], Gnutella [Gnutella Protocol Development, 2009], and, of course, Nap-
ster [Napster, 2009].

Apart from the most commonly known wired P2P file sharing applications,
some other wireless P2P applications have become part of our daily life. For
example, people can now play numerous P2P Java online games which are
compatible with mobile phones so that players are allowed to interconnect in
local area through Bluetooth and WiFi, or wide area through 3G network.
Indeed, in many metropolitan cities such as Hong Kong and Tokyo, we can
see that train commuters routinely play wireless games among each other
using popular devices such as PSPs (Play Station Portables). Now, many
mobile phones also already have toward GB or higher RS-MMC card storage

1



2 Peer-to-Peer Computing

capability. Indeed, it is now a common practice to have P2P file transfer
through “BlackBerry email service” on mobile phones. As such, wireless P2P
file sharing is not only feasible but also becoming pervasive.

The highly flexible features of P2P computing such as a dynamic popu-
lation (users come and go asynchronously at will, at a dramatic scale, called
flash crowd), dynamic topologies (it is impractical, if not impossible, to en-
force a fixed communication structure), and anonymity, come at a significant
cost-autonomy which, by its very nature, is not always in harmony with tight
cooperation. Consequently, inefficient or lack of cooperation could lead to
undesirable effects in P2P computing. Among them the most critical one is
“free-riding” behavior. Loosely speaking, free-riding occurs when some users
do not follow the presumed altruistic cooperation rules such as sharing files
voluntarily, sharing bandwidth voluntarily, or sharing energy voluntarily, so
as to benefit the whole community.

Such altruistic sharing actions, presumably, would bring indirect and intan-
gible (and even remote) returns to the users. For instance, if everyone shares
files voluntarily, every user would eventually benefit from the high availability
of a large and diverse set of selections. Unfortunately, there are some users
that do not believe or buy in to such utopia-like concepts and would, then,
“rationally” choose to just enjoy the benefits derived from the community, but
not contribute their own resources. Thus, a successful P2P system requires an
effective incentive providing mechanism, which is currently a very hot topic
of P2P research.

Apart from incentives, there are three other major research problems faced
by a P2P system. Firstly, even if a participating peer has all the incentives
to cooperate, there is a trust issue that needs to be handled. Specifically, if
there is no trust management system incorporated in the P2P system, it is
difficult for a cooperative peer to determine whether another remote peer is
trustworthy or not. For example, in a file sharing application, it can be difficult
for a cooperative peer to accept a file sent from a remote peer that may not
be trustworthy.

Secondly, as a P2P system scales up, performance quickly becomes an is-
sue. Indeed, many popular file sharing P2P systems can have hundreds of
thousands of users participating at the same time. The response time per-
ceived by each peer is therefore critically determined by how efficient the
P2P network can deliver the requests and results. One major factor is the
network topology, which governs how the participating peers are connected
among each other. Specifically, P2P networks can have a structured topology,
an unstructured topology, or a hybrid between the two. Nevertheless, for all
P2P systems, topology control is always needed to dynamically adjust the
connectivity among peers in order to optimize the performance of the P2P
applications.

Thirdly, and perhaps most importantly, there is a security issue in practical
use of P2P systems. Indeed, by nature of a P2P system, peers interact without
the intervention of a central authority. Thus, even if incentive and trust are



Introduction 3

successfully tackled, security issues such as confidentiality and data integrity
are still notoriously hard to solve. This is because without a central author-
ity such as a certification authority (CA), keys distribution among peers is
very difficult to handle. Consequently, it is difficult to realize communication
confidentiality. On the other hand, peers’ communications and topology con-
trol rely very much on reliable updates among peers to maintain a consistent
routing table. Yet, again without the help of a central authority, such update
messages’ integrity can be easily compromised by some malicious peers.

In summary, P2P systems present a unique combination of challenges listed
below.

Highly Decentralized Organization. The advent of P2P systems is due
to the ever increasing desire of moving away from centralized control,
in both aspects of accessing computing resources and accessing informa-
tion. Thus, it is very difficult, if not impossible, to coordinate the peers
in an organized manner. This in turn leads to an inevitable detachment
of data from the sources. Essentially, when a peer wants to access a data
item or some service, it cannot target a particular “server” but a swarm
of potential suppliers. As such, redundancy is intrinsic in a P2P system.

Absolute Autonomy. Every peer is autonomous and its behaviors are not
under any centralized controller. A peer does not even need to follow
any “protocol” but is instead “enticed” with some incentive schemes to
cooperate. Indeed, a Byzantine behavior model should be assumed for an
arbitrary peer. Consequently, it is difficult to deduce system performance
from a bottom-up perspective. Instead, it can only be deduced from a
holistic emergent angle. Finally, autonomy of peers also implies possibly
malicious actions can be carried out by an arbitrary peer, exacerbating
security concerns.

Possibly Unstructured Networking. From a networking point of view,
although structured network topologies have been widely considered
(detailed in Chapter 3), currently a mesh or random swarm network-
ing is the norm. This is because maintaining a structured topology goes
directly against the autonomy of peers. Thus, such a structured network
architecture is only realized at a system level, e.g., connecting the track-
ers in a BitTorrent network, but not at the user level. As a result, it is
difficult to provide quality-of-service (QoS) guarantees to users.

Unreliable Communication Environment. Application level networking
is used among peers, and thus, the connections can be unreliable. For
instance, peer dynamics (i.e., peers joining and leaving) can lead to some
broken connections. Thus, similar to the lack of structured topology, it is
difficult to provide QoS guarantees. Similarly, in a P2P wireless network
(e.g., a wireless sensor network), the communication links among peers
are also highly unreliable. Consequently, a more fault-tolerant commu-
nication paradigm has to be devised for such a P2P network.



4 Peer-to-Peer Computing

Large Population. A P2P system usually scales to a large number of users
(e.g., up to several millions of simultaneous users) and thus, data and/or
peer search has to be able to handle a large user population. Indeed,
when more users join, more resources are aggregated, and hence, can
support even more users. This is a very unique self-scaling effect of
a P2P system. As a result, some kind of hierarchy has to be used in
order to cope with the scalability issue. For instance, tracker servers are
commonly used for keeping track of data and peer locations.

The purpose of the book is two-fold: (1) to introduce the existing applica-
tions and technologies employed; and (2) to motivate further research issues
involved.

1.2 Road Map

In Chapter 2, to set the stage for understanding the various important
research issues in P2P systems, we first introduce the various P2P network
architectures. In Chapter 3, we discuss the topology control research problem
in detail. In Chapter 4, we provide a detailed survey on the existing tech-
nologies for handling the topology control issues. In Chapter 5, we describe
various novel and interesting incentive schemes for enticing peers to cooperate.
In Chapter 6, we describe the recent innovations on trust issues. In Chapter
7, we focus on the security problems in a P2P network. We provide some
concluding remarks in the final chapter.

Throughout Chapters 2 to 7, we use the highly popular P2P IPTV appli-
cation PPLive [PPLive, 2009,Vu et al., 2010] as a case study to illustrate the
practical aspects of the concepts covered.



Chapter 2

P2P Applications

2.1 Introduction

As in many computing technology breakthroughs, the advancements in
peer-to-peer (P2P) systems are largely brought about by applications’ de-
mands. Indeed, evolving from the early file sharing systems to nowadays’
video streaming systems, many novel efficient solutions have been proposed
and implemented to satisfy various users’ requirements. Thus, before we look
at these advancements in detail in later chapters, it is useful for us to review
the evolution of P2P applications in this chapter.

As shown in Figure 2.1, there are three main components in a typical P2P
system. The first one is a Web portal of the application, also known as a login
server, which is the point of getting access to the P2P service. Essentially,
the user first connects to this server in order to check out the availability of
services as well as peers. The second main component is usually referred to as
the tracker nowadays, which is essentially a directory server furnishing peers
availability information to a new peer. In the early days of P2P computing,
these two servers were typically implemented in a single system. Yet as user
population grows and the service becomes much more diversified (e.g., there
are numerous video channels available), the peers tracking system function has
to be overloaded to a separate server, namely the tracker. The third component
is of course the peers, which are autonomous client machines that join and
leave the system at will. The peers serve many useful or even critical functions.
For instance, one of the most important functions is that peers help each other
to get the necessary data packets.

Specifically, there are three key aspects governing the behaviors of a P2P
application.

Discovery. Upon entering the P2P system, the very first tasks a new peer
needs to carry out are the discoveries of services, data, and peers. The
peer first has to find out if a particular desired service (e.g., a certain
video channel or a specific file) is available. Then the peer needs to
determine the various pieces of meta-data about the service, such as the
location information and the size of the actual data. Finally, before the
actual data can be downloaded, the peer needs to obtain a list of peers,
from the corresponding tracker, for making data transfer connections.

5



6 Peer-to-Peer Computing

Internet

Peer

Peer

Tracker
Login Server

Peer

Peer

FIGURE 2.1: A general architecture of a P2P application.

Location. Here, location is used in two different senses. First, a new peer
needs to obtain location information about the corresponding tracker
(e.g., the tracker’s IP address), about the peers that own the needed
actual data. Second, the new peer also needs to report to the P2P servers
about its own location and the data it already possesses. Such location
information exchange is crucial for the tracker servers to keep accurate
data about the availability of actual data and peers.

Data Transfer. The uploading and downloading of the actual desired data
are obviously the ultimate important steps. These steps are also the as-
pects where different P2P systems take on different approaches. For one
thing, there are the so-called push and pull approaches for data exchange.
In a push-based approach, it is the data uploading peer who determines
the recipients of the data. In contrast, in a pull-based approach, it is the
data downloading peer who sends out transfer requests to a set of po-
tential data senders. Another important dimension about data transfer
is the network topology issue. Again there are two general approaches.
The first one is a structured approach, in which the connections among
peers are governed by a well-defined network topology such as using a
distributed hash table (DHT). The second approach is a so-called mesh
approach in which connections among peers are totally ad hoc and do
not follow any structured topology.

More about these different key aspects of a P2P application are further
explained when we describe the specific applications below.



P2P Applications 7

Let us also examine the issue of application performance. As in any com-
puting system, we can evaluate a P2P application’s performance from a user-
oriented perspective and a system-oriented perspective. Such a distinction
between different performance metrics is even more acute in a P2P system
because of the autonomous, and sometimes even “selfish,” nature of the par-
ticipating clients. Indeed, while each peer tries to optimize its own performance
in terms of a certain user-oriented metric (e.g., downloading time), the perfor-
mance of the whole system (or the whole P2P community) may be degraded
by such local optimizations.

Availability. The availability metric measures the ease of getting access to
the item in need, which may be data or a particular peer. To capture the
concept of ease, usually availability is defined as a probability. Specifi-
cally, it is defined as the probability that the item in need can be ob-
tained. For instance, in a P2P file-sharing system, we can compute the
probability of successfully downloading a certain file in need to indicate
the level availability in the system. One point we have to note is that
availability is by and large a system-oriented metric because it is usually
not in the interest of a peer to maximize the availability of contents in
the system. To enhance availability, however, it requires participating
peers’ efforts to ensure that the data in need are replicated widely.

Download Time. The time it takes for a peer to successfully download a file
(or a stored video) is obviously a key performance metric from a user’s
point of view. Download time is affected by many factors including data
replication level, peer connectivity, uploading/downloading data rates,
etc. To put the complexity into perspective, even if the whole system is
under centralized control, it is still extremely difficult to come up with a
data storage plan and peer connection topology to optimize each peer’s
download time.

Robustness. Peer dynamics (i.e., peers come and go) is a fact of life in a P2P
system. Thus, we cannot expect a P2P system to be “stabilized” in a
traditional sense. We should, however, try to design and implement the
system such that it is robust to changes. Thus, similar to availability, we
can define robustness as probability that the P2P system can still pro-
vide a certain level of performance (e.g., in terms of average download
time, or in terms of availability) subject to a particular model of peer
dynamics. Similar to availability, robustness is also a system-oriented
metric, which requires peers’ cooperation (perhaps unknowingly) to op-
timize.

Scalability. Nowadays, any Internet service has to be able to support a large
user population—on the order of at least hundreds of thousands of si-
multaneous users—in order to be “notable.” Thus, it is mandatory for a
P2P system to exhibit a high degree of scalability, which can be quanti-
fied as a certain rate of population growth that can be supported while



8 Peer-to-Peer Computing

maintaining a more or less stable level of performance (again in terms of
average download time, or in terms of availability). Scalability is there-
fore also a system-oriented performance metric.

Server Cost. As will be evident from the surveys below, a practical P2P
system still needs a good number of servers to support many useful sys-
tem functions, e.g., tracking existing peers, organizing the connections
among peers, etc. Thus, a useful indicator about the difficulty in imple-
menting a P2P system is the total cost required to install these servers.
Another variable in the cost function is the bandwidth fees required for
these servers.

In the remainder of this chapter, we first briefly survey P2P applications
that are designed for computation sharing. This is followed by discussions on
P2P applications for the classical file sharing service. We then move on to
survey P2P media applications—voice and video. A summary is presented at
the end.

2.2 Distributed Processing

2.2.1 Internet Computing

One early application of a P2P computing model is to share the pro-
cessing load among many decentralized machines. The rationale is that for
many “pleasantly parallel” computing problems (i.e., large scale data parallel
problem with very little or even no dependency among parallel tasks), the
aggregate processing power of a large number of machines can match the pro-
cessing power of an expensive supercomputer. This is similar in spirit to Grid
Computing [Butler et al., 2000,Foster and Kesselman, 1999].

SETI@Home [Anderson et al., 2002,SETI@Home, 2009], launched in 1999,
is as yet the largest effort in distributed processing in terms of participants. It
is reported that it currently has over 5 million users worldwide. The objective
of SETI (Search for Extra-terrestrial Intelligence) is to exploit the aggregate
computing power of a large number of computers actively linked to the Inter-
net in order to process the daunting quantity of radio signal data gathered at
the Arecibo Observatory in Puerto Rico. The “search” is in fact a detection
problem in the sense that a large quantity of radio signal data are mined so as
to check whether there are some unusual signals which could possibly be sent
by extra-terrestrial creatures from a distant planet. A participating computer
obtains signal data from the central server at Berkeley and then processes
the data using a client program downloaded from the server site. Results are
then sent back to the server for further analysis. As a “pleasantly parallel”



P2P Applications 9

computing problem, more participants in SETI@Home generally imply faster
and/or more accurate results.

We can see that SETI@Home’s computing model is mainly a client-server
one, and thus, should probably not be considered as a P2P application. How-
ever, there is a “competitive” feature in the project in that different users can
compete to earn credits by trying to produce results faster than others. Users
can also form teams in order to process the signal data in a collaborative
manner. Thus, we can see that SETI@Home does possess a P2P component.
Furthermore, as in any competition, some users try to cheat by sending in
results which are in fact not yet completely processed, by modifying the code
of the client programs. Consequently, SETI@Home server also has to police
the users’ behaviors. These issues are commonly seen in a typical P2P appli-
cation. There are still many open problems in these regulatory aspects of the
project.

There are many other similar projects on large scale distributed comput-
ing [Einstein@Home, 2009,Folding@Home, 2009,BOINC, 2009]. In particular,
the BOINC [BOINC, 2009] (Berkeley Open Infrastructure for Network Com-
puting) environment is a free programming tool for users to develop other
large scale distributed processing applications. One interesting feature of the
BOINC platform is that it has a credit system for developers to implement
a policing service for authenticating results from participating computers. As
to other programming tools for implementing such large scale distributed pro-
cessing, recently there is a widely considered software called GreenTea [Green-
Tea Technologies Inc., 2009], which is a purely Java-based P2P platform.
Specifically, installed with custom-made GreenTea client programs, partici-
pating computers can share in and out their resources such as computing
cycles, storage spaces, or services.

2.2.2 Wireless Sensor Networks

Wireless Sensor Networks (WSNs) [Akyildiz et al., 2002] have gained re-
markable attention as they have become highly attractive distributed process-
ing platforms, thanks to the recent advancements of electronic and wireless
technologies. Due to the inherent decentralized and autonomous behaviors of
sensors, a WSN can also be considered as a P2P platform. Specifically, a WSN
usually consists of ultra small autonomous devices called sensor nodes, which
are battery powered, limited in memory storage and computational power.
In a typical application scenario, sensors cooperatively monitor physical and
environmental conditions and then transmit collected data to a sink node or
base station via wireless links for further analysis. For instance, in a military
scenario, WSNs are deployed in a large scale with well over 10,000 nodes [Chan
et al., 2003,Du et al., 2004,Eschenauer and Gligor, 2002] for gathering a large
volume of target recognition data. Smart Dust [Smart Dust Project, 2008],
WINS [WINS Project, 2008], and µAmps [µAmps Project, 2008] are well-
known examples of WSN research projects.



10 Peer-to-Peer Computing

The development of WSNs was originally motivated by the military sens-
ing and tracking arena, such as battlefield surveillance. When sensor nodes
are deployed in hostile areas, security becomes extremely important as nodes
are subjected to different kind of threats [Fu et al., 2005, Newsome et al.,
2004,Parno et al., 2005,Wang and Bhargava, 2004,Wood and Stankovic, 2002].
Nodes may be captured and the communications among them may be eaves-
dropped or altered. Therefore, messages transmitted between sensor nodes
must be encrypted using various cryptographic protection schemes to guard
against different types of malicious attacks. Hence, trust establishment is one
of the most critical components to set up a secure communication environment
in a WSN-based information system [Kwok, 2007].

Although many traditional trust establishment schemes have been pro-
posed, a WSN is unique due to its distributed and resource-constrained prop-
erties. Some methods such as using a master key or pairwise private sharing
of keys are proposed [Kwok, 2007], but they are either too insecure or im-
practical [Chan et al., 2005a] for WSNs. Currently, many trust establishment
schemes have been developed for wireless sensor networks [Anderson et al.,
2004,Kwok, 2007]. Among them, key pre-distribution schemes are widely con-
sidered as practicable solutions in WSNs [Chan et al., 2003,Chan and Perrig,
2005,Du et al., 2005,Eschenauer and Gligor, 2002,Kwok, 2007,Liu and Ning,
2003]. A typical key pre-distribution scheme works by having keys distributed
to all nodes prior to deployment. Eschenauer et al. [Eschenauer and Gligor,
2002] pioneered this field of research by proposing a randomized key pre-
distribution scheme, which relies on probabilistic key sharing among nodes
using random graph theory [Erdös and Rényi, 1960].

From a system’s point of view, WSNs are often regarded as a kind of Mo-
bile Ad-hoc Network (MANET). In order to make sensor nodes cheaper and
smaller so as to facilitate large scale deployment, heavyweight and computa-
tion intensive programs are not expected to be executed on the tiny sensor
devices. These limitations make the design of trust establishment schemes in
WSNs highly challenging. A brief summary of the constraints is described
below:

1. Energy limitation: Sensor devices are usually small in size and battery-
powered. The limited supply of power restricts the computational and
communication capabilities of sensor nodes. Indeed, an effective energy
conservation scheme is vital for maximizing the lifetime of operation
from a single node to the entire network [Raghunathan et al., 2006].
Nowadays, a typical sensor node can operate for a week (under full
operation) to several months.

2. Memory storage limitation: Due to the small size, sensor nodes are
equipped with limited amount of memory. Apart from storing key ma-
terials, it is still necessary to store the key management program and
many other applications for operation. For instance, a popular sensor



P2P Applications 11

device, namely Berkeley MICA2 Mote [Crossbox Technology, 2008], has
only 128 KBytes program memory.

3. Vulnerability to attacks: As WSNs are usually deployed in hostile envi-
ronments, nodes are exposed to physical attacks by the potential ad-
versaries. In most practical scenarios, it is possible for the attackers to
compromise a node physically and take full control of the node without
being detected. This is often called “node capture attack.”

4. Lack of post-deployment knowledge: Without deployment knowledge,
such as location information, the distribution of sensor nodes may follow
a randomly scattered pattern. Therefore, the network topology is hard
to be determined a priori so that the optimization of trust establishment
is very difficult.

In general, the major barrier for enhancing security in WSNs is their
weak computational and communication capabilities. These inherent prop-
erties make traditional cryptographic protocols, such as Diffie-Hellman key
agreement [Diffie and Hellman, 1976] and RSA signature [Rivest et al., 1978]
techniques, undesirable when compared to the symmetric key approaches [Per-
rig et al., 2002] in terms of energy and computational requirements. These
public key schemes are either too computation intensive or too large to fit
in the resource-constrained sensor nodes. We discuss more on sensor network
trust establishment in Chapter 6.

2.3 File Sharing

File sharing is probably the real starter of the P2P computing arena. The
idea is very simple—a user wants to find a certain file (e.g., a music MP3 file)
and downloads it as soon as possible. Many users share the same objective
and therefore there is a large aggregate pool of files for mutual sharing. Thus,
in essence, there are four aspects in a file sharing P2P application:

Search. The file sharing system has to support a convenient and accurate
file search user-interface.

Peer Selection. The file sharing system has to support an efficient peer-
selection mechanism so as to minimize the download time.

Connection. Peers should be able to set up more or less stable data transfer
connections so that file data packets can be exchanged efficiently.

Performance. The key performance metrics are download time and avail-
ability.



12 Peer-to-Peer Computing

Napster [Napster, 2009], launched in 1999 and shut down in 2001 by court
order, was among the first P2P file sharing applications. From the perspective
of attracting users, Napster was highly successful in that at its peak reportedly
over 26 million participants joined the network. Napster’s file sharing model
is not strictly a P2P one because it relies on centralized servers to host the file
lists for participants to search for desired files. Specifically, the client program
on a user’s machine shows the file lists obtained from the connected server,
and then, the user can search and select appropriate peers for downloading.
Thus, the selection of peers is done manually by the user. As such, there was
essentially no control over the authenticity of files and the performance of
the downloading. With centralized servers at its core, the Napster network
was not highly scalable. Currently, WinMX [WinMX World, 2009] is the most
prominent client program that is based on the Napster related protocols.

Gnutella [Gnutella Protocol Development, 2009] represented a major im-
provement over the Napster model. Indeed, the Gnutella protocol is fully de-
centralized in that participating peers help each other in file discovery, control
messages routing, and file transmission. As such, “Gnutella” nowadays hardly
refers to any particular piece of P2P application. Rather it refers to a whole
family of file sharing applications that are implemented based on the open
Gnutella protocol. As in any fully decentralized file sharing system, when a
client starts, the very first problem is to discover and locate other active peers.
In the original design of the Gnutella protocol, this was based on a flooding
mechanism—the starting client broadcasts the so-called “ping” messages over
the network. When such a ping message is received by an active Gnutella user,
it replies a “pong” message to the starting client. Obviously, a more funda-
mental question is that to whom should the starting client send the requests
in the first place? Many heuristics are used in this bootstrapping process. For
example, the starting client can use the list of well-known users that come
with the client program. Another scheme is to use a Web cache of actively
connected machines.

From a scalability point of view, a drawback of the blind flooding approach
is that the volume of traffic generated could be large, even if the maximum
hop-count a request message can travel is usually limited to 7. Thus, the
notion of “ultra-peer” is introduced in the Gnutella protocol. Specifically,
some participating peers are designated as ultra-peers which play the role of
“hubs” or “routers” in the Gnutella network. When a new client starts, it
actually connects to several (e.g., three) such ultra-peers, each of which could
be connected to more than 30 other ultra-peers. Essentially, a user (as a leaf
node) sends a request message to its ultra-peers which then forward to its
connected ultra-peers. Consequently, with such a more hierarchical network
structure, the scope that can be reached by a request message becomes much
larger yet the traffic volume generated is limited.

As in Napster, when a Gnutella request finds a suitable provider for the
desired file, the two peers can then manage the transfer without any other



P2P Applications 13

intervention. Foxy [Foxy, 2009] is one of the most popular implementations of
the Gnutella protocol and is widely used in the greater China region.

eDonkey [eDonkey, 2009] was designed to be a reliable decentralized system
for sharing large files such as video files, complete sets of music albums, CD
images, etc. Obviously, such a large file with size in the ranges of hundreds
of mega-bytes to even giga-bytes, needs a relatively longer time to download.
Thus, the system has to be reliable in at least two senses: (1) the system has
to be available during the whole downloading duration; and (2) the contents
of the file have to be authentic. Around these two objectives, the eDonkey
system incorporates two essentially pioneering features:

• Each file is uniquely identified by the hashed (using MD5) digests of its
fix-sized content chunks (around 9 kbytes each). Thus, two files are con-
sidered equivalent if all the digests match, regardless of their filenames.

• Each file can then be downloaded from several sources simultaneously
because the client can get different chunks from different sources.

As to searching for files, the eDonkey system relies on servers distributed
on the Internet. Specifically, each client can contact one or more such servers to
locate files and report the availability of files. As such, like Napster, the eDon-
key system is not necessarily a purely P2P network. Furthermore, a server-list
is also needed by each client to properly join the network. The most promi-
nent implementation of the eDonkey system is the open-source eMule [eMule,
2009], which has reportedly millions of users. iMesh [iMesh, 2009] is another
highly popular implementation of the protocol for sharing MP3 music files.

KaZaA [KaZaA, 2009,Liang et al., 2005] and its variants, which are based
on the FastTrack protocol [giFT-FastTrack, 2009], use some “super-nodes” in
a way similar to the ultra-peers in Gnutella. On the other hand, the FastTrack
protocol also employs the hashing approach used in the eDonkey system for
managing large files.

BitTorrent [BitTorrent, 2009,Cohen, 2003] is by far one of the most suc-
cessful P2P file sharing systems. Similar to eDonkey, in BitTorrent each shared
file is divided into pieces (of size 256KB each), which are uniquely identified
by their hashed digests and usually stored in multiple different peers. Thus,
for any peer in need of a shared file, parallel downloading can take place in
that the requesting peer can use multiple TCP connections to obtain different
pieces of the file from several distinct peers. This feature is highly effective
because the uploading burden is shared among multiple peers and the network
can scale to a large size.

Closely related to this parallel downloading mechanism is the ingenious in-
centive component used in BitTorrent. Specifically, each uploading peer selects
up to four requesting peers in making uploading connections. The selection
priority is based on descending order of downloading rates from the requesting
peers. That is, the uploading peer selects four requesting peers that have the
highest downloading rates. Here, downloading rate refers to the data rate that



14 Peer-to-Peer Computing

is used by a requesting peer in sending out pieces of some other file. Thus,
the rationale of this scheme is to provide incentive for each participating peer
to increase the data rate used in sending out file data (i.e., uploading, or,
in BitTorrent’s term, unchoking). There are other related mechanisms (e.g.,
optimistic unchoking), which are described in detail in [Cohen, 2003,Qiu and
Srikant, 2004]. BitComet [BitComet, 2009] is one of the most highly popular
implementations of the BitTorrent protocol. Tribler [Tribler, 2009] is a popular
implementation of the BitTorrent protocol for sharing video files.

2.4 Voice over IP and Instant Messaging

Telephony service is an indispensable part of our daily life. Thus, as P2P
systems proliferate, people start to employ this vehicle to deliver telephony
service using the voice-over-IP (VoIP) technologies.

Skype [Skype, 2009] is as yet the most successful VoIP system that is
globally available, judging from its huge user population—it is reported that
more than 500 million user accounts have been created and more than 50
million users are active on a daily basis. Architecturally Skype is found to
be very similar to KaZaA in that the Skype network also heavily relies on
the core super-node network [Baset and Schulzrinne, 2006, Caizzone et al.,
2008, Kho et al., 2008]. The detailed working principles behind Skype are
not known for sure because Skype is built on proprietary protocols and its
traffic flows are all encrypted. Below we highlight its main protocol features
based on excellent experimental studies done recently [Baset and Schulzrinne,
2006,Caizzone et al., 2008,Kho et al., 2008].

Specifically, each super-node is responsible for client discovery and loca-
tion, as well as traffic relaying when the clients are behind firewalls or NATs.
Indeed, being able to route traffic to/from clients behind NATs is very im-
portant because it is reported [Tang et al., 2007] that over 60% of P2P users
are behind some kind of NAT. Different from a file sharing application, a
VoIP session involves locating the specific callee the caller wants to reach.
To this end, quite contrary to a traditional client-server-based VoIP system
such as those based on SIP or ITU H.263, the Skype system relies completely
on the super-nodes for storing the location information of currently on-line
Skype users. Thus, the location information of the VoIP system is completely
decentralized.

To start, a Skype client needs to contact the login server for authentica-
tion and obtaining peers’ information (e.g., whether they are online or not).
Afterward, the client needs to establish connections with one or more super-
nodes so as to transmit and receive VoIP data. The client can either use a
cached super-nodes list or contact the several bootstrap super-nodes (which
are hardwired in the Skype client program).



P2P Applications 15

Skype is robust not only in the aspect of its ability to route traffic around
NATs or firewalls, but also in its lean requirements on bandwidths. Specifi-
cally, for voice traffic flows, typically the total uplink and downlink bandwidth
required is only around 40 kbps.

One key aspect about the protocol and architecture of Skype is that users
cannot possibly (as of this writing) refuse to be a super-node. Indeed, when the
Skype client program discovers that the client’s machine is powerful enough
in terms of machine architecture, bandwidth available, whether it is behind a
firewall or NAT, etc., the client machine could be “promoted” to be a super-
node. This enforcement of super-node role could be a potential problem for
the robustness of Skype as there is not enough incentive provided for a client
machine to serve as a super-node.

When there are multiple parties in a VoIP session, i.e., a conferencing sit-
uation, the system needs to carry out a “mixing” operating—merging several
streams of voice packets for delivery to the receivers. There are several pos-
sible approaches [Gu et al., 2008] to achieve this. For example, as shown in
Figure 2.2(a), each sender (i.e., a speaker in the conferencing session) uses a
separate multicast tree for sending voice packets to the receivers. Here, sender
A uses its own multicast tree to deliver packets to the receivers, and sender B
does the same independently. That is, the “mixing” action is accomplished by
each individual receiver. While this approach is straightforward in the sense
that existing multicasting infrastructure of each sender can be used indepen-
dently, the obvious drawback is that there is a need to maintain a potentially
large number of such trees.

Another approach is to designate one participant (or even a dedicated
server) to handle the mixing and the subsequent distribution, as shown in
Figure 2.2(b). This is a preferred design option in many commercial confer-
encing systems due to its ease of management. However, with a designated
node to handle the mixing and distribution, there is obviously a limit of how
many participants it can handle. Indeed, it is reported that even in Skype, the
system can only allow five simultaneous participants in a conferencing session.

Toward the other extreme is the approach that uses only one single multi-
cast tree throughout. That is, the same multicast tree is used for any sender
and all the mixing and distribution of packets, as illustrated in Figure 2.2(c).
Here, we have node A as the root of this unified multicast tree, and hence,
when A speaks, its packets are delivered along the tree to every other par-
ticipant. Now, the other speaker, node B, uses the same tree for its packets.
Specifically, when B sends its voice packets, it treats itself as the root of the
tree and thus, it transmits its packets to A, C, and F. At this point, the voice
packets of A and B are mixed along the tree edges AD, DE, BC, and BF.
More importantly, we can also see that there is a potential problem caused by
asymmetric incoming and outgoing bandwidths of each node. Consider node
B and we can see that it may not have sufficient outgoing bandwidth (as in a
common ADSL situation) to support the mixing of packets from both A and



16 Peer-to-Peer Computing

B for distribution to A, C, and F. Essentially, using a single tree might be a
suboptimal arrangement.

Thus, it is proposed [Gu et al., 2008] that a “decoupled” approach is used,
as illustrated in Figure 2.2(d). Here, we have two logical trees—one for mixing
and the other for distribution. It is important to note that the constituents
of these two trees are designated from the set of participants (i.e., A, B,
C, D, E, and F). Indeed, in this approach, a node needs to overload itself
to play potentially two to three roles (i.e., as a participant, a mixer, and a
distributor). Now, when nodes A and B speak simultaneously, their packets
get transmitted along the mixing tree. The final mixed outcome will then
be passed to the distribution tree, from which all the participants get the
packets. The key advantage of this approach is that based on the knowledge
of the system capabilities (e.g., bandwidth) of the participants, two optimal
trees can be determined to support the conferencing operations.

A B C

D E F

(a) multiple multicasting

A B C

D E F

(b) multiple multicasting

A B C

D E F

(c) multiple multicasting

A B C D E F

M1 M2

M3

D2 D3

D1

A B C D E F

(d) multiple multicasting

FIGURE 2.2: Approaches for mixing and distributing VoIP data in a mul-
tiparty scenario [Gu et al., 2008].



P2P Applications 17

2.5 Video Streaming

Video applications are among the most important services. As such, re-
searchers have exerted a great deal of effort in the past decade so as to achieve
significant progress in providing various kinds of video services (e.g., real-time
live streaming, on-demand viewing, etc.) over the Internet. Due to the consid-
erably intensive resource requirements imposed by video streaming services,
it is widely envisioned that the traditional client-server-based system does
not scale (e.g., to the population size with millions of simultaneous viewers)
and using a P2P approach is inevitable. Indeed, while many commercial efforts
have been launched on the Internet for delivery video or TV services, the server
cost is still prohibitively high, from a profit-making business’s standpoint. As a
case in point, it is reported [Huang et al., 2007] that YouTube [YouTube, 2009]
pays in excess of 1 million dollars of bandwidth costs in providing its video-
on-demand service. On the other hand, as users’ machines get more and more
powerful and equipped with high speed Internet connections, a P2P video
data delivery model seems much more economical. Indeed, it is found [Lu
et al., 2007b] that a typical ADSL user has more than 1.5 Mbps download
bandwidth and over 384 kbps upload bandwidth. Such communication capa-
bilities are good enough for supporting video services with reasonably good
user experience.

The first critical component in a video streaming service is the multiple
description coding (MDC) system [Goyal, 2001,Akyol et al., 2006,Wang et al.,
2005] for the video contents. Simply put, with a MDC encoder, a video (i.e., a
stream of picture frames) is encoded into several different layers, with different
importance as to restoring the original contents at the viewer’s machine. For
example, consider using an MPEG-2 encoder (as in many practical systems).
All the I-frames can be encoded as the first layer, which is of the highest
importance. The first GOP P-frames are then encoded as the second layer.
The second GOP P-frames are similarly encoded as the third layer, and so on.
The B-frames can be encoded as even higher layers, which are relatively less
important in restoring an acceptable video. These different layers can then
be further broken down into equal size chunks (sometimes called description
chunks), which are encapsulated in network packets. The most important im-
plication of using an MDC encoder is that the more packets a node receives,
the higher the quality the video playback will be.

The next critical component in a video streaming system is the engine for
retrieving, storing, and playing back video packets. A generic architecture of
such an engine is shown in Figure 2.3 [Hei et al., 2007b]. Here, the very first
feature of such an engine is the usage of a data structure called the buffer
map. First and foremost, we should note that all the chunks in the original
video packet stream are labeled with unique chunk ID so that each node
can keep track of any missing packets in its playback buffer. Thus, a buffer



18 Peer-to-Peer Computing

map is the data structure indicating the presence/absence of video chunks in
the node. To ensure smooth and high quality playback, the playback buffer
should ideally be filled with all the necessary packets. However, due to various
adverse operating conditions (e.g., network congestion, etc.), some packets
might be missing. Indeed, if a missing packet has not yet met its deadline
(i.e., the playback time), then the node should try its best to retrieve it from
somewhere. Here is where a P2P architecture could help. Specifically, in a
P2P environment, a participating peer could try to request for missing packets
from its connected peers. To do so in an efficient manner, the requesting peer
should not blindly ask for the missing packets from all its peers. Instead, it
should check whether its connected peers really possess the missing packets
first before asking. Here is where the buffer maps come in handy. As can be
seen in Figure 2.3, the peers periodically exchange their buffer maps so that
they can tell if a connected peer really has a particular packet that is missing
locally. To facilitate such P2P sharing, we can see that each node keeps two
separate (logical) buffers: the playback buffer and the packet cache. While
the former is used by the player for rendering the video, the latter is used
for sharing with peers, and as such, might contain packets that are no longer
needed locally.

buffer map

chunk

request

chunk

reply

packet

cache

buffer map

chunk

request

chunk

reply

playback

playback buffer

P2P Streaming Engine

FIGURE 2.3: A generic architecture of a P2P video streaming engine [Hei
et al., 2007b].

Now, obviously the next question is how a node is connected to other
peers in the first place. Regarding this topology issue, there are in general two
approaches: tree push and mesh pull. In a tree push approach, peers form a
multicast tree so that peers owning packets needed by other connected peers
can proactively send such packets to those peers along the tree [Yiu et al.,
2007]. While this is efficient and can lead to a smaller delay, the tree struc-
ture itself might be too fragile given the peer dynamics (i.e., peers come and
go, or called peer churn). As always, some people suggest another extreme
which is the mesh pull approach. Simply put, a mesh pull approach means
highly dynamic or even random connectivity. That is, each peer is connected



P2P Applications 19

to a dynamically changing set of peers in an unstructured way (i.e., no tree
whatsoever). Consequently, a higher communication overhead would be in-
curred when packets are shared. Given their complementary nature, the two
extreme approaches are naturally combined to form a hybrid approach [Li
et al., 2008], which works by first using mesh pull to jump start the buffering
process, and then construct multicast trees with relatively stable peers (or
sometimes, peers with similar capabilities, as in the case of BitTorrent) to
enhance the efficiency. Indeed, as pointed out by Zhang et al. [Zhang et al.,
2007], using a hybrid push-pull or even a traditional mesh pull mechanism
can lead to optimal performance in terms of peer upload capacity utilization
and system throughput even without intelligent scheduling and bandwidth
measurement.

Login Server

Tracker

Peer 2
Peer 1

Peer 3

Peer 4

Peer N

New Peer

2. Send tracker 

address

1. Select channel

3. Get peers list

4. Return 

peers list

5. Connection 

request
5. Connection 

request

5. Connection 

request

5. Connection 

request

5. Connection 

request

FIGURE 2.4: A general information exchange process in a P2P video stream-
ing system.

In summary, the general process of a P2P video streaming session is illus-
trated in Figure 2.4. Initially, the new peer visits the so-called log-in server
(i.e., the Web site of the system) to select the channel or movie the user wants
to watch. The log-in server then redirects the new peer to a particular tracker
server which can furnish a list of peers currently watching the same channel
to the new peer. Usually the tracker server just randomly picks a subset of
peers to form a list for the new peer. The new peer then selects a subset from
this list so as to make connection requests. Such selection is, in current imple-
mentations, also based on randomization. After connections are established,



20 Peer-to-Peer Computing

buffer maps exchange and video packets downloading can be carried out. This
general process is the basis of many well-known P2P video streaming systems
such as Joost, SopCast, GridCast, UUSee, etc.

Nevertheless, there are still some differences among different systems. In-
deed, Huang et al. [Huang et al., 2008] give a detailed analysis of design choices
in a P2P video streaming system. Specifically, apart from the push versus pull
architecture discussed above, the design space can be further characterized in
the following several dimensions.

Chunk Size. A movie file (or a stream of live video packets) can be divided
into a hierarchy of data units of different sizes. First of all, the term chunk
refers to the largest unit, of a size around 2 MB, to be used for buffer
map construction. The rationale is that the buffer maps themselves are
exchanged frequently and thus, cannot be of a large size. For example,
with a 200 MB movie file and a chunk size of 2 MB, each buffer map is
just a 100-bit vector. The next level of storage unit is commonly called
piece which is of a size of around 16 KB. A piece is a basic unit for
the media player’s processing, representing a reasonably long viewable
segment of the video. However, a piece is still too large to serve as a
basic unit of data requesting and downloading. Thus, in many real-life
implementations, a smaller unit called sub-piece is also used. A sub-
piece is of a size of around 1 KB, representing a moderately large size for
efficient transmission (weighed against the transport protocol overheads)
while not too large to cause a high loss rate.

Replication Strategies. This design aspect concerns the usage of the stor-
age (i.e., disk space) locally in each peer. Specifically, a peer can store
just one single movie at a time (referred to as single video cache (SVC))
or multiple movies at a time (referred to as multiple video cache (MVC)).
Obviously, implementing a SVC is much simpler because by default the
cache should store the movie currently being played back. On the other
hand, implementing MVC entails at least two design considerations: (1)
selection and replacement of videos; (2) pre-fetching. Firstly, we need to
decide which other videos to download while the user is watching one
specific movie. When the cache is full, we also need to decide which ex-
isting movie should be replaced. Secondly, we can carry out pre-fetching
of other movies when the user is watching one. Yet pre-fetching other
movies can also interfere with the downloading of packets for the current
movie.

Chunk Selection. Given a certain status of the buffer map, a peer has to
decide which missing chunks should be downloaded first. Commonly
used heuristics include: sequential, rarest first, and anchor first. In the
sequential selection method, the peer simply tries to get the chunks that
are closest to the current playback point. In the rarest first strategy,
however, the peer tries to get the currently rarest chunks in the hope



P2P Applications 21

that such chunks will not be “extinct” when the playback times come.
Doing this will also enhance the overall availability of packets. In the
anchor-based strategy, the peer tries to get all the chunks located at pre-
defined anchor points used for supporting fast-forward and fast-rewind
functions.

Transmission Strategies. The most important goals of transmission of
video chunks are to maximize download rate and to minimize overheads.
However, these goals are often times conflicting with each other. The rea-
son is that a commonly used efficient way to maximize download rate
is to request chunks from multiple neighboring peers at the same time.
While such parallel downloading can speed up the transmission process,
inevitably some chunks are received in duplicates, thereby leading to
overheads. Indeed, in practical video streaming systems, a downloading
peer usually employs one or more of the following three strategies:

• Downloading the same chunk from multiple peers at the same time;

• Downloading several different chunks from multiple peers at the
same time; and

• Downloading all chunks from one selected peer and switch to an-
other peer if the former is unavailable.

In the following we go through a brief survey of representative P2P video
streaming systems.

SplitStream [Castro et al., 2003b] is one of the pioneering research-based
systems for P2P video streaming. As in most early days’ systems, it is designed
based on a structured approach in that it uses multicast trees at the applica-
tion level for distributing video packets. Specifically, to build robustness into
the system, a multi-tree approach is used in that the source partitions the
video into multiple stripes and then uses multiple interior-node-disjoint trees
to carry each stripe to the clients. The key property of such a forest of interior-
node-disjoint trees is that each participating node serves as an interior node in
one and only one tree. Consequently, even if a node fails or departs abruptly,
only one stripe of video is affected. Such impairment can be furthered masked
by proper use of redundant coding in the MDC video.

CoolStreaming [CoolStreaming, 2009] represents one of the major pioneer-
ing efforts in large scale video streaming based on P2P technologies [Li et al.,
2007,Sentinelli et al., 2007,Venot and Yan, 2007,Xie et al., 2007,Zhang et al.,
2005b]. The original version was implemented in Python in 2004 and became
an instant hit world-wide. Its design has also inspired many other systems,
including commercial products. Basically, in CoolStreaming, a client starts by
contacting a bootstrap node to obtain a list of currently active peers. It then
randomly selects a subset of such peers as partners. The client can then start
getting required packets from such partners using a standard mechanism, i.e.,
exchanging buffer maps and then getting missing packets from the partners.
One distinctive feature in CoolStreaming is that once a partner, also known



22 Peer-to-Peer Computing

as a parent, receives a request from the client, it will continuously push pack-
ets to the client unless the latter decides to drop this partner. This feature is
designed for enhancing the downloading efficiency.

PPStream [PPStream, 2009] is also a highly popular P2P video streaming
application in the Greater China region. It is reported that with around 65
million media streaming clients every month, PPStream’s share is roughly
35.1% [Wei and Chen, 2008]. PPStream’s design and implementation are also
rather standard. When a client starts, it first contacts a channel list server
node (cached or from a list of well-known bootstrap nodes) to obtain a channel
list. Upon selecting a particular channel to watch, the node then contacts a
corresponding tracker node to obtain a list of peers. It then selects a subset of
such peers to establish connections. Buffer maps are then retrieved from such
peers and the downloading process can begin. After getting enough packets
for the playback buffer, the video player can start while the node continues to
share packets with other peers watching the same channel.

PPLive [PPLive, 2009,Vu et al., 2010] is one of the highly popular mesh-
pull-based P2P video streaming systems. It is reported [Hei et al., 2007a] that
PPLive serves on the order of 3 million daily users on average with over 300
channels at a data rate of around 250 kbps to 400 kbps. The protocols used in
PPLive are observed to be similar to a typical mesh pull system. Performance-
wise, PPLive still has a number of deficiencies [Hei et al., 2007a,Vu et al.,
2010], despite its high popularity. For example, the start-up delay (i.e., the
time duration between the time a user chooses a channel and the time the
video starts) is on the order of 20 seconds for popular channels, and can go up
to a couple of minutes for unpopular channels. Another problem is the high
playback lags among peers. Specifically, due to different buffering progresses
among peers, a peer may view the video that is lagging behind some other
peers. It is found [Hei et al., 2007a] that the lag can be as high as 140 seconds
of video, possibly leading to frustrating user experiences (e.g., imagine the
users are watching a live soccer game). We further discuss the application
properties of PPLive in Section 2.7.

Parvez et al. [Parvez et al., 2008] presented a useful mathematical charac-
terization of P2P video downloading mechanisms based on a simple model. In
the model, a video file is divided into M chunks, encoded at a playback rate of
r. Each peer is capable of making a maximum of U connections for uploading
simultaneously. A peer can also use up to D downloading connections. The
average data rate of each of these connections is C. The number of down-
loading peers and uploading peers are denoted by x and y, respectively. New
downloading peers enter the system at a rate of λ, while chunks-supplying
(i.e., sources) peers stay in the system for a time period of 1/µ. Because each
new downloading peer becomes a source itself at a rate of (x+y)UC, we have:

dx

dt
= λ − (x + y)UC (2.1)



P2P Applications 23

On the other hand, the uploading peers depart at a rate of µy and we have:

dy

dt
= (x + y)UC − µy (2.2)

Solving the above equations for an equilibrium solution, i.e., dx
dt = dy

dt = 0,
we have:

x = λ(
1

UC
−

1

µ
) (2.3)

and

y =
λ

µ
(2.4)

The above results have the following implications.

• The population size of downloading peers and source peers is linearly
dependent on the peer arrival rate.

• The population size of source peers is directly proportional to the resi-
dence time ( 1

µ ).

• The total population size is independent of the source residence time.

Most importantly, the downloading latency T can be determined by using
Little’s Law:

T =
x

λ
=

1

UC
−

1

µ
(2.5)

Hei, Liu, and Ross [Hei et al., 2007b] conducted a useful study on the
video quality of a P2P streaming client based on an interesting methodology.
Specifically, they deployed, in a widely dispersed manner, a number of PPLive
clients which are associated with packet-sniffers. Because PPLive is based on
proprietary protocols, the sniffers are used for extracting information from the
sniffed packets. The key information extracted is the buffer maps exchanged
among the peers. Using the buffer maps, the video quality of those connected
peers can be inferred by checking the continuity of the video and the delay
jitter.

Feng and Li [Feng and Li, 2008] proposed a mathematically sound scheme
for P2P video streaming using the network coding [Yeung, 2008] concept.
Simply put, network coding works by having the sender transmit combinations
of data (e.g., with the XOR operator) to the receiver. Upon receiving distinct
combinations of the data, the receiver can then decode them to extract the
original data. The key advantage is that the robustness of the transmissions, in
a holistic manner, is greatly improved. Now, to apply the network coding idea
in P2P video streaming, the following protocol is used. Specifically, if a source
peer needs to transmit a chunk to a downloading peer, it further divides the
chunk into m blocks. The source peer then transmits linear combinations of
such blocks with random coefficients. The downloading peer, upon receiving



24 Peer-to-Peer Computing

m linearly independent combinations of blocks, can reconstruct the original
chunk using Gaussian elimination.

As we have seen earlier, currently different video streaming systems employ
slightly different methods in “matching” a new peer with a subset of existing
peers watching the same channel. It is, however, not difficult to envision that
a probably more effective approach is to consider the “peer selection” step
as an optimization problem—to minimize the download time, for example.
Indeed, it would be ideal, from a holistic perspective, if such a distributed
peer selection mechanism can achieve:

• Minimum download time for each peer;

• Minimum upload bandwidth required for each peer;

• Maximum content availability; and

• Maximum robustness.

Unfortunately, it is obvious that the above goals are conflicting among each
other. Specifically, while the first two goals are “user-oriented,” the latter two
are “system-oriented.” Putting this in a more incentive-related context, we
can say that the first two goals are individualistic while the latter two concern
social welfare.

It is highly likely that, therefore, any peer selection scheme would not be
able to provide optimal results for all of the above goals. Thus, a more practical
research question is whether we can come up with some efficient distributed
heuristics to achieve near-optimal results for all or some of the above goals.

Bonald et al. [Bonald et al., 2008] consider a “push-based” peer selection
problem. Specifically, in a push-based approach, it is the chunk sender who
selects requesting peers as receivers of its chunks. Let us denote the sending
peer as s and a receiving peer as r. Furthermore, let C(s) and C(r) denote
the set of chunks currently owned by s and r, respectively. Several selection
heuristics are considered:

Random Peer. A receiving peer is randomly chosen from among the list of
currently connected peers.

Random Useful Peer. A receiving peer is randomly chosen from those con-
nected peers r where C(s)/ C(r) 6= φ. Thus, this is different from the
Random Peer heuristic in that a receiving peer is one which really needs
some chunks from the sender.

Most Deprived Peer. A receiving peer is randomly chosen from those con-
nected peers r where |C(s)/ C(r)| is the largest. The rationale of this
heuristic is to give a higher priority to a peer that needs the most chunks
from the sender.



P2P Applications 25

Latest Blind Chunk. This is chunk selection heuristic. Specifically, the
sender selects the video chunk with the latest time-stamp in its C(s)
set. The sender then selects a receiving peer using Random Useful Peer
or Most Deprived Peer heuristics.

Latest Useful Chunk. The sender selects the chunk c with the latest time-
stamp such that c /∈ C(r) for at least one of its currently connected
peers r.

Random Useful Chunk. The sender randomly selects a chunk c such that
c /∈ C(r) for at least one of its currently connected peers r.

The above basic heuristics actually define a wide design space for a push-
based peer communication scheme. For instance, by combining a chunk se-
lection scheme and a peer selection scheme, we can specify a mechanism for
peer chunks transmission, e.g., Most Deprived Peer and Latest Useful Chunk.
Indeed, Bonald et al. carried out both analytical and simulation studies to
examine the efficacy of several such combinations. In their findings [Bonald
et al., 2008], combinations such as Most Deprived Peer/Latest Useful Chunk
and Latest Blind Chunk/Random Useful Peer are found to be highly effective
in distributing the video packets to all peers in the system.

2.6 Discussion

As the above brief surveys have indicated, there is a proliferation of highly
popular P2P applications catering for both discrete and continuous data. In-
deed, as P2P technologies continue to advance, it is highly probable that most
of our network computing services could be supported in a P2P computing
model in the future. This is a trend that some people refer to as a form of
“liberation” from the traditional authoritarian computing model. Some people
even argue that this is inevitable because of economic forces—a centralized
computing model can never keep up with the growth of user population and
the associated data/computing needs.

Table 2.1 summarizes the features of several popular P2P applications.
One missing piece from Table 2.1 and our brief surveys above is the 3-D

streaming service [Sung et al., 2008]. While it has become highly popular in
movie theaters, 3-D video delivery on the Internet is still largely inside research
labs only. There are many technological obstacles, even in a traditional client-
server delivery mode. For instance, the amount of data needed for rendering
a 3-D object is still daunting, not to mention an animation of such objects
in real-time. Yet speaking of scale, a P2P computing model is suitable for
handling large-scale data sharing. Thus, it is hopeful that a P2P 3-D streaming
system is a “natural” implementation of the idea. However, another challenge



26 Peer-to-Peer Computing

TABLE 2.1: A qualitative comparison of different P2P applications.

Name Type Protocol Architecture Additional Information

BitComet
[Bit-
Comet,
2009]

File sharing BitTorrent Structured Closed source; adware

eMule
[eMule,
2009]

File sharing eDonkey2000,
Kad

Decentralized GPL open source; has a large
user space

GreenTea
[Green-
Tea
Tech-
nologies
Inc.,
2009]

Networked
computing

Proprietary Hybrid Closed source; commercial
product

KaZaA
[KaZaA,
2009]

File sharing
(music)

FastTrack Hybrid Closed source; adware/spyware

iMesh
[iMesh,
2009]

File sharing
(music and
video)

eDonkey2000,
FastTrack,
Gnutella

Hybrid Closed source; freeware; sup-
ports social networks, purchase
of copyrighted materials

Joost
[Joost,
2009]

Multimedia
streaming

P2PTV Hybrid Closed source; freeware; deliv-
ers near-TV resolution images;
ad-supported service

Napster
[Nap-
ster,
2009]

File sharing
(music)

Napster Centralized Closed source; freeware; ac-
quired by Roxio in 2003, pro-
viding paid music service with-
out P2P technology

PPLive
[PPLive,
2009]

Multimedia
streaming

P2PTV Hybrid Closed source; freeware; ad-
supported service

Skype
[Skype,
2009]

Voice-over-
IP (VoIP)

KaZaA-
alike

Hybrid Closed source; freeware; offers
paid service to initiate and re-
ceive calls via regular telephone
numbers

Tribler
[Tribler,
2009]

File sharing
(video)

BitTorrent Structured GPL open source; incorporates
a keyword search protocol; sup-
ports social networks for con-
tent recommendation

WinMX
[WinMX
World,
2009]

File sharing
(music)

OpenNap,
proprietary
WPNP

Centralized Closed source; freeware; official
WinMX central servers were
shut down in 2005



P2P Applications 27

is the synchronization of data transmission and rendering. While on-demand
video streaming needs to handle only one dimension—time, 3-D streaming
requires handling simultaneously four dimensions—3-D space plus time.

2.7 Case Study: PPLive

PPLive [PPLive, 2009, Vu et al., 2010] is a highly popular P2P IPTV
application. It is heavily used, in particular, in China. It has been reported [Vu
et al., 2010] that the daily average user population is close to 1 million. Among
PPLive’s available channels are more than 100 Chinese TV stations, about
300 live channels, and over 20,000 video-on-demand programs (i.e., moviews).
The PPLive client program is free but a closed source. As discussed earlier,
the PPLive system divides the video data (live or stored) into chunks. Each
channel (or movie) is shared by one distinct overlay. At the user interface
level, each user can join one overlay at a time (i.e., view one channel at a
time). However, at the system level, each peer machine can be participating in
multiple overlays (i.e., downloading/uploading contents for channels that are
not being viewed). Each PPLive client program opens a pair of TCP and UDP
ports for each channel in order to communicate with the PPLive infrastructure
servers (i.e., the channel management servers, the group management servers,
etc.) and other peers. Currently, PPLive supports a large variety of client
platforms including mobile gadgets such as Android phones, iPads, etc.

2.8 Summary

In this chapter, we first delineate the system components and performance
metrics. We then walk through brief surveys of P2P applications in the ar-
eas of distributed processing, file sharing, voice-over-IP services, and video
streaming. While there is a proliferation of P2P applications, there are still
much more exciting developments to come because many P2P applications are
still far from perfect (e.g., many server machines are still needed to support
their operations) and some important applications (e.g., 3-D streaming) are
still not implemented in a P2P manner.



28 Peer-to-Peer Computing

2.9 Review Questions

1. What are the key components of a typical P2P application? Describe
their functions.

2. What are the important performance metrics for a P2P application?
Identify them as user-oriented and system-oriented metrics.

3. What kind of compute-intensive problems are suitable for a P2P imple-
mentation?

4. Why is a centralized directory approach (e.g., as in Napster) unsuccessful
for a file-sharing application?

5. Why is it necessary for BitTorrent to include a random unchoking mech-
anism?

6. How does a P2P VoIP system (e.g., like Skype) allow peers to connect
among each other even if they are behind firewalls or NATs?

7. Explain what are push-based and pull-based approaches in a P2P video
streaming system.

8. Why is MDC (Multiple Description Coding) a key component in a P2P
video streaming system?



Chapter 3

P2P Network Architectures

3.1 Introduction

It is not a severe exaggeration to say that a P2P application is all about
communications at the application level, which brings about the high degree
of decentralization and autonomy. Indeed, by its nature, a P2P application
is about voluntary high-level sharing of resources, in terms of data possessed,
storage space, and bandwidth. Yet, on the flip side, such sharing can be re-
alized only by efficiently communicating among the peers, with a lack of in-
frastructure support. Communications, in turn, can be effective only if we
can somehow realize a well-designed network architecture at the application
level [Schollmeier, 2002].

So what do we mean by network architecture here? We use this term here
to refer to how the participating peers and/or servers, at the application level
(instead of at the network level), connect among each other, and how they need
to carry out their obligated tasks to maintain the network. In this sense, to
specify a network architecture, we do not just define its topology but also the
interactions among the nodes. We can then broadly classify possible network
architectures into two types: structured and unstructured. The former entails
not only an articulated topology (e.g., every node has a fixed degree) but also
a set of strict protocol actions for each node to carry out in order to maintain
the network. Notable examples in this class are various distributed hash table
(DHT) systems. The latter entails highly carefree connections—every node
just autonomously decides to whom and when to connect to other peers. In
a sense, there is no formal “design” per se. Many practical P2P applications,
such as Gnutella and BitTorrent, are of this kind.

Ideally, an effective network architecture should possess the following nice
features:

Provably good performance. It would be nice if the network communi-
cation performance is provably good. For instance, if we can derive a
performance bound on the number of messages or number of hops that
are needed in a certain communication scenario, then we can deduce the
worst case delay of downloading a file, or locating a peer, etc.

Low network maintenance overhead. Peers come and go. Thus, the net-

29



30 Peer-to-Peer Computing

work needs efforts to maintain its “shape.” If the overhead of maintain-
ing the network’s characteristics (e.g., diameter, etc.) is low, then service
disruptions would be reduced to a minimum.

QoS provisioning. Combining the above two nice features, we could possi-
bly go one step further—to provide certain guarantees of QoS to peers.
For instance, it would be nice if we can guarantee a certain playback
delay for every new P2P video streaming peer.

Autonomy. By its nature, each peer in the network is autonomous, in the
sense that it is under the user’s full control. Consequently, if the network
architecture allows for such autonomy to the greatest extent, then more
users would like to participate.

Robustness. The network should also be resilient to changes, e.g., peer dy-
namics, peer failures, network failures, etc.

Yet it is clear that the above nice features are conflicting, if not totally mu-
tually exclusive. For example, allowing for maximum autonomy is in conflict
with QoS provisioning, in most cases. Furthermore, considering a structure
network such as a DHT, it is mandatory for each peer to adhere to some pro-
tocol rules (e.g., responsible for handling a pre-defined range of data items)
in order to realize the nice feature of provably good performance. Thus, au-
tonomy is sacrificed in this case. On the other hand, a totally unstructured
network allows for maximum autonomy. Yet such a system can hardly pro-
vide any QoS guarantee or any provably good performance. Consequently, a
“holy grail” research problem is to come up with low-overhead mechanisms
to provide QoS guarantees in an unstructured autonomous P2P network ar-
chitecture.

Furthermore, there are several other nice features that we must consider
if we consider the existence (inevitable) of malicious users. These features are
incentives, trust, and security. Incentives are important to encourage coop-
erative and constructive, instead of malicious, behaviors. Trust is necessary
among peers in order to accept the data in exchange. Proper security mea-
sures are needed if there are really some malicious users participating in the
network, possibly trying to undermine the normal operations of the system.
These are the topics of later chapters in this book.

In the following we provide a brief survey of different network architecture
designs.

3.2 Structured P2P Systems

In this section, we explain why structured network architecture came about
and describe several representative approaches.



P2P Network Architectures 31

From a highly theoretical perspective, a structured network architecture
is good in terms of network performance because it is undeniably easier to
quantify and deduce the optimal structures that should be used in a certain
P2P scenario. Thus, motivated by such appeal of provably good performance,
early P2P systems are mainly based on structured network architectures.

As we have seen in Chapter 2, many early P2P systems, most notably
video streaming systems, rely on a tree-based network architecture for peer
connections and data transmissions. Presumably this is because early P2P
systems were designed based on a traditional multicasting communication
model, albeit at the application layer.

While a tree network architecture is efficient in terms of data replication
(i.e., the wasted overheads of transmitting redundant packets), it is difficult
to set up and maintain in a highly dynamic P2P application scenario. Here is
where theory and practice do not work with each other too well. Indeed, while
we can appreciate the theoretical merits of a tree, in practice such benefits
are hard to obtain.

As a case in point, using a tree for data transmission leads to at least
a couple of problems, not to mention the various maintenance issues. First,
using a tree can be unfair because the leaf-nodes do not need to contribute
in data sharing. Second, by the same token, the internal nodes, especially
those situated high up in the tree, need to take up disproportionately large
workload in terms of outgoing bandwidth. From a maintenance point of view,
such internal nodes can also make the whole system vulnerable to service
disruptions if they abruptly depart or crash.

Thus, taking an early video streaming application SplitStream [Castro
et al., 2003b] as an example, redundancy is incorporated in the network ar-
chitecture in the form of using multiple trees. Specifically, each tree is used
for transmitting just a single layer of video packets, called a stripe. Different
trees, forming a forest, are internal-node-disjoint so that the fairness issue is
taken care of. The key property of such a forest of interior-node-disjoint trees
is that each participating node serves as an interior node in one and only one
tree. Consequently, even if a node fails or departs abruptly, only one stripe of
video is affected.

Nevertheless, maintenance of the trees still represents a significant over-
head, especially when peer dynamics is vigorous.

Before we set off to describe some unstructured approaches, we first in-
troduce a couple of classical examples of a highly prominent structured dis-
tributed network architecture, commonly known as distributed hash table
(DHT).

In the following we briefly introduce two classic DHT designs—Chord [Sto-
ica et al., 2001a] and CAN [Ratnasamy et al., 2001]. For other notable DHT
schemes (such as Pastry [Rowstron and Druschel, 2001a] and Tapestry [Zhao
et al., 2004]), the reader is referred to the respective research literature.



32 Peer-to-Peer Computing

3.2.1 Chord

Chord [Stoica et al., 2001a] is among the first in the pioneering efforts
in the design and implementation of robust P2P network architecture for
data storage and lookup. Chord is an ingenious improvement of the consistent
hashing [Karger et al., 1997] idea, which already has at least a couple of nice
features. First, with high probability the hashing action provides a balanced
load over the network in the sense that each node receives more or less the
same amount of data items for storage. Second, with high probability when

the Nth node joins (or leaves), only an O(1/N) fraction of data items need
to be moved to a different node in the network. However, it originally has a
requirement that every node has to know about any other node in the network.
If this requirement is removed, to look up an item, potentially (in the worst
case) all N nodes in the system have to be checked. This is obviously a big
obstacle for a higher scalability. Chord improves this by requiring each node
to store only O(log N) information about other nodes, and consequently, a
lookup requires only O(log N) messages. A join or leave event also entails
only about O(log2 N) messages.

In consistent hashing, a hash function, e.g., SHA-1, is used for hashing
an input numeric to an m-bit identifier. The input numeric can be the IP
address of a node, the contents of a file, etc. The only requirement about
the parameter m is that it must be large enough so that the hashed outputs
have negligible probability of being equal. Now, as everything is turned into
an m-bit identifier, we can consider an identifier space organized as a ring—a
circular list of numbers from 0 to 2m − 1 (so that we have to use modulo
arithmetic with base m). For any data item (e.g., a file) with an identifier
k (i.e., its hashed output is k), it is mapped to a node (i.e., a participating
machine) with identifier equal to k or the first node with identifier following
k (notice that in practice, definitely not every identifier in the ring will have a
machine participating currently). Such a node is then defined as successor(k).

Figure 3.1 shows an example with m = 3 [Stoica et al., 2001a] and currently
there are three nodes participating (i.e., nodes 0, 1, and 3). Now, if we need to
store three data items with identifiers 1, 2, and 6, then we need to store data
item 1 to node 1, data item 2 to node 3, and data item 6 to node 0, according
to the above definition of successor relationship.

As a minimum requirement, each node only needs to know (i.e., keep a
piece of state information such as IP address, etc.) its successor node in the
ring in order to accomplish the process of data lookup. However, as mentioned
above, in the worst case a lookup may traverse all the N nodes currently in
the network. Here is how Chord ingeniously improves this aspect. Specifically,
each node maintains a small routing table, called finger table, which contains
at most m entries (i.e., O(log N) entries). The i-th entry (or the i-th finger)
in the finger table of node n records the identifier of the first identifier s (not
necessarily corresponds to an existing machine) that succeeds n by at least
2i−1 hops on the Chord ring, i.e., we have s = successor(n + 2i−1), where



P2P Network Architectures 33

1

3

0

2

4

5

6

7

FIGURE 3.1: An example Chord identifier-ring with three nodes currently
in the network [Stoica et al., 2001a].

1 ≤ i ≤ m. Furthermore, the i-th entry also includes a half-open interval,
starting from s until but not including the identifier of the next finger. The
interval of each entry is very useful because it indicates the range of identifiers
that particular finger handles (e.g., responsible for storing the data items
within the range of identifiers). Most importantly, the i-th entry also contains
the identifier q of the successor node (i.e., q = successor(s)). Figure 3.2 shows
the finger tables of the three nodes in the Chord ring example with m = 3.

To illustrate the data item search process [Balakrishnan et al., 2003] (e.g.,
a file search in a file sharing system, or a tracker search in a video streaming
system), suppose node 3 needs to retrieve a data item with identifier 1. Check-
ing node 3’s finger table, 1 is within the interval [7, 3) and the corresponding
successor node is 0. Thus, node 3 contacts node 0 to check the latter’s finger
table in order to locate identifier 1. Eventually, node 0 finds that identifier 1
is handled by node 1, and reports this back to node 3.

Chord can also handle peer dynamics in a robust manner. Specifically,
Chord can maintain the following two invariants:

1. Each node’s successor (i.e., the first finger) is correctly maintained.

2. For every data item identifier k, it is handled by node with identifier
successor(k).

When a new peer n joins the Chord network, the following three tasks are
carried out:



34 Peer-to-Peer Computing

1

3

0

2

4

5

6

7

finger table data:

(1) start: 1; interval: [1,2); succ: 1

(2) start: 2; interval: [2,4); succ: 3

(3) start: 4; interval: [4,0); succ: 0

keys stored: 6

finger table data:

(1) start: 2; interval: [2,3); succ: 3

(2) start: 3 interval: [3,5); succ: 3

(3) start: 5 interval: [5,1); succ: 0

keys stored: 1

finger table data:

(1) start: 4; interval: [4,5); succ: 0

(2) start: 5; interval: [5,7); succ: 0

(3) start: 7; interval: [7,3); succ: 0

keys stored: 2

FIGURE 3.2: Finger tables of the three nodes in the Chord ring [Stoica
et al., 2001a].

1. Construct the finger table of node n.

2. Update the finger tables of existing nodes to incorporate the existence
of n.

3. Notify the higher layer software (e.g., the file sharing application) in
order to properly transfer the data items with the associated identifiers
which are to be handled by node n.

The reverse of the above tasks need to be done when a node leaves the network.
Figures 3.3 and 3.4 illustrate the situations when node 6 joins and then

node 3 leaves.

1

3

0

2

4

5

7

finger table data:

(1) start: 1; interval: [1,2); succ: 1

(2) start: 2; interval: [2,4); succ: 3

(3) start: 4; interval: [4,0); succ: 6

keys stored: --

finger table data:

(1) start: 2; interval: [2,3); succ: 3

(2) start: 3 interval: [3,5); succ: 3

(3) start: 5 interval: [5,1); succ: 6

keys stored: 1

finger table data:

(1) start: 4; interval: [4,5); succ: 6

(2) start: 5; interval: [5,7); succ: 6

(3) start: 7; interval: [7,3); succ: 0

keys stored: 2

6
finger table data:

(1) start: 7; interval: [7,0); succ: 0

(2) start: 0; interval: [0,2); succ: 0

(3) start: 2; interval: [2,6); succ: 3

keys stored: 6

FIGURE 3.3: Updated finger tables of the four nodes in the Chord ring after
node 6 joins [Stoica et al., 2001a].



P2P Network Architectures 35

3

0

2

4

5

7

finger table data:

(1) start: 1; interval: [1,2); succ: 0

(2) start: 2; interval: [2,4); succ: 3

(3) start: 4; interval: [4,0); succ: 6

keys stored: --

finger table data:

(1) start: 4; interval: [4,5); succ: 6

(2) start: 5; interval: [5,7); succ: 6

(3) start: 7; interval: [7,3); succ: 0

keys stored: 1, 2

6
finger table data:

(1) start: 7; interval: [7,0); succ: 0

(2) start: 0; interval: [0,2); succ: 0

(3) start: 2; interval: [2,6); succ: 3

keys stored: 6

1

FIGURE 3.4: Updated finger tables of the three nodes in the Chord ring
after node 3 leaves [Stoica et al., 2001a].

3.2.2 CAN (Content Addressable Network)

CAN (Content Addressable Network) [Ratnasamy et al., 2001] is another
prominent pioneering distributed hash table (DHT) design. Similar to Chord,
each CAN participant handles a region of the entire key-value space, called a
zone. To support efficient routing, each node also stores information about a
small number of adjacent zones in the hash table. Specifically, all the nodes
in the network are logically organized into a virtual d-dimensional Cartesian
coordinate space. For example, Figure 3.5 depicts a 6-node CAN organized
into a 2-D space. Here, node 1 handles the square zone: (2, 2), (3, 2), (3, 3),
(2, 3).

With this logical organization, for any data item V with key K, the key
K is hashed into a point in the coordinate space. The data item is then
stored at the node that handles the zone containing the point. To retrieve a
data item, the same hash function is used to locate the zone and request the
corresponding node for the item.

To support routing of requests, each node needs to determine and record
its neighbors’ IP addresses. The “neighbor” notion is intuitive: two nodes
(hence two zones) are neighbors if their coordinate spans overlap along exactly
d − 1 dimensions in the d-dimensional space. As can be seen in Figure 3.5,
node 1’s neighbors are nodes 2, 3, 4, and 5, but not 6. Routing is then very
simple—a node just greedily forwards a message (or request) to the neighbor
with coordinates closer (in terms of Cartesian distance) to the destination
coordinates. Figure 3.5 shows how node 1 routes a message to the coordinates
(x, y) via node 4.

In general, for a d-dimensional space divided into n equal-sized zones, it
can be shown that the mean routing path length is (d/4)(n1/d). Furthermore,
each node in the network needs to maintain 2d neighbors. These expressions
indicate that the CAN design is highly scalable because per node state is
independent of the number of nodes in the system. Even for the path length,
the growth rate is only O(n1/d). Another important feature of a CAN is its



36 Peer-to-Peer Computing

6 2

3 1 5

4

(x, y)

(0, 0) (1, 0) (2, 0) (3, 0) (4, 0)

(0, 1)

(0, 2)

(0, 3)

(0, 4)

FIGURE 3.5: An example CAN with six nodes organized into a 2-
dimensional space in which node 1 routes through 4 to reach a given point
(x, y) [Ratnasamy et al., 2001].

robustness—as there are many different paths available for any two points in
the d-dimensional space, even if some nodes’ neighbors are unavailable (e.g.,
just departed or crashed), the node can route the message via some other
paths.

The process to establish a CAN is also simple and hence robust. Specifi-
cally, a node joining the CAN has to carry out the following three steps:

1. Find a node already in the CAN;

2. Find a node whose zone is to be split (so that the new node can take a
half); and

3. Notify the neighbors of the split zone to update their neighborhood
information.

The first step, i.e., the bootstrapping process, can be implemented in many
ways. One common method is to store some default or bootstrap nodes’ ad-
dresses in some public domain so that the new node can easily obtain them.
For the second step, the new node just randomly selects a point in the d-
dimensional space and sends a JOIN request to the node that handles the
corresponding zone. Notice that this JOIN request is sent to the known boot-
strap node which will then route it to the appropriate node handling the
selected point. Subsequently, the selected node splits its zone in half and the
new node takes one half. The associated keys and data items are then trans-



P2P Network Architectures 37

ferred to the new node. Finally, the neighborhood information of the affected
nodes is updated.

6 2

3 5

4

(0, 0) (1, 0) (2, 0) (3, 0) (4, 0)

(0, 1)

(0, 2)

(0, 3)

(0, 4)

1 7

FIGURE 3.6: The updated situation of the CAN after node 7 joins [Rat-
nasamy et al., 2001].

Figure 3.6 shows the situation after node 7 joins the example CAN. No-
tice that the members of node 7’s neighbor set 1, 2, 4, 5 will update their
corresponding neighborhood information.

3.2.3 Other Structured Approaches

Let us first briefly examine two other well-known pioneering DHT ap-
proaches: Pastry [Rowstron and Druschel, 2001a] and Tapestry [Zhao et al.,
2004]. In the Pastry approach, each node identifier is a 128-bit number picked
from a circular key space also. Each peer keeps a routing table having logb N
rows (here, b is some system-specific integer value). In each row, there are
nodes with identifiers matching one prefix more than those of the previous row.
Consequently, routing works by matching the identifier in the local routing
table for the longest shared prefix with the key. In terms of time-complexity,
Pastry DHT systems route a message within O(logb N) hops. Tapestry is sim-
ilar in design as Pastry. Specifically, each node keeps connecting to a set of
peers that share common prefixes with its identifier. A Tapestry DHT can
also route a message in O(logb N) steps.

Fu et al. [Fu et al., 2008] proposed an internetworking approach for con-
necting different DHT networks together, as shown in Figure 3.7. This is an
important idea because we can expect a variety of DHTs are being used in



38 Peer-to-Peer Computing

practice. Thus, for different P2P system implementations to work together, it
is necessary to have such “bridging” mechanisms.

Chord
Pastry

Tapestry

CAN
1 2

3

3

4

2

1

4

3

2 4

1

P2P Proxy

Local Peer

FIGURE 3.7: An internetwork of DHT systems [Fu et al., 2008].

As in a bridge device in a network, the P2P proxy nodes need to support a
dual-protocol stack, as shown in Figure 3.8. Obviously, this requires a higher
capability for such proxy nodes, similar to the situation of a “Super-Node” in
a hierarchical P2P network used in applications such as Skype [Skype, 2009].
To handle the dynamics (i.e., join and leave) of these important proxy nodes,
an election mechanism needs to be used [Fu et al., 2008].

Socket API

Pastry

P2P

App.

Pastry

P2P

App.

Chord

P2P

App.

Chord

P2P

App.

CAN

P2P

App.

CAN

P2P

App.

Local Peer Local PeerP2P Proxy P2P Proxy

FIGURE 3.8: An example protocol stack supporting the implementation of
an internetwork of DHTs [Fu et al., 2008].

Qu et al. [Qu et al., 2009] proposed another interesting P2P internetwork-
ing architecture called truncated pyramid, as shown in Figure 3.9. The essence
of this network architecture is to interconnect different local P2P overlays
(e.g., using Pastry or Chord) by trees. The top overlay, which is the smallest
in size, comprises relative more power nodes (e.g., like Super-Nodes) responsi-
ble for serving as roots of these trees. Less powerful nodes are then designated
roles of internal nodes of the trees. The bulk of other peers, usually forming a
much bigger overlay themselves, are designated as leaves. The communications
among peers in different levels follow the tree paths. For example, when node
1 wants to communicate with node 13, it can either go through node 11 or



P2P Network Architectures 39

go through nodes 5/6 in its local overlay. To enhance the communication effi-
ciency, “vertical tunnels” can be used—e.g., a top level peer can communicate
directly with a bottom level peer using a tunnel [Qu et al., 2009].

21
22

11

14

13

12

1

3

5

7
8

2

6

4

FIGURE 3.9: A truncated pyramid P2P network architecture internetwork-
ing several local overlays [Qu et al., 2009].

3.3 Unstructured (Mesh) P2P Systems

As we have seen in Chapter 2, unstructured P2P systems simply involve
random and ad hoc connections among peers [Lv et al., 2002]. Indeed, there
is absolutely no central rule governing the formation of connections among
peers. In a sense, it is truly peer-to-peer in the communication aspects in that
connections are made in a purely autonomous manner. One important feature
of an unstructured network is that as time goes by, those long-lived nodes (i.e.,
nodes that stay on for an extended period of time) usually would have a larger
number of connections due to possibly their resourcefulness (e.g., in terms of
file chunks possessed over time). In some applications (e.g., Skype [Skype,
2009]), such nodes would even be designated as “Super Nodes”—nodes that
have more important responsibilities such as routing, traversal through NATs,
etc.

As to the construction of an unstructured P2P network, there are two ap-



40 Peer-to-Peer Computing

proaches. The first one is purely random. The second is autonomous matching
assisted by central servers called trackers.

A prominent example of the first approach is the Gnutella [Gnutella Pro-
tocol Development, 2009,Ripenau, 2001] file-sharing system. As in any fully
decentralized file-sharing system, when a client starts, the very first prob-
lem is to discover and locate other active peers. In the original design of the
Gnutella protocol, this was based on a flooding mechanism—the starting client
broadcasts the so-called “ping” messages over the network. When such a ping
message is received by an active Gnutella user, it replies a “pong” message to
the starting client. Obviously, a more fundamental question is that to whom
should the starting client send the requests in the first place? Many heuristics
are used in this bootstrapping process. For example, the starting client can
use the list of well-known users that come with the client program. Another
scheme is to use a Web cache of actively connected machines.

From a scalability point of view, a drawback of the blind flooding approach
is that the volume of traffic generated could be large, even if the maximum
hop-count a request message can travel is usually limited to 7. Thus, the
notion of “ultra-peer” is introduced in the Gnutella protocol. Specifically,
some participating peers are designated as ultra-peers which play the role of
“hubs” or “routers” in the Gnutella network. When a new client starts, it
actually connects to several (e.g., three) such ultra-peers, each of which could
be connected to more than 30 other ultra-peers. Essentially, a user (as a leaf
node) sends a request message to its ultra-peers which then forward to its
connected ultra-peers. Consequently, with such a more hierarchical network
structure, the scope that can be reached by a request message becomes much
larger yet the traffic volume generated is limited.

For the second approach, a prominent example is a video streaming system
like PPLive [PPLive, 2009, Vu et al., 2010]. Simply put, the general process
of a P2P video streaming session is illustrated in Figure 2.4. Initially, the
new peer visits the so-called log-in server (i.e., the Web site of the system) to
select the channel or movie the user wants to watch. The log-in server then
redirects the new peer to a particular tracker server which can furnish a list
of peers currently watching the same channel to the new peer. Usually the
tracker server just randomly picks a subset of peers to form a list for the
new peer. The new peer then selects a subset from this list so as to make
connection requests. Such selection is, in current implementations, also based
on randomization. After connections are established, buffer maps exchange
and video packets downloading can be carried out. This general process is
the basis of many well-known P2P video streaming systems such as Joost,
SopCast, GridCast, UUSee, etc.

Unstructured P2P networks have many nice characteristics, e.g., low net-
work diameter and, more importantly, robustness against peer dynamics and
random node failures. However, the lack of structure also makes it hard to ac-
curately locate data or peers. Thus, many researchers set out to design hybrid
network structures in the hope of combining the best of both worlds.



P2P Network Architectures 41

3.4 Hybrid P2P Systems

Ohnishi et al. [Ohnishi et al., 2007] proposed an interesting hybrid archi-
tecture comprising a DHT ring (e.g., Chord) of unstructured small networks,
called load balancing clusters. Specifically, as shown in Figure 3.10, the core
network is formed by a set of Super Nodes using a DHT such as Chord.
Each Super Node, in turn, manages a small unstructured network of regu-
lar nodes. The rationale is that the load of each Super Node can be shared
by a dynamic population of regular nodes, depending on the access patterns
and traffic conditions. Consider a file sharing application as an example, the
following procedure can be implemented.

1. A peer searching for a particular file computes the hash value of the
desired file.

2. The search request is then forwarded to a cached Super Node.

3. The receiving Super Node checks the request against its own range of
hash values and if the request hash value falls within range, Step (4) is
executed; otherwise, Step (5) is executed.

4. The Super Node floods the request within its own load balancing cluster
(LBC) so as to locate the file, which is then sent to the requesting peer.

5. The Super Node forwards the request to the next Super Node whose
identifier is the closest to the request hash value. Execute Step (3) at
this new Super Node.

The maintenance of this semi-structured network architecture entails many
load balancing considerations and is discussed in Chapter 4.

Lagesse and Kumar [Lagesse and Kumar, 2007] proposed a hybrid archi-
tecture, called Utility Based Clustering Architecture (UBCA), which works by
overlaying a clustering mechanism on top of an unstructured P2P network, as
shown in Figure 3.11. The main clustering criterion is incentive based—peers
form a cluster provided they can derive mutual utility gains. The design goals
of UBCA are as follows [Lagesse and Kumar, 2007]:

• Enhance availability and quality of resources;

• Encourage resource sharing in the P2P system;

• Application adaptivity; and

• Maintain underlying system’s structure and decentralization.

As can be seen from Figure 3.11, UBCA intercepts the P2P application’s
requests (e.g., search, insert, delete, etc.) to the underlying P2P network (e.g.,



42 Peer-to-Peer Computing

Load Balancing

Cluster (LBC)

Load Balancing

Cluster (LBC)

Load Balancing

Cluster (LBC)

Load Balancing

Cluster (LBC)
DHT Ring

Super Node

Super Node

Super Node

Super Node

Regular Node

Regular Node

Regular Node

Regular Node Regular Node

Regular Node Regular Node

Regular Node

Regular Node

Regular Node

FIGURE 3.10: A semi-structured P2P network architecture [Ohnishi et al.,
2007].

a Gnutella random network). Depending upon the clustering status of the peer,
UBCA redirects the requests to appropriate peers in the system.

Specifically, UBCA comprises three different layers of components: data,
decision logic, and communication, as shown in Figure 3.12. The data layer
gathers and maintains information for making clustering decisions. The de-
cision logic layer employs utility functions to evaluate clustering options and
select appropriate data items for fetching. The communication layer is respon-
sible for the information exchange among peers.

The information gathered at the data layer is mainly about the qualities
and costs of different resources. Utility values can then be computed as qual-
ities less costs. A peer decides to join a cluster if the latter can provide a
positive overall utility among all resources concerned. After joining the clus-
ter that provides the maximum aggregate utility, the peer can then use the
decision logic layer to select the most important (i.e., with the highest utility
gain) resource for retrieval.

With this UBCA architecture, Lagesse and Kumar [Lagesse and Kumar,
2007] showed that the average latency as well as bandwidth utilization are
greatly improved.

Hsiao and King [Hsiao and King, 2003] also proposed a very interesting
hybrid P2P network architecture for handling mobility of peers. Indeed, the
proposed architecture, called Bristle, is designed for managing mobile devices
participating in a P2P network. As shown in Figure 3.13, the Bristle archi-
tecture consists of two different layers: the stationary layer and the mobile
layer. Machines participating in the stationary layer are immobile, i.e., having
fixed IP addresses. On the other hand, mobile devices need to join the mobile
layer. Consequently, the stationary layer is to be implemented by a DHT, e.g.,
Chord, while the mobile layer is to be supported by only a random network.



P2P Network Architectures 43

P2P App.

UBCA

P2P

Network

TCP/IP

FIGURE 3.11: Protocol architecture of UBCA [Lagesse and Kumar, 2007].

To see how Bristle works, consider a mobile node X trying to communicate
with a node Y, whose address is unknown to X. To tackle this problem, X
simply sends the message to a known node in the stationary layer. Based on
a DHT, the stationary layer can route the message to an appropriate node Z
who knows the current address of Y.

3.5 Network Architecture with QoS Provisioning

From a telecom operator’s point of view, P2P applications are commonly
considered as a threat. Indeed, as the volume of P2P traffic increases (e.g.,
to something near 90% in some peak hours), P2P applications can lead to
significant revenue loss to telecom operators. A further aggravating impact is
that both capital and operating expenses also need to be increased in order



44 Peer-to-Peer Computing

Data

Decision Logic

Communication

Provisions Consumptions Group Information

Utility Function Selection Function

External Intra-Group

FIGURE 3.12: UBCA components [Lagesse and Kumar, 2007].

to meet the traffic demands. For the lack of a viable P2P business model,
telecom operators have yet to reap any tangible profits from the proliferating
P2P applications.

Consequently, it is not surprising to see that some telecom operators choose
to block P2P traffic. Yet such a “solution” is sometimes considered as a prob-
lem by itself because successful and effective blocking of P2P traffic requires
high speed detailed packet checking, which obviously adds considerable load
to the system and overheads to the users. Furthermore, such blocking of users’
traffic inevitably leads to customer complaints.

Thus, some telecom companies start to look at the issue from a more “con-
structive” angle—trying to find positive ways to work with P2P applications
while generating some possibly new revenue streams. Specifically, a natural
approach is to investigate whether a telecom operator can design and support
a P2P network architecture that can provide carrier-grade QoS guarantees.

Recently, Ma and Zhu [Ma and Zhu, 2008] proposed a novel network ar-
chitecture that has the following salient features:

• Providing a high scalability with the minimal amount of dedicated net-
work components;

• Supporting a unified approach for customer data management with
global accessibility;

• Providing a virtual home environment for customers to enjoy same ex-
periences anywhere;

• Providing QoS guarantees to users; and



P2P Network Architectures 45

Mac II

Workstation

IBM Compatible

Mac Classic

Laptop

Laptop

Laptop

Laptop

X

Y Z

address resolution

packet forwarding

stationary layermobile layer

FIGURE 3.13: The Bristle hybrid P2P network architecture [Hsiao and
King, 2003].

• Supporting all these services with minimal impact to IP-based bearer
network.

The carrier-grade P2P network architecture proposed by Ma and Zhu is
depicted in Figure 3.14. The various components are introduced below.

AAA Server. Responsible for authentication, authorization, and account-
ing.

Charging Mediator. Responsible for collecting charging information (e.g.,
usage time) and delivering it to the backend billing system.

Bootstrap Server. A default or long-lived server to which a new peer can
connect when starting up.

Bootstrap Peer. A more powerful peer elected or designated as a Super
Node.

Core Router. IP backbone router.

Edge Router. Ingress or egress router.

Access Router. Responsible for admission control and QoS provisioning.

QoS Coordinator. Responsible for checking and delivering QoS requests to
the access network as well as the billing system.



46 Peer-to-Peer Computing

QoS Coordinator

Bootstrap Server Charging Mediator

Non-IPIW Gateway

IPIW Gateway

New Peer

Bootstrap Peer

Existing Peer

Bootstrap Peer

IP Backbone

IP Backbone

Edge Router

Edge Router
Access Router

Core Router
Core Router

Core Router

IP-Based

Serving

Network

(NGN/IMS/

P2P)

Non-IP-Based

Serving Network

(PSTN/PLMN)

Existing Billing

Mediation System

Resource

Management System

(RACS/PCC)

Existing AAA Server

FIGURE 3.14: A carrier-grade P2P network architecture [Ma and Zhu,
2008].

IP-IW Gateway. Carry out necessary protocol functions for internetwork-
ing with other P2P networks or IP-based service network.

Non-IP IW Gateway. Carry out necessary protocol functions for internet-
working with other non-IP service networks.

There are several key characteristics and requirements of this proposed
architecture.

• Client’s Participation in Charging: In the proposed network archi-
tecture, each peer needs to participate in the usage charging process.
Specifically, the client program needs to report to the charge mediator
about the usage statistics. Here, of course, full cooperation of each peer
is a necessity.

• QoS Initiation by the Peer: Each peer can dynamically initiate QoS
changes which are handled by the QoS mediator.

• AAA Tasks Handled by Existing Servers: The tasks of authen-
tication, authorization, and accounting can be handled by the existing
AAA servers in the telecom company’s network. Thus, there is no need
for new investment. Furthermore, current network users can use the ex-
isting credential information to access P2P services.



P2P Network Architectures 47

• Nomadic Support: Users can have nomadic access to the network as
they can obtain their credential information via the Internet.

• Mobility Support: Mobility is enabled by using various wireless access
technologies (e.g., Wi-Fi).

• Unique Benefits of the Architecture: The proposed architecture can
potentially combine the best of both telecom services and P2P services
because it is designed to provide QoS guaranteed P2P services in a secure
and trusted telecom environment. Thus, it is expected that users would
agree to pay for such services.

The detailed service provisioning mechanisms are described below.

3.5.1 AAA Tasks

Admission control of peers is handled mainly by the bootstrap server and
some bootstrap peers. Specifically, a new peer needs to contact the bootstrap
server first. The new peer can then obtain the locations (e.g., IP addresses)
of a bootstrap peer. Of course, if the new peer joined the system before, it
might have cached the address of a previous bootstrap peer so that it can just
directly contact the latter in this instance. In the whole admission process,
the new peer works with the assigned bootstrap peer. The bootstrap server
together with the bootstrap peer verify the credential information of the new
peer.

Mutual authentication, between the new peer and the system, is also han-
dled via the bootstrap server. Upon successful authentication, an authorized
token signed by the AAA server is sent to the new peer and incorporated into
the JOIN signaling packet to the bootstrap peer. The token is also used in
subsequent interactions between the new peer and the system such as getting
an authorized QoS level.

3.5.2 Charging

Charging requires cooperation among peers, both the uploading (i.e., serv-
ing or supplying) peer and the downloading (i.e., served or consuming) peer.
Specifically, the uploading peer requests the downloading peer for some “credit
units” which are obtained from the charging system. On the other hand, the
charging system also helps the uploading peer to collect, verify, and validate
the credits from the downloading peer.

3.5.3 Dynamic QoS

Each participating peer can modify the QoS for any particular session, as
illustrated in Figure 3.15.

Specifically, if a peer demands a certain QoS guarantee, it will be charged.



48 Peer-to-Peer Computing

QoS Coordinator

Charging Mediator

Downloading

Peer

 Uploading Peer

IP Backbone
Access Router

Access Router

Core Router
Core Router

Core Router

Existing Billing

Mediation System

Resource

Management System

(RACS/PCC)

QoS Coordinator

Resource

Management System

(RACS/PCC)

(1) Service Request(2) QoS
Request (2) QoS

Request
(3

) C
har

gin
g R

ep
ort

(3) Charging Report

FIGURE 3.15: A dynamic QoS provisioning scenario [Ma and Zhu, 2008].

The charge function of the peer will notify the user about the charge policy.
If the user agrees to buy the QoS service, the underlying routers are then
configured to provide the required guarantees via proper packet scheduling
and other resources provisioning.

3.5.4 Service Brokerage

A brokerage model is used in the proposed network architecture for the
provisioning of services among peers. When a peer wants a particular service
(e.g., downloading a certain file at a particular data rate), the network acting
as a broker attempts to locate such a supplying peer in the system. This is
usually accomplished by having some registry servers in the system keeping
track of the capabilities and charges required for every participating peer.

3.5.5 Discussion

The P2P network architecture proposed by Ma and Zhu [Ma and Zhu,
2008] described above is a practicable system. However, much of its actual
success relies on the cooperation among peers and the proper handling of
various security issues. For instance, if some peers collude to cheat the system,



P2P Network Architectures 49

the operator (i.e., the telecom company) might take a loss. An example of such
collusion is that the peers perform real uploading and downloading of data
without notifying the servers so that possibly the “levy” revenues could be
lost. Much research still has to be done to improve the design so that such
malicious actions can be detected and deterred.

3.6 Video Streaming Network Architecture

Kalogeraki, Delis, and Gunopulos [Kalogeraki et al., 2003] presented a de-
tailed qualitative and quantitative study on different architectures suitable
for serving video using a P2P environment. They made some pioneering ob-
servations, e.g., that video services would become prominent in P2P systems.
Specifically, they delineated the following guidelines for designing and imple-
menting a scalable network architecture for video streaming services.

1. The network architecture and distributed indexing mechanisms should
be designed in such a way that efficient retrieval of video data is realized.

2. Queries routing should be carefully designed so that flooding of requests
is avoided.

3. Reliability and robustness of the network have to be incorporated so that
peer dynamics (i.e., peers come and go) would not disrupt the operation
of the video services.

The first network architecture considered by Kalogeraki et al. is called
the single-index/multiple-index multiple servers (SIMS/MIMS), depicted in
Figure 3.16. The key feature of this architecture is that a number of machines
are designated as indexing servers, commonly known as trackers nowadays.
The indexing servers help participating peers to locate proper serving peers
that hold the desired video objects. Each serving peer has an admission control
manager component, deciding whether a new connection can be admitted.
Furthermore, there is also a QoS manager, taking care of the QoS negotiations
(e.g., data rate of uploading) and enforcement.

The second network architecture considered by Kalogeraki et al. is called
Multiple Independent Indexed Servers (MIIS), depicted in Figure 3.17. Here,
the major feature is that each peer keeps partial indexes for the video ob-
jects possessed by other peers. The rationale of such a design is to maintain
distributed “hooks” in the computing vicinity. Periodically, updates about lo-
cally stored new video objects are sent to connected peers so as to maintain
a consistent global view of the network.

The third network architecture considered by Kalogeraki et al. is called
the Fragmented and Multiple Servers (FAMS), depicted in Figure 3.18. This



50 Peer-to-Peer Computing

Admission

Control

Data Data Data

Data

QoS

Manager

Memory

for Video

Objects

Request

Manager

Storage

Manager

User

Interface

Query

Manager

Multimedia

Indexing

Peer with Video ObjectsRequesting Peer

Indexing Peer

Broadband Network

FIGURE 3.16: The SIMS/MIMS network architecture [Kalogeraki et al.,
2003].

network architecture is essentially the same as an unstructured P2P network
(e.g., Gnutella) in which every peer maintains only its local video objects’
information.

Kalogeraki et al. then performed simulations to evaluate the performance
of the three different architectures. Firstly, they conducted tests to determine
the efficiency with which each architecture can reply to a given user request.
Specifically, the number of messages needed is counted as the major overhead.
It was found that the SIMS/MIMS architecture needs the least number of
messages to start the downloading process. On average, the MIIS architecture
achieved very similar performance. This is plausibly because as the number
of user requests increases, each server/peer adds the locations of more video
objects in its local index, as well as attempts to download the most popular
video objects. Finally, the overhead expended in the FAMS architecture is the
highest and can increase dramatically. This is because of the random search
inefficiency—in the worst case, a request has to traverse many nodes before
reaching a node that contains the sought video object.

Secondly, they examined the performance of the video object replication
in the MIIS architecture. In general, the replication algorithm was effective
in that popular video objects were widely replicated while unpopular video
objects got a small replication degree.



P2P Network Architectures 51

Admission

Control

Data Data Data

QoS

Manager

Memory

for Video

Objects

Request

Manager

Storage

Manager

Server for Multiple Independent Nodes

Broadband Network

Query

Manager

Multimedia

Indexing

Data

Partial Video

Object

Indexing

Data

User

Interface

Requesting Peer

FIGURE 3.17: The MIIS network architecture [Kalogeraki et al., 2003].

Thirdly, the reliability of different architectures was tested by measuring
the number of video objects that became unavailable as servers/peers failed.
As expected, the FAMS architecture was the most reliable. On the other hand,
as time evolved, the reliability of the MIIS architecture gradually improved.
This was because the replication algorithm gradually cached more copies of
popular video objects.

Fourthly, Kalogeraki et al. also investigated the scalability of the architec-
ture as a measure of the number of user requests rejected. In the SIMS/MIMS
architecture, the indexing servers/peers can become a performance bottleneck
as the number of user requests increases. However, the servers/peers provide
QoS guarantees if the requests are admitted. Obviously, in the FAMS archi-
tecture, the number of rejected requests is very small, at the expense of having
slow connections.

3.7 Case Study: PPLive

The PPLive network is unstructured and is found to be similar to random
graphs [Hei et al., 2007a, Vu et al., 2010]. Moreover, in the PPLive mesh
network, the average node degree (i.e., number of peers in the neighbor list) is



52 Peer-to-Peer Computing

Request

Dispatcher

Data Data Data

Download

Manager

Storage

Manager

FAMS Server

Broadband Network

Request

Manager

Multimedia

Indexing

Data

FIGURE 3.18: The FAMS network architecture [Kalogeraki et al., 2003].

independent of the size of the overlay (i.e., the total number of users viewing
a particular channel). On the other hand, with reference to a random graph,
we can use a metric called Clustering Coefficient (CC) to characterize the
organization of the PPLive network. Specifically, CC of a graph is defined as
follows: for a random node u and two neighbors v and w chosen randomly
from u’s neighbor list, CC is the probability that either v is in w’s neighbor
list or vice versa. It is found [Vu et al., 2010] that the CC of a PPLive network
could be quite close to the ratio of average node degree to overlay size, when
the overlay size is small. In contrast, when the overlay size increases, the
CC value also increases significantly. Furthermore, the availability correlation
among PPLive peer pairs is found to be bimodal [Vu et al., 2010]—some pairs
have highly correlated availability while others have close to zero correlation.
Finally, peer participation in multiple overlays (i.e., downloading/uploading
chunks for multiple channels) simultaneously follows a Zipf distribution.

3.8 Summary

Network architecture design has critical impact on the behaviors and per-
formance of a P2P system. At one end of the design spectrum, highly struc-
tured network architectures with elegant design and provably good perfor-



P2P Network Architectures 53

mance, such as CAN and Chord, requires strict compliance to the protocols
on the peer’s part; otherwise, the structured query and response mechanisms
would not work. At the other end, totally unstructured network architectures,
such as those manifested by a Gnutella or BitTorrent network, provide high
robustness and resilience to peer dynamics, at the expense of having an un-
predictable performance. Many efforts are thus proposed to combine the best
of both worlds, in the form of some hybrid designs, such as UBCA and Bris-
tle. In media applications such as video and voice, QoS guarantees are very
important and highly desirable features, motivating many network architec-
ture designs with QoS provisions. Unfortunately, we have yet to see real life
implementations of these research ideas. One plausible reason for the lack of
practical implementation of QoS guaranteed architecture is that there are still
many unresolved issues. Among them, incentives and security are two of the
more crucial ones.

3.9 Review Questions

1. Explain why a Chord DHT system has O(log N) routing steps.

2. Compare and contrast the CAN and Chord DHT systems.

3. Why is an unstructured network architecture more robust?

4. What are the essential features of a typical hybrid network architecture
design?

5. How does a carrier-grade P2P network architecture provide QoS guar-
antees?

6. Describe the trade-off between a SIMS/MIMS architecture and a FAMS
architecture.



This page intentionally left blankThis page intentionally left blank



Chapter 4

Topology Control

4.1 Introduction

One defining feature of any P2P system is that the composition of the
system is highly dynamic and time-varying in nature. In essence, peers join
and leave the system at will. Such population dynamics is also sometimes
highly unpredictable. A major consequence is that the network topology can
change dramatically over time: some high bandwidth links might come and
go, or turn into low bandwidth links without notice. Thus, the performance
of the participating peers, in terms of downloading/uploading rates, might
be adversely affected by the topology changes. To combat these performance
degradations that are unavoidable in a practical P2P system, a topology control
component is necessary.

As P2P networking is all about exchanging information and data effi-
ciently without the help of centralized infrastructure, it is crucial to have an
effective topology, one that facilitates fast and robust communications among
peers. For example, it would be ideal if peers always form a highly efficient
DHT network so that redundancies in file data communication are minimized.
However, it is inherently difficult to establish and maintain an effective net-
work topology. This is because in the first place, peers are autonomous and
thus, it is difficult to enforce topology establishment and maintenance rules.
Secondly, peers come and go and such peer churns also make maintaining an
effective topology very difficult. Consequently, topology control is a challenging
and very important research problem.

Indeed, even if a DHT is used (e.g., Chord), it is mandatory for every par-
ticipating peer to comply with the maintenance rules such as transfer of data
to neighboring peers, which need to accept this responsibility uncondition-
ally. Thus, a major challenge in an effective topology control scheme is that
each peer, while rationally selfish, is willing to execute some locally optimizing
rules, so as to help maintain an effective global topology.

Topology control is arguably even more important in an unstructured net-
work because in such a network, peer dynamics can easily render an initially
good topology very ineffective. Fortunately, in many seemingly random net-
works, nice global properties emerge, including small-world, power law, etc.

Milgram [Milgram, 1967] pioneered the formal investigation of the “small-

55



56 Peer-to-Peer Computing

world” effects which manifested themselves in the bonding among people with
short chains of acquaintances, commonly referred to as six degrees of separa-
tion. According to Watts and Strogatz [Watts and Strogatz, 1998], small-world
networks exhibit features found in both random and regular network struc-
tures. Specifically, the clustering coefficient Ci of a node i is the fraction of all
possible edges between adjacent nodes of i that are present:

Ci =
Di

Dmax
(4.1)

where Di and Dmax are the number of adjacent neighbors of node i and the
maximum possible number of incident edges of node i.

Moreover, the clustering coefficient Cnet of a network is the average clus-
tering coefficient of all nodes:

Cnet =

∑

i Ci

|V |
(4.2)

where |V | is the number of nodes in the network.
Consequently, a small-world network typically has a large clustering coef-

ficient as in a regular network but also possesses a small characteristic path
length (i.e., the average distance between nodes) as in a random network.

With such salient connectivity features, small-world networks are efficient
in facilitating information exchange and dissemination, even for malicious
materials such as virus programs. Many P2P applications (e.g., Gnutella
[Gnutella Protocol Development, 2009]) are considered to exhibit small-world
features.

On the other hand, there is another important notion called scale-free
or power-law [Barabasi and Albert, 1999] network topology. In a scale-free
network, the probability that a node is connected to k other nodes is governed
by a power-law distribution, P (k) = k−γ , in which the exponent γ is a value
between 2 and 3. Consequently, a large number of nodes have small degrees
while a small number of nodes (commonly referred to as hubs) have large
degrees. Such a structure, with the hubs, usually exhibits a high resilience
against random node failures.

Another critical issue mandating topology control actions is the topology
mismatch problem, as illustrated in Figure 4.1. The problem is that while two
peers might be logically connected to each other, the “connection” between
them can actually involve a highly inefficiency path traversing many other
peers. Thus, the key issues here are: (1) detection of inefficient logical connec-
tions; and (2) adjustment of topology to better match the underlying physical
topology. There is a large body of research addressing this problem.

Many topology control schemes are based on heuristics because optimal
topology construction, even in the static case, is an NP-hard problem [Liu
et al., 2005b]. Many heuristics use a more or less greedy selection method
using parameters such as resourcefulness and connectedness. Specifically, it
is intuitively a good idea for a new peer or a disconnected peer to attempt



Topology Control 57

C1 C2

C3 C4

C1 C2

C3 C4

inefficient

overlay topology

efficient

overlay topology

C1

C3

C4

C2

physical

network

topology

FIGURE 4.1: An illustration of the topology mismatch problem: unneces-
sary and inefficient overlay connections are made between peers [Liu et al.,
2005b].

connecting to a peer with more resources in terms of file data owned, upload
bandwidth, etc. Connectivity is also an important consideration because con-
necting to a high-degree peer presumably allows for better reachability in the
network.

However, as mentioned above, if a topology control scheme is designed from
a global perspective only, it may not work very well in practice because peers
are inherently selfish in the sense that it might not be its interest in optimizing
some global performance measures, despite that such “altruistic” actions in
fact will benefit the peer in the long run also. Thus, it is important to attack
the topology control problem in a fully distributed manner using a game
theoretic perspective. Specifically, it might be more practical to formulate
some game strategies for each peer so that local (or selfish) optimizations also
lead to global performance enhancements.

As elaborated in this chapter below, topology control in a P2P system is
still a largely open research topic and has only recently got intensive attention.

We first describe a highly general framework that is adopted by many
recent topology control schemes. Specifically, in this framework, the topol-
ogy control actions are fully distributed—relying only on peers’ local actions.
As a result, the topology control schemes are highly practical. However, the
convergence of the topology control actions might take a long time.

We then survey some recently designed techniques for topology control
in a structured P2P network. This is followed by a detailed survey of many
interesting unstructured topology control schemes.



58 Peer-to-Peer Computing

We then describe an approach which is based on inference actions per-
formed by each peer in a specialized network-coding-based P2P system. Net-
work coding is a bandwidth efficient packet transmission technique and it
allows peers to deduce network bottlenecks.

Finally we also briefly describe a recently proposed topology control tech-
nique designed for a wireless P2P system, for which energy efficiency is a prime
concern.

4.2 A General Framework for Distributed Topology
Control

Singh and Haahr [Singh and Haahr, 2006] suggested using Schelling’s
model [Schelling, 1971] to dynamically adjust the topology of a P2P network.
Specifically, Schelling (an economist) observed that the existence of segregated
neighborhoods in the U.S. was neither caused by a central authority nor by
the desire of people to stay away from dissimilar people. Instead, the segre-
gation is the cumulative effect of simple actions by individuals who want at
least a certain proportion of their neighbors to be similar to themselves.

In Schelling’s abstract model [Singh and Haahr, 2006], the world is mod-
eled as a grid. Approximately two-thirds of the cells in the grid are populated
by blue or red turtles. The remaining cells are empty. Each cell can host a
maximum of one turtle. In the beginning, a random number of blue and red
turtles are randomly distributed on the grid. All the turtles desire at least
a certain percentage of their neighbors to be of the same color. If a turtle is
dissatisfied with its neighbors, it moves to an adjacent empty cell (if available)
chosen randomly. This process repeats until all the turtles are satisfied with
their neighbors. The resulting segregation is an emergent behavior caused by
the desire of the turtles to ensure a certain minimum percentage of their neigh-
bors are the same color as themselves. Schelling’s model is thus applicable in a
P2P network because each peer lacks a global picture of the network topology.
Furthermore, in the model, grouping is maintained even when turtles join or
leave the system, which makes it attractive for the dynamic environments of
P2P networks.

A similar approach has also recently been suggested by Hariri et al. [Hariri
et al., 2007] for application level network overlay topology control in a mas-
sively multiplayer online game (MMOG). There are many other topology con-
trol schemes, such as Auvienen et al. [Auvinen et al., 2007], that also fit in
this general framework.



Topology Control 59

4.3 Structured Topology Control

Frey and Murphy [Frey and Murphy, 2008] proposed a detailed mechanism
for maintaining a tree network architecture in the presence of peer churns.
Specifically, their proposed scheme can limit the maximum node degree, min-
imize the extent of tree topology changes resulting from peer dynamics, and
limit the number of nodes affected by each topology change. Figure 4.2 shows
a flow-chart of the topology control algorithm used by each peer whenever it
discovers that its parent has departed.

Detect Parent Departure

Declare Self as Root

Update Neighbor Set and

Cache

Update Caches

Send

PARENTREQUEST to

Candidate Parent

Determine

Candidate Parent

Request

Accepted?

F
o

u
n

d

Yes

No

Not Found

FIGURE 4.2: Algorithm for locating a new parent as a result of peer depar-
tures [Frey and Murphy, 2008].

As can be seen, the key step in the topology control algorithm is the
identification of a candidate parent. This parent selection step is achieved by
using the following strategies.

Regional Strategy. This topology control strategy is designed for repairing
the disruption in a localized manner. Specifically, each peer maintains a
cache of nearby (in a topological sense) peers, consisting of ancestors as
well as siblings. The cache contains a number of ancestor peers starting
from the parent continuing toward the root. The cache also contains
a set of siblings which are the other children of the parent. When a
candidate parent is to be determined, a peer from the cache is randomly
selected.

Downstream Strategy. Because repeated selection of ancestors as new par-
ents can lead to high degree values of such peers, violating the design
principle of keeping each peer’s degree within a reasonable limit, the
downstream strategy of topology control works by randomly choosing a



60 Peer-to-Peer Computing

candidate parent from the descendants of peers that already have high
degree values.

Upstream Strategy. While it is desirable to keep each peer’s degree value
within a reasonable limit, it is equally important to avoid having a long
chain of peers connected in a line. This undesirable situation can hap-
pen if leaf nodes are repeatedly selected as candidate parents under the
Downstream Strategy. Thus, in this Upstream Strategy topology control
action, each peer whose current degree value is lower than a pre-defined
lower bound (e.g., in the case of a leaf node), can decline to serve as a
candidate parent.

BreakMaxDegree and BreakMinDegree Strategies. While the Down-
stream and Upstream strategies can help maintain the peer degree values
within range, they should not be applied too frequently to the extent
that the tree needs to be reconstructed. Thus, the BreakMaxDegree
and BreakMinDegree topology control actions are designed for forcing
a candidate parent to accept the request if such a parent has declined a
previous request due to degree contraints.

Global Strategy. This topology control action is designed to work under a
pathological situation where all regional potential parents are unreach-
able. Specifically, a Global cache is maintained to record some other
peers that can be anywhere in the current overlay. Such peers are con-
tacted if all regional strategies fail.

It is obvious that the above topology control actions are by and large
independent and therefore, can be combined in any order in consideration.
However, in practice it makes more sense to try one strategy (e.g., Regional)
first before considering the other (e.g., Global). The above strategies have
to be executed in an order such that the tree can be maintained with a low
overhead (i.e., relatively fewer nodes are involved) while keeping the shape
reasonable (i.e., peer degree values are within range). For example, a sensible
order (i.e., a protocol) is: Regional, Upstream, BreakMinDegree, Downstream,
Global, and then finally BreakMaxDegree.

One key aspect of tree topology maintenance is to avoid inadvertently
forming a cycle. Indeed, each potential candidate parent needs to evaluate
whether a request would lead to a cycle in the tree. Indeed, a simple solution
is that each peer records precisely its depth (i.e., hop count distance from
the root). When a candidate parent is needed, only those with depth values
strictly smaller than the current peer are considered. However, while this
simple solution is correct, its scalability is poor. For instance, just to maintain
correct depth values, the root needs to periodically send a message down the
tree so as to update all depth values. Furthermore, after a peer successfully
changes its parent, it needs to immediately update the depth values of all its
descendants.

Frey and Murphy [Frey and Murphy, 2008] described an ingenious solution



Topology Control 61

to this cycle avoidance problem. Specifically, the key idea is that each peer
uses a real number as its depth value, as shown in Figure 4.3.

1

1.2 1.12

2.5 2.1 3.1

2.7 3 2.6 3.5 4

4.1 4.2

FIGURE 4.3: All shaded nodes are considered as candidate parents for node
with depth 3, including the one with depth 3.1 if it reduces its depth value
[Frey and Murphy, 2008].

As can be seen from Figure 4.3, the only rule is that each peer’s depth
value is greater than its parent’s. Now, consider the case where a node (e.g.,
the node with depth value 3) needs to find a new parent. If only integer depth
values are allowed, the node with depth value 3.1 is not eligible. However,
under a real-valued depth scheme as shown in the figure, such a node (with
depth 3.1) can also be a new parent provided it decreases its depth value, say
to 2.9 (still larger than its own parent’s). Indeed, to guarantee that the tree
depth values are consistent, the updating rule is that a peer can only decrease
its depth value (while still larger than its parent’s) but never increase it. There
are two overhead-reducing implications. First, when a peer decreases its depth
value, it does not need to coordinate with its descendants. Second, each peer
does not need to accurately record the depth value of its parent (which may
be updated from time to time without notice). Instead, it only needs to record
one correct value (e.g., at the time when the parent is first connected) and can
use it afterward. The reason is that the depth value of the parent can only
decrease but never increase, so that the peer only needs to make sure that
its new depth value (whenever it updates it) is larger than this cached parent
depth value.

Figure 4.4 shows a semi-structured P2P network architecture that we dis-
cussed in Chapter 3. The major feature of this architecture [Ohnishi et al.,
2007] is that each Super Node can make use of its own network (i.e., a load



62 Peer-to-Peer Computing

balancing cluster) of regular peers to share the workload. Thus, the topol-
ogy control actions of this network architecture are mainly related to load
balancing concerns.

Load Balancing

Cluster (LBC)

Load Balancing

Cluster (LBC)

Load Balancing

Cluster (LBC)

Load Balancing

Cluster (LBC)
DHT Ring

Super Node

Super Node

Super Node

Super Node

Regular Node

Regular Node

Regular Node

Regular Node Regular Node

Regular Node Regular Node

Regular Node

Regular Node

Regular Node

FIGURE 4.4: A semi-structured P2P network architecture [Ohnishi et al.,
2007].

Specifically, Ohnishi et al. [Ohnishi et al., 2007] considers the following
two kinds of load-balanced topology control actions, based on periodic load
information exchange among the Super Nodes.

1. A Super Node transfers a regular node in its LBC to another Super
Node.

2. A Super Node elevates a regular node in its LBC to be a new Super
Node, thereby creating a new LBC.

To initiate one of these topology control actions, each Super Node i pe-
riodically checks its average number of object requests (e.g., file searches),
denoted as Ai over a certain time period. Two Super Nodes, i and j, can then
compare their respective load levels using the ratio Ai/Aj . Specifically, if the
ratio is greater than a certain pre-defined threshold, the first kind of transfer
from node i to j takes place. On the other hand, if the ratio stays within a
certain pre-defined range for all j but the number of regular nodes in i’s LBC
gets too large, then the second kind of transfer takes place. Here, the number
of nodes in each LBC (including the Super Node itself) is governed by:

nr = βNRFi +
(1 − β)NR

NS
(4.3)

where NR is the total number of regular nodes in the system, NS is the total
number of Super Nodes, Fi represents the sum of all ratios at which a request
is made for all the objects (e.g., files) included in LBCi, and β is a system
parameter (set to be 1 in [Ohnishi et al., 2007]).



Topology Control 63

4.4 Unstructured Topology Control

Dale et al. [Dale et al., 2008] proposed novel modifications to the tracker
servers’ peer selection mechanisms in BitTorrent. The objective is to make a
BitTorrent network exhibit small-world characteristics. Their proposed mod-
ifications are based on a detailed theoretical analysis described below.

To create a small-world network with peers having a known maximum
degree, Dale et al. first try to maximize the clustering coefficient of a regular
graph of the peers. Cliques are considered for this purpose because a network of
cliques has a perfect clustering coefficient of 1 and each clique has a maximum
node degree. Specifically, a single edge is deleted from each clique and the two
incident nodes of the deleted edge are connected to neighboring cliques. This
is done uniformly for all cliques in order to maintain regularity. Consequently,
a cycle of k identical n-cliques is formed, where n is the maximum node degree
and k = N/n (N is the number of nodes).

Now because the network comprises a cycle of identical cliques, it suffices
to compute the clustering coefficient of a single n-clique. Recall that each
n-clique has two kinds of nodes: (1) n − 2 interior nodes connected only to
neighbors in the same clique, and (2) two border nodes that connect to neigh-
bor cliques. Notice that the clustering coefficient of a node is equal to the
number of triangles including the node. Thus, Dale et al. check how many
triangles are lost by deleting the single edge so as to connect to neighboring
cliques. Obviously, because the interior nodes lose only a single triangle after
one edge is deleted, we have:

Ci =
(n−1)(n−2)

2 − 1
(n−1)(n−2)

2

= 1 −
2

(n − 1)(n − 2)
(4.4)

On the other hand, the border nodes lose a triangle for each node that
was incident with the missing edge. Because there are n − 2 such nodes, the
clustering coefficient Cb is given by:

Cb =
(n−1)(n−2)

2 − (n − 2)
(n−1)(n−2)

2

= 1 −
2

(n − 1)
(4.5)

Now considering the average over the n-clique, the clustering coefficient of
the entire network is given by:

CG =
(n − 2)Ci + 2Cb

n
= 1 −

6

n(n − 1)
(4.6)

Next we consider the diameter and characteristic path length of the net-
work constructed by Dale et al.’s method. Observe that we need to traverse
three edges to get past a single clique. In the worst case, we need to traverse



64 Peer-to-Peer Computing

half way around the cycle of k cliques. Consequently, the maximum diameter
is given by: 3k

2 .
For characteristic path length, let us consider only the distances among the

interior nodes. Now, for each interior node, there are n − 1 nodes at distance
1, 2n nodes at distance 3 (i.e., one n-clique apart), 2n nodes at distance 6,
and so on. The sum of the distances for all possible interior nodes is given by:

(n − 1) + 6n

k−1
2
∑

j=1

j = n − 1 + 3n
k − 1

2

(

k − 1

2
+ 1

)

(4.7)

The characteristic path length can then be computed by assuming large
values of n:

L ≈
n + 3

4n(k − 1)(k + 1)

nk
=

1 + 3
4 (k2 − 1)

k
(4.8)

To realize the salient features of the network constructed by the above
method in a real-life BitTorrent system, Dale et al. proposed a simple topology
control action to be implemented in a BitTorrent tracker server. Modifying
the tracker is a much more realistic approach than modifying all BitTorrent
clients. Specifically, the modified tracker assigns an ID to each new peer to
designate an n-clique to which it should join. If all the n-cliques are full already,
the peer receives a new ID; otherwise, the peer receives the ID of the largest
currently unfilled n-clique.

In choosing a list of peers for returning to the new peer for making connec-
tions, the n-clique ID of the new peer is considered. Specifically, the tracker
first randomly selects a small number of peers from n-cliques other than the
one containing the new peer. The rest (i.e., the majority) of the list is formed
by randomly selecting peers from the n-clique containing the new peer. The
experimental results indicate that such simple modifications can already dra-
matically increase the extent of clustering, with only a slight increase in net-
work diameter.

In their simulation results [Dale et al., 2008], it is found that the clustering
coefficients are increased but not to the extent that the theory predicted.
A plausible explanation is that in practice, there is a limit on the number
of connections a peer can initiate in a BitTorrent client. This prevents the
formation of a complete n-clique.

Kwong and Tsang [Kwong and Tsang, 2008] presented a mathematically
sound study on the topology formation and reconstruction schemes in a prac-
tical P2P network. Specifically, their key observation is that peers are highly
heterogeneous in that they have very disparate bandwidth, storage, processing
power capabilities, etc. Thus, it is mandatory to design a suitable protocol for
each peer to make connection decisions, i.e., to which peers it should connect.
The ultimate objective is to form a network with balanced load across peers
and hence, is able to provide stable service quality to users.

To model heterogeneity, Kwong and Tsang [Kwong and Tsang, 2008] use a
single parameter ηi for each peer i. Depending on the specific P2P application,



Topology Control 65

ηi can be thought of representing different system parameters. For instance, in
a video streaming application in which the upload bandwidth of each peer is
the most critical parameter [Kwong and Tsang, 2008], ηi can be considered as
reflecting each peer’s upload bandwidth level. On the other hand, in a network
coding-based P2P application, CPU processing power is the most important
and hence, ηi represents the processing power of each peer i.

In their mathematical model [Kwong and Tsang, 2008], it is assumed that
ηi follows a certain probability density function ρ(η), which is called the node
capacity distribution.

Suppose ki is the degree of peer i. Presumably every peer wants to connect
to a high capacity peer, in the hope that its download performance can be
enhanced. On the other hand, it is probably not a good idea to connect to
a peer with a high node degree because such a node, while it may be of a
high capacity, could also be under a high load. Thus, in Kwong and Tsang’s
approach [Kwong and Tsang, 2008], two parameters are used—each peer’s
capacity and node degree—for making connection decisions. Specifically, a
probability πi of a peer i that it is connected by a new peer is given by:

πi =

ηi

ki
∑

j∈L(t)
ηi

ki

(4.9)

where L(t) is the set of active peers in the system at time t. Intuitively, the
probability πi captures the idea that new peers should heuristically connect
to active peers with a large capacity-to-degree ratio, which can in fact be
considered as a “normalized” node capacity.

However, it is impractical to maintain global network information in order
to compute the probability πi. Thus, Kwong and Tsang [Kwong and Tsang,
2008] employ the Metropolis-Hastings [Hastings, 1970,Metropolis et al., 1953]
to compute the probability in a fully distributed manner as described below.

The P2P network is modeled as a connected graph G = (V, E) with node
set V = {1, . . . , n} and undirected edge set E ⊆ V × V . Each edge (i, j) is
associated with a transition probability pij :

pij =
1

ki + 1
min

{

1,
ηjki(ki + 1)

ηikj(kj + 1)

}

(4.10)

and each node i is also associated with pii = 1 −
∑

(i,j)∈E pij .
To compute the edge transition probabilities locally, each node i needs

to broadcast its capacity ηi and degree ki to its neighbors so that the lat-
ter can use such information for local computations. These edge transition
probabilities are used for random walk.

When a new peer joins the system, it first contacts m active peers in
the network, possibly with the help of bootstrap servers. The new peer then
dispatches m different walkers to these m nodes. Each walker is associated
with a time-to-live (TTL) value denoted as τ , which represents the number of
iterations in the Metropolis-Hastings algorithm. Each walker is forwarded from



66 Peer-to-Peer Computing

the current node to a neighbor node based on the edge transition probability
of the corresponding edge. Each forwarding step leads to decrementing the
TTL.

The new peer then connects to the node where the walker stops (i.e., when
its TTL reaches 0). If the walker stops at a node which is already connected
by that new node, then the walker moves an additional δ hops (in [Kwong and
Tsang, 2008], δ = 1). This is repeated until a previously not connected node
is found. In practice, this process will not go on indefinitely if the network is
large.

Using the above iterative and fully distributed mechanism, the sampled
edge transition probability converges to a steady state distribution that is
equal to the centralized computation of πi given above, when τ → ∞. In
[Kwong and Tsang, 2008], it is reported that τ = 10 is already good enough
for a network with 50,000 peers.

To handle peer dynamics, a topology reconstruction process is needed.
Specifically, in Kwong and Tsang’s approach [Kwong and Tsang, 2008], each
node i attempts to rebuild ri (where ri ≤ 1) new link(s) whenever it loses a
link. Here, obviously ri is a probability and its usage is detailed as follows.
Let k−

i denote the degree of node i after it has lost a link. Now, a heuristic
mechanism is used:

ri =

{

1 k−
i = 2

r k−
i ≥ 3

(4.11)

This is called the probabilistic-rebuilding scheme [Kwong and Tsang, 2008].
The threshold of 2 is to heuristically maintain the situation that each node has
3 more links at any point in time. Now, after the probability ri is determined
as shown above, a random walker is dispatched if the decision is to attempt
the rebuilding. The same random walk-based node selection process is carried
out.

Kwong and Tsang [Kwong and Tsang, 2008] also consider another method
called adaptive-rebuilding scheme which works by limiting the degrees of nodes
so as to prevent overloading. This is counter-balanced by another heuristic
requirement—each node should also try to maintain m links to keep the net-
work’s robustness intact. Consequently, in this scheme, the probability ri is
set as:

ri =
m − 1

k−
i

(4.12)

Liu et al. [Liu et al., 2005b] studied intensively about the overlay topol-
ogy mismatch problem. They also proposed several heuristics for dynamically
adjusting the overlay topology to suit the underlying physical topology. Specif-
ically, their topology control protocol relies heavily on: (1) globally synchro-
nized system clocks; and (2) flooding of slow-connection detector messages.

Let us illustrate their topology control protocol using the example shown
earlier in Figure 4.1. As can be seen, C1 and C4 are directly connected in the
physical topology. Furthermore, C2 and C4 are in the same subset, as are C1



Topology Control 67

and C3. Thus, the logical overlay connections C1-C2, C2-C3, and C3-C4 are
all inefficient.

In order to discover these inefficient connections, each peer periodically
floods some detector messages to their neighbors, which in turn forward them
to other nodes, and so on. These detector messages have a controlled scope.
For example, their TTL values are set to 2 or 3. On receipt of such a detec-
tor message, the TTL value is decremented. More importantly, each message
is time-stamped. Thus, when multiple messages originating from the same
source are received, the transmission time (i.e., the cost) of the messages can
be compared by checking their respective time-stamp values. This is done to-
gether with a “probing” action, which works by having a peer send a detector
message directly to another peer. The cost of this message is also then noted
and compared with the cost of the regular detector messages. Accordingly,
some existing connections could be terminated if the newly probed connec-
tion generates a lower cost. This heuristic protocol is illustrated in Figure 4.5.

C1 C2

C3 C4

inefficient

overlay topology

C1 C2

C3 C4

C1 C2

C3 C4

C1 C2

C3 C4

C1 C2

C3 C4

C1 C2

C3 C4

efficient

overlay topology

p
ro

b
in

g

X
cutting

probing

X

cutting

p
ro

b
in

g

X

cutting

C1 C2

C3 C4

FIGURE 4.5: An example of location-aware topology matching (LTM) [Liu
et al., 2005b].

Zhang et al. [Zhang et al., 2005a] proposed an interesting scheme for con-
structing low-diameter overlay networks with power law topologies. In their
system, each peer is uniquely identified by a 4-tuple: (IP address, port, network
coordinate, capacity). Here, network coordinates are measured using mecha-
nisms such as Vivaldi [Dabek et al., 2004]. Such coordinates are useful for
computing the physical “distances” between two peers. Just like many other
P2P systems, a new peer i obtains a list of existing peers from a designated
bootstrapping server. Specifically, the bootstrapping server selects a list of



68 Peer-to-Peer Computing

peers for peer i: Li = (LDi, LRi), where LDi is a set of several peers with the
shortest distances from peer i, and LRi is a set of randomly selected peers. In
Zhang et al.’s results, |LRi| = |LDi| and 5 ≤ |LRi| + |LDi| ≤ 8.

Subsequently, peer i sends a probing message to each of the peers on the
list. The latter will then reply with their neighbor information. Peer i then
assembles all such neighbor information as a candidate list LCi. For each
peer j ∈ LCi, peer i computes the values of two parameters: the frequency
fi(j) representing the number of times peer j shows up in LCi thus far, and
estimated distance D(i, j) between peer i and j. Furthermore, an important
parameter, called normalized distance estimation di(j) is determined:

di(j) =
D(i, j)

maxk∈LCi
D(i, k)

(4.13)

where 0 < di(j) ≤ 1.
One interesting way to interpret the significance of these parameters is

as follows: LCi is a sampling of peers in the network; fi(j) is a sampling of
the degree of each candidate j; and di(j) is an estimated distance between
peer i and j. With such interpretation, another parameter, called connection
preference is computed:

Pi(j) = γPFi(j) + (1 − γ)PDi(j) (4.14)

where PDi(j) is the distance preference of peer i connecting to peer j, and
thus, serves as the probability that peer i selects peer j as one of its immediate
neighbors. Accordingly, it is defined as:

PDi(j) =

1
di(j)

− α
∑

k∈LCi

1
di(k) − α

(4.15)

where −∞ < α ≤ 1.
By the same token, the degree preference, denoted by PFi(j), is the prob-

ability that peer i selects peer j as one of its immediate neighbors. Here, the
more incident edges peer j has in the network, the higher the probability it ap-
pears in other peers’ candidate lists. Accordingly, degree preference is defined
as:

PFi(j) =
fi(j) − β

∑

k∈LCi
fi(j) − β

(4.16)

where −∞ < β ≤ 1.
The parameters, α, β, γ serve as “control knobs” in adjusting the topology

of the P2P network. Specifically, larger values of α and γ are more suitable for
delay sensitive applications. On the other hand, a larger β and a smaller γ are
more suitable for applications that require a better balancing of load. Most
importantly, Zhang et al. showed that their proposed scheme could indeed
generate P2P network structures with power law properties [Zhang et al.,
2005a].



Topology Control 69

4.5 Network-Coding-Based Distributed Topology Con-
trol

Jafarisiavoshani et al. [Jafarisiavoshani et al., 2007] proposed an interesting
topology control algorithm based on network coding [Ahlswede et al., 2000]. In
simple terms, using network coding, a source peer sends out to its neighbors a
coded packet which is a linear combination (e.g., based on bit-wise XOR oper-
ations) of multiple packets that it receives from other neighbors. By attaching
also a coding vector to the combined packet, the source allows each receiving
neighbor to decode the desired original packet from the combination.

Avalanche [Gkantsidis and Rodriguez, 2005] is a network-coding-based
P2P system, in which peers randomly combine their received packets and
propagate such linear combinations to their neighbors. A peer receiving a suf-
ficient number of linear combinations solves a system of linear equations (based
on the coding vectors retrieved) and retrieves the desired source packets.

Jafarisiavoshani et al.’s novel insight [Jafarisiavoshani et al., 2007] is that
coding vectors the peers receive from their neighbors can be used to passively
infer bottleneck information. This allows individual peers to initiate topology
changes to correct problematic connections. In particular, peers, by keeping
track of the coding vectors they receive, can detect problems in both the
overlay topology and the underlying physical links. The following example
illustrates these points.

Consider the example P2P network depicted in Figure 4.6(a) where the
edges correspond to logical (overlay network) links. The source S has n pack-
ets to distribute to four peers. Peers A, B, and C are directly connected to
the source S, and also among themselves with logical links, while peer D is
connected to peers A, B, and C. In this overlay network, each peer has a con-
stant degree of three (three neighbors), and there exists three edge-disjoint
paths between any pair of peers (in particular, between the source and any
other peer).

Now, consider (as shown in Figure 4.6(b)) that the logical links SA, SB,
and SC share the bandwidth of the same underlying physical link, which forms
a bottleneck between the source and the remaining peers of the network. As
a result, let us assume the bandwidth on each of these links is only 1/3 of
the bandwidth of the remaining links. Peer D can infer this information by
observing the coding vectors it receives from its neighbors A, B, and C.

Specifically, when peer A receives a coded packet from the source, it will
forward a linear combination of packets it has already collected to peers B, C,
and D. Now each of peers B and C, once they receive the packet from peer A,
they also attempt to send a coded packet to peer D. But these packets will
not bring new information to peer D, because they are already contained in
the combination of coding vectors that peer D has already received. Similarly,
when peers B and C receive a new packet from the source, peer D will end



70 Peer-to-Peer Computing

B

A C

D

S

(a) example logical P2P network

B

A C

D

S

bottleneck

(b) physical topology

FIGURE 4.6: Illustrative example [Jafarisiavoshani et al., 2007].

up being offered three coded packets, one from each of its neighbors, and only
one of the three will bring to peer D new information. Consequently, peer D
can infer from this passively collected information that there is a bottleneck
between peers A, B, C and the source, and can thus initiate a connection
change.

4.6 Energy Efficient Distributed Topology Control in a
Wireless P2P System

Recently, Leung and Kwok [Leung and Kwok, 2008] proposed a compre-
hensive solution for energy efficient topology control in a hybrid wireless P2P
network.

Since such a wireless P2P network is likely to be ad hoc in nature, running
P2P applications on top of it requires network developers to meet several
research challenges. First of all, “Ad hoc P2P” means users are allowed to
join and leave freely, and hence, a dynamic credit-system is needed to moni-
tor the behavior of peers so as to monitor “free-riders” [Ge et al., 2003] who



Topology Control 71

do not contribute to the community. Secondly, in such an ad hoc P2P wire-
less environment, energy efficiency is beyond doubt a crucial factor in the
system design due to the fact that mobile wireless devices are inevitably en-
ergy limited. Indeed, it is challenging to tackle the energy efficiency problem
of mobile devices in a judicious manner and it has intrigued researchers for
years, e.g., [Bharghavan et al., 1994, Singh et al., 1998, Singh and Raghaven-
dra, 1998]. This motivates the need for a new energy efficient topology control
for effectively supporting P2P file sharing applications.

Topology control, in a traditional sense, comprises two components: neigh-
bor discovery and network organization [Rajaraman, 2002]. In neighbor dis-
covery, one has to detect network nodes in its proximity, and construct a
neighbor set in which it could find possible next-hops to establish communi-
cation linkages. On the other hand, network organization involves the decision
of which communication links to establish with neighboring nodes. Typically,
it involves the use of power management schemes such as sleeping and trans-
mit power control. The former disables some communication links temporarily
and the latter adjusts the transmission range.

In summary, traditionally, the objective of topology control is the preser-
vation of network connectivity while improving the efficiency of transmissions.
However, Leung and Kwok pointed out that connectivity should be consid-
ered at the application level. Specifically, their suggested schemes are aimed
at achieving an efficient connectivity among mobile devices in order to better
serve the file sharing application. Indeed, their idea is that the underlying
network layer (or even link layer) connections should be constructed in such
a way that the file sharing application’s performance is improved. The metric
that they use to judge performance is the file success ratio.

Many energy efficient protocols have been proposed in the literature. Nev-
ertheless, previous researchers usually neglect the importance of considering
the difference of remaining energy levels between individual nodes. Indeed, in
the pioneering work by Singh [Singh et al., 1998], it only uses metrics for the
total energy consumption in the whole path from server-peer (the peer who
shares files) to client-peer (the peer who requests files).

The wireless topology control scheme proposed by Leung and Kwok has
two components [Leung and Kwok, 2008]. In the first component, called Ad-
jacency Set Construction, the topology control system finds out which nodes
could be the next-hop when a node has to communicate with another node
which is n hops away (n ≥ 2). Specifically, the design rationale is that the
construction of neighbor set is related to: (1) contribution levels of different
nodes in the P2P file sharing network, (2) the popularity of file resources
owned by individual nodes, (3) aggressiveness of the file requesting node, and
(4) remaining energy levels of nodes. Our protocol not only takes energy ef-
ficiency into consideration but also controls the topology of the file sharing
network to introduce fairness.

In the second component, called Community-Based Asynchronous
Wakeup, the topology control system forms “virtual communities” among mo-



72 Peer-to-Peer Computing

bile users. The term community is defined as a set of two or more mobile users
that perform in a particular habit. For example, in a music file sharing net-
work, users with similar preference and fans of similar idols are recognized
as members of the same “community.” Members from the same community
follow the same wakeup schedules. The rationale behind this is that file shar-
ing is usually carried out between users with similar interest (this is the usual
reason why a sender owns the favorite file that the requester is asking for). Us-
ing community formation the topology control system not only increases the
chance of getting a file but also allows a group of nodes to sleep and conserve
energy when other communities are active.

4.7 Case Study: PPLive

As discussed in Chapter 3, PPLive exhibits a random graph structure [Hei
et al., 2007a, Vu et al., 2010]. From a topology control perspective, peers in
the PPLive system are pretty autonomous. Connectivity is mainly handled by
the usual approach—peers obtain neighbor lists from their respective channel
management servers (a.k.a. trackers), and then attempt connecting with peers
on the received lists. According to the measurement study conducted by Vu
et al. [Vu et al., 2010], peers in PPLive incline to choose neighbors that are
topologically closer. In other words, the peer selection process seems to be
locality aware. Yet perhaps this is due to the fact that a predominantly large
population of PPLive users are in China. One the other hand, for the temporal
dimension, PPLive peers are found to be quite impatient [Vu et al., 2010].
Specifically, in Vu et al.’s performance study [Vu et al., 2010], about 50% of
sessions are shorter than 10 minutes. Consider that y is the probability that
a node’s session length is 10 × x minutes. Vu et al. devised a mathematical
model of the session time as: y = ae10bx, where a and b are some constants
(with a > 0 and b < 0). The degree of peer churn is thus quite high.

4.8 Summary

Topology control is critical for a practical P2P system to deliver good
performance in a resilient manner. Specifically, peers must carry out proper
and timely topology change actions in response to variations in network con-
nectivity situations due to peers joining or departure. However, such actions
have to be localized; otherwise, a great overhead is needed that may actually
aggravate the network connectivity changes.



Topology Control 73

Topology control for wired and wireless P2P systems is still a largely open
research topic. Indeed, researchers have not investigated an optimized “inter-
play” between the application layer, network layer, and even the physical
layer (in a wireless setting). In many proposed algorithms, network or phys-
ical layer control actions are used (e.g., controlling who is the neighbor). An
important next step in topology control research is to propose an efficient
“cross-layer” design for P2P systems. Moreover, researchers should come up
with a “weighted” combination of the several localized metrics used for setting
up new peer connections.

Furthermore, how the existing topology control policies would impact the
system evolution subject to different operating conditions (such as existence of
non-cooperative peers, selfish peers, or even malicious peers) is an interesting
further research topic. Most notably, existence of “free-riders” and “white-
washers” could possibly lower the life-time of the file sharing network signifi-
cantly because such users would definitely not contribute to the network by not
acting as replaying nodes. Furthermore, an even more detrimental situation
would be having some malicious users who drop important control messages
or fake them, possibly leading to the formation of an inefficient cluster.

4.9 Review Questions

1. Why is topology control important?

2. What are the general techniques used in structured topology control?

3. How do you define the topology mismatch problem?

4. How is network coding useful in topology control?

5. What is the major challenge in wireless topology control?

6. What are the major difficulties in formulating a topology control game?



This page intentionally left blankThis page intentionally left blank



Chapter 5

Incentives

5.1 Introduction

The highly flexible features of P2P computing such as a dynamic popula-
tion (users come and go asynchronously at will), dynamic topologies (it is im-
practical, if not impossible, to enforce a fixed communication structure), and
anonymity, come at a significant cost—autonomy, by its very nature, is not
always in harmony with tight cooperation. Consequently, inefficient or lack of
cooperation could lead to undesirable effects in P2P computing. Among them
the most critical one is “free-riding” [Feldman and Chuang, 2005,Ramaswamy
and Liu, 2003] behavior. Loosely speaking, free-riding occurs when some users
do not follow the presumed altruistic cooperation rules such as sharing files
voluntarily, sharing bandwidth voluntarily, or sharing energy voluntarily, so
as to benefit the whole community.

Such altruistic sharing actions, presumably, would bring indirect and intan-
gible (and even remote) returns to the users. For instance, if everyone shares
files voluntarily, every user would eventually benefit from the high availability
of a large and diverse set of selections. Unfortunately, there are some users
that do not believe or buy in to such utopia-like concepts and would, then,
“rationally” choose to just enjoy the benefits derived from the community,
but not contribute their own resources.

To deter or avoid free-riding behaviors, the P2P community has to provide
some incentives—returns for resource expenditure that are, more often than
not, tangible and immediate [Golle et al., 2001]. Such incentives would then
motivate an otherwise selfish user to rationally choose to cooperate because
such cooperation would bring tangible and immediate benefits. To mention an
analogy, in human society, getting pay for our work is a tangible and immediate
incentive to motivate us to devote our energy, which could otherwise be spent
on other activities. Indeed, it is important for the incentive to be tangible
so that a user can perform a cost-benefit analysis—if benefit outweighs cost,
the user would then take a cooperative action [Krishnana et al., 2003]. It is
also important for the incentive to be immediate (though this is a relative
concept) because any resource is associated with an opportunity cost in that
if immediate return cannot be obtained from a cooperative action, then the
user might want to save the effort for some other private tasks.

75



76 Peer-to-Peer Computing

To provide incentives in a P2P computing system, there are basically five
different classes of techniques.

1. Payment-Based Mechanisms: Users taking cooperative actions (e.g.,
sharing their files voluntarily) would obtain payments in return. The
payment may be real monetary units (in cash) or virtual (i.e., some
tokens that can be redeemed for other services). Thus, two important
components are needed: (1) currency; (2) accounting and clearing mech-
anism. Obviously, if the currency is in the form of real cash, there is a
need for a centralized authority, in the form of an electronic bank, that
is external to the P2P system. If the currency is in the form of vir-
tual tokens, then it might be possible to have a peer-to-peer clearing
mechanism. In both cases, the major objective is to avoid fraud at the
expense of significant overhead. Proper pricing of cooperative actions
is also important—over-priced actions would make the system econom-
ically inefficient while under-priced actions would not be able to entice
cooperation.

2. Auction-Based Mechanisms: In some situations, in order to come up
with an optimal pricing, auctioning is an effective mechanism. In simple
terms, auction involves bidding from the participating users so that the
user with the highest bid gets the opportunity to serve (or to be served,
depending on context). An important issue in auction based systems
is the valuation problem—how much a user should set in the bid? If
every user sets a bid higher than its true cost in providing a service,
then the recipient of the service would pay too much than is deserved.
On the other hand, if the bids are too low, the service providers may
suffer. Fortunately, in some form of auctions, proper mechanisms can be
constructed to induce bidders to bid at their true costs.

3. Exchange-Based Mechanisms: Compared to payment-based and
auction-based systems, exchange-(or barter-)based techniques manifest
as a purer P2P interaction. Specifically, in an exchange-based environ-
ment, a pair of users (or, sometimes, a circular list of users) serve each
other in a rendezvous manner. That is, service is exchanged in a syn-
chronous and stateless transaction. For example, a pair of users meet
each other and exchange files. After the transaction, the two users can
forget about each other in the sense that any future transaction be-
tween them is unaffected by the current transaction. This has an im-
portant advantage—very little overhead is involved. Most importantly,
peers can interact with each other without the need of intervention or
mediation by a centralized external entity (e.g., a bank). Furthermore,
free-riding is impractical. Of course, the downside is that service dis-
covery and peer selection (according to price and/or quality of service)
could be difficult.

4. Reciprocity-Based Mechanisms: While pure barter-based interac-



Incentives 77

tions are stateless, reciprocity generally refers to stateful and history-
based interactions. Specifically, a peer A may serve another peer B at
time t1 and does not get an immediate return. However, the transac-
tion is recorded in some history database (centralized in some external
entity or distributed in both A and B). At a later time t2 > t1, peer B
serves peer A, possibly because peer B selects peer A as the client due
to the earlier favor from A. That is, as peer A has served peer B before,
peer B would give a higher preference to serve peer A. A critical prob-
lem is: how to tackle a special form of free-riding behavior, namely the
“whitewashing” action (i.e., a user leaves the system and rejoins with a
different identity), which enables the free-rider to forget about his/her
obligations.

5. Reputation-Based Mechanisms: A reputation-based mechanism is
a generalized form of reciprocity. Specifically, while a reciprocity record
is induced by a pair of peers (or a circular list of more than two peers), a
reputation system records a score for each peer based on the assessments
made by many peers. Each service provider (or consumer, depending
on the application) can then consult the reputation system in order to
judge whether it is worthwhile or safe to provide service to a particular
client. Reputation-based mechanism is by nature globally accessible and
thus, peer selection can be done easily. However, the reputation scores
must be securely stored and computed, or otherwise, the scores can-
not truly reflect the quality of peers. In some electronic market places
such as eBay, the reputation scores are centrally administered. But such
an arrangement would again need an external entity and some signif-
icant overhead. On the other hand, storing the scores in a distributed
manner at the peers would induce problems of fraud. Finally, similar
to reciprocity-based mechanisms, whitewashing is a low cost technique
employed by selfish users to avoid being identified as low quality users
which would be excluded from the system.

The different techniques mentioned above are suitable for different appli-
cations. Generally speaking, there are two mainstream applications in P2P
environments: sharing of discrete data, and sharing of continuous data. Ex-
amples of the former include file sharing systems (e.g., Napster), data sharing
systems (e.g., sharing of financial or weather reports), etc. A notable example
of the latter is P2P video streaming. Indeed, there is an important difference
between file sharing and media streaming systems. In the former, a user needs
to wait until a file (or a discrete unit of shared information) is completely
received before it can be consumed or used. Thus, there could be a signif-
icant delay between service request and judgement of service quality. In an
extreme case, a user may not discover that a shared file is indeed the one
requested or just a piece of junk. By contrast, in a media streaming applica-
tion, a user would quickly discover if the received information is good enough.
The quality of service (QoS) metric used is also different in these two differ-



78 Peer-to-Peer Computing

ent applications. In a file sharing application, the most important metrics are
downloading time and the integrity of the received files. In a media streaming
application, the more crucial performance parameters are the various play-
back quality metrics such as jitter, frame-rate, resolution, etc. Furthermore,
the incentive techniques surveyed in this chapter subsume the underlying P2P
network topology. Specifically, in most proposed systems, the communication
message exchange mechanism is not explicitly modeled.

Currently, the majority of P2P systems are implemented over the Inter-
net. However, wireless P2P systems are also proliferating. While most of the
incentive techniques designed for a wired environment could be applicable in
a wireless system, the wireless connectivity is by itself an important bootstrap
sharing problem. Indeed, on the Internet, users seldom pay attention to the
connectivity issue because a user can be reached (or can reach) any other In-
ternet user without noticeable effort. The only concern about communication
is the uploading or downloading bandwidth consumption. In a wireless envi-
ronment, however, the mere action of sending a request message from a client
peer to a server peer would probably need several intermediate peers to help
do the message forwarding because the server and client peers may be out of
each other’s transmission range. Consequently, incentives have to be provided
to encourage such forwarding actions.

In this chapter, we survey state-of-the-art solutions proposed for tack-
ling the incentive issues in various different P2P resource sharing systems.
In Section 5.2, we describe approaches designed for providing incentives in
Internet-based P2P networks. We discuss both file sharing and media stream-
ing applications. In Section 5.3, we describe solutions suggested for wireless
P2P systems. We then provide some of our interpretations and suggestions in
Section 5.4. We summarize this chapter by providing some remarks in Sec-
tion 5.6.

5.2 Incentive Issues in P2P Systems on the Internet

5.2.1 File Sharing Systems

In a file sharing system, users would like to retrieve files from other users,
and would expect other users to do the same. Thus, each user would need to
expend two different forms of resource:

• Storage: Each user has to set aside some storage space to keep files that
may be needed by other users, even though such files may not be useful
to the user itself.

• Bandwidth: Each user has to devote some of its outbound bandwidth
for uploading requested files to other users.



Incentives 79

Users usually perform file selection (and hence, peer selection) with the help
of some directory system which may or may not be fully distributed. For
example, in Napster [Napster, 2009], the directory is centralized.

Using such a sharing model, the most obvious form of free-riding behavior
is that a selfish user just keeps on retrieving files from others but refuses to
share its collections (and thus, no need to expend any outbound bandwidth
for file uploading). Interestingly enough, in an empirical study using the Maze
file sharing system [Maze, 2006] performed by Yang et al. [Yang et al., 2005],
it is found that the more direct indicator of free-riding behaviors is the online
time of a user. Specifically, the online time of a selfish user in a P2P file sharing
network is on average only one-third of that of a cooperative peer.

In this section, we first briefly overview a contemporary file sharing sys-
tem called BitTorrent [Cohen, 2003]. We then survey techniques suggested for
various other P2P file sharing networks.

5.2.1.1 BitTorrent

BitTorrent [Cohen, 2003] is by far one of the most successful P2P file shar-
ing systems. A key feature in BitTorrent is that each shared file is divided
into pieces (of size 256KB each), which are usually stored in multiple differ-
ent peers. Thus, for any peer in need of a shared file, parallel downloading
can take place in that the requesting peer can use multiple TCP connections
to obtain different pieces of the file from several distinct peers. This feature
is highly effective because the uploading burden is shared among multiple
peers and the network can scale to a large size. Closely related to this par-
allel downloading mechanism is the incentive component used in BitTorrent.
Specifically, each uploading peer selects up to four requesting peers in making
uploading connections. The selection priority is based on descending order
of downloading rates from the requesting peers. That is, the uploading peer
selects four requesting peers that have the highest downloading rates. Here,
downloading rate refers to the data rate that is used by a requesting peer in
sending out pieces of some other file. Thus, the rationale of this scheme is to
provide incentive for each participating peer to increase the data rate used
in sending out file data (i.e., uploading, or, in BitTorrent’s term, unchoking).
There are other related mechanisms (e.g., optimistic unchoking), which are
described in detail in [Cohen, 2003,Qiu and Srikant, 2004].

Qiu and Srikant [Qiu and Srikant, 2004] performed an indepth analysis of
BitTorrent’s incentive mechanism. By using an intricate and accurate model,
it is shown that a Nash equilibrium exists in the upload/download game in
BitTorrent. At the equilibrium, each peer sets its uploading data rate to be
its physical maximum uploading rate (i.e., each peer is fully cooperative).
On the other hand, due to the usage of the optimistic unchoking mechanism
(a fifth requesting peer is randomly selected in the uploading process, for
details, see [Cohen, 2003,Qiu and Srikant, 2004]), a free-rider can potentially
achieve 20% of the possible maximum downloading rate. This theoretical result



80 Peer-to-Peer Computing

conforms nicely with the simulation findings by Jun and Ahamad [Jun and
Ahamad, 2005] who observed that in BitTorrent, free-riders are not penalized
adequately while contributors are not rewarded sufficiently.

5.2.1.2 Hierarchical P2P Systems

In some situations, the P2P network may be structured in a hierarchical
manner so that some specialized machines (called “super-peers”) can take up
a more important role for handling resource management tasks such as request
forwarding and routing, directory listing, etc.

Singh et al. [Singh et al., 2003] proposed a super-peer-based scheme. Specif-
ically, Singh et al. studied the impacts of super-peers in a P2P file sharing
network. Simply put, a super-peer is a special network node that serves as a
hub to provide file indexing service to other nodes. The problem is that there
is a lack of incentive for a participating node to act as a super-peer because
any node can simply join an existing super-peer to obtain good performance.
Singh et al. observed that some entities external to the P2P system, such as an
Internet Service Provider (ISP) or a content publisher, have business driven
incentives for designating some nodes to act as super-peers, and for enhancing
the capabilities of super-peers. Specifically, a super-peer can cache meta-data
only instead of the files themselves. As such, the cost of acting as a super-peer
is lower. Furthermore, with properly designed meta-data, a super-peer can
support value-added search commands (e.g., topic-based search of files).

With such facilities incorporated in each super-peer, a hierarchical P2P file
sharing network is then much more efficient than a flat P2P system which relies
on request-flooding. Consequently, all nodes in the system have the incentive
in maintaining such a P2P file sharing system. Simulation results also indicate
that the proposed super-peer scheme is effective.

5.2.1.3 Payment-Based Systems

Hauscheer et al. [Hausheer et al., 2003] suggested a token-based accounting
system that is generic and can support different pricing schemes for charging
peers in file sharing. The proposed system is depicted in Figure 5.1. The system
mandates that each user has a permanent ID authenticated by a certification
authority. Each peer has a token account keeping track of the current amount
of tokens, which are classified as local and foreign. A peer can spend its local
tokens for accessing remote files. The file owner treats such tokens as foreign
tokens, which cannot be spent but need to be exchanged with super-peers
for new local tokens. Each token has a unique ID so that it cannot be spent
multiple times.

At the beginning of each file sharing transaction, the file consumer tells
the file owner about which tokens it intends to spend. The file owner then
checks against the file consumer’s account kept at the file owner’s machine. If
the tokens specified are valid (i.e., they have not been spent before), then the
file consumer can send the tokens in an unsigned manner to the file owner.



Incentives 81

Peer

Collected (foreign) tokens

New
(unsigned)

tokens

Partially
signed
tokens

New
tokens

Account Holder

IDs

Avoid double
spending

1

2

3

4

5

67

Super-
Peer

Super-
Peer

Super-
Peer

Super-
Peer

FIGURE 5.1: A super-peer-based token accounting system for P2P file shar-
ing [Hausheer et al., 2003].

Upon receipt of these unsigned tokens, the file owner provides the requested
files to the file consumer. When the files are successfully received, the file
consumer sends the signed version of the tokens to the file owner. In this
manner, Hauscheer et al. argued that there is no incentive for the peers to
cheat.

Yang and Garcia-Molina [Yang and Garcia-Molina, 2003] proposed the
PPay micropayment system in which each peer can buy a coin from a broker.
The peer then becomes the “owner” of the coin and can spend it to some other
peer. An important feature is that even after the coin is spent, the original
owner still has the responsibility to check the subsequent usage of the coin.
For example, suppose A is the owner of a coin which is spent to B. If B wants
to spend the coin in turn to C, the original owner A needs to check whether
such a transaction is valid (e.g., to avoid double spending of the same coin).
If A is offline (e.g., temporarily departed the P2P system), then the broker is
responsible to perform such checking.

Although the PPay system described above is a useful tool for supporting
P2P sharing, Jia et al. [Jia et al., 2005] observed that PPay can be further



82 Peer-to-Peer Computing

improved. Specifically, Jia et al. proposed a new micropayment system, called
CPay (an improved version of PPay), which has one significant new feature.
The new feature is that the broker judiciously selects the most appropriate
peer to be the owner of a coin. Specifically, the owner of a coin should be
one that is expected to stay in the system for a long period of time. Thus,
the broker’s potential burden of checking coin owners’ transactions can be
considerably reduced.

Figueiredo et al. [Figueiredo et al., 2005] also considered a payment-based
system to entice cooperation among peers. Specifically, each peer requiring
message forwarding service from other peers needs to pay real money to these
peers. Thus, as a peer stays in the P2P network and provides forwarding ser-
vice to other peers, it can gain money. Indeed, such a monetary gain represents
an incentive to enhance the availability of a peer in the network.

Saito [Saito, 2003] proposed an Internet-based electronic currency called
i-WAT, which can be used by users in a P2P system for “purchasing” services.
Each i-WAT message is an electronic ticket signed using OpenPGP. Saito et
al. [Saito et al., 2005] then extended the i-WAT system by adding a new feature
called “multiplication over time,” which means that a requesting peer’s debt
(in terms of i-WAT units) increases over time. This feature then encourages
service providing peers to stay in the system for a longer period of time so as
to defer the redemption of i-WAT tickets, thereby increasing the gains from
the requesting peers.

5.2.1.4 Cost of Sharing

Varian [Varian, 2003] reported a simple but insightful analytical study on
disincentives in P2P sharing. Table 5.1 lists the notation used in Varian’s
analysis.

TABLE 5.1: Notation used in Varian’s analysis on disincentives for P2P
sharing.

Symbol Definition
p unit price
v value of the item as perceived by each peer
n number of peers in the system
D total cost of producing all the items
d = D

n average development cost
k number of peers in each group that share an item
t sharing cost incurred by each member of a group
c cost imposed by the central authority to

those peers who participate in sharing
π profit derived by the central authority

Note: From Varian, 2003.

In Varian’s model, a single item (e.g., a single music file) is considered and



Incentives 83

the system is homogeneous in that all peers have the same valuation on the
item. There is an external central authority (e.g., the original producer of the
music) that has the incentive to discourage sharing among peers in the system.
The issue is then how the central authority can introduce proper disincentives
into the system. Firstly, observe that for viability in producing the item, we
have:

v −
p

k
− t − c ≥ 0 (5.1)

p
n

k
≥ D (5.2)

Specifically, the above equations are to ensure that value is no smaller than
the cost.

The equilibrium (where the item is just viable to be produced) price and
profit are then given by:

p = (v − t − c)k (5.3)

π = (v − t − c)kn − D (5.4)

We can see that profit is, counterintuitively, decreasing in c. An interpreta-
tion is that c is not large enough to discourage sharing and price has to be cut
for compensation. As an analogy, consider that c represents some copy protec-
tion mechanism which merely brings inconvenience to customers but cannot
discourage sharing. To compensate for the inconvenience, the price has to be
reduced.

On the other hand, for a given value of c, suppose the price is set in such
a way that it is marginally unattractive to share. That is, we have:

p

k
+ t + c ≥ p (5.5)

This in turn implies that:

p =
k

k − 1
(t + c) (5.6)

Now, as the maximum practical value of p is v, we have:

c = v −
k − 1

k
t (5.7)

Yu and Singh [Yu and Singh, 2003] also investigated the issue of proper
pricing in the presence of free-riders in a P2P system. A referral-based system
is considered in that each peer can either answer a remote query directly
(e.g., serving a requested file) or reply with a referral (e.g., pointing to a
different peer who may be able to serve the requested file). A requester (i.e.,
file consumer) needs to pay for both a referral or a direct answer. Each peer
keeps track of reserve prices of potential referrals and direct answers from any
other peer. These reserve prices are updated dynamically based on transaction



84 Peer-to-Peer Computing

experiences in that a satisfactory transaction leads to an increase in the reserve
prices while an unsatisfactory one leads to a decrease. From a seller’s point
of view, these prices are also exponentially decreased as time goes by. Under
this model, simulation results indicate that a free-rider will quickly deplete its
budget. On the other hand, the price of a direct answer is found to be much
higher than that of a referral.

Courcoubetis and Weber [Courcoubetis and Weber, 2006] recently reported
an indepth analysis of the cost in sharing in a P2P system. In their study, a
P2P sharing system is modeled as a community with an excludable public
good. Furthermore, the public good is assumed to be nonrivalrous, meaning
that a user’s consumption of the public good does not decrease the value
of the good. Such a model is suitable for a P2P file sharing network, where
the excludable public good is the availability of shared files. The model is
also considered as suitable for a P2P wireless LAN environment, where the
excludable public good is the common wireless channel. With their detailed
modeling and analysis, an important conclusion is derived: each peer only
needs to pay a fixed contribution, in terms of service provisioning (e.g., a
certain fixed number of distinct files to be shared by other peers), in order
to make the system viable. Such a fixed contribution is to be computed by
some external administrative authority (called a “social planner”) by using
the statistical distribution of the peers’ valuations of the public good.

5.2.1.5 Reciprocity and Reputation-Based Systems

Feldman et al. [Feldman et al., 2004a] suggested an integrated incen-
tive mechanism for effectively deterring (or penalizing) free-riders using a
reciprocity-based approach. Specifically, the proposed integrated mechanism
has three core components: discriminating server selection, maxflow-based
subjective reputation computation, and adaptive stranger policies.

In the discriminating server selection component, each peer is assumed
to have a private history of transactions with other peers. Thus, when a file
sharing request is initiated, the peer can select a server (i.e., a file owner)
from the private history. However, in any practical P2P sharing network, we
can expect a high turnover rate of participation. That is, a peer may only
be present in the system for a short time. Thus, when a request needs to be
served, such a departed peer would not be able to help if it is selected. To
mitigate this problem, a shared history is to be implemented. That is, each
peer is able to select a server from a list of global transactions (i.e., not just
restricted to those involving the current requesting peer). A practical method
of implementing shared history is to use a distributed hash table-(DHT-) based
overlay networking storage system [Stoica et al., 2001b]. Specifically, a DHT
is an effective data structure to support fast look-up of data locations.

A problem in turn induced by the shared history facility is that collusion
among non-cooperative users may take place. Specifically, the non-cooperative
users may give each other a high reputation value (e.g., possibly by report-



Incentives 85

ing bogus prior transaction records). To tackle this problem, Feldman et al.
suggested a graph theoretic technique. To illustrate, consider the reputation
graph shown in Figure 5.2. Here, each node in the graph represents a peer (C
denotes a colluder) and each directed edge represents the perceived reputation
value (i.e., the reputation value of the node incident by the edge as perceived
by the node originating the edge). We can see that the colluders give each
other a high reputation value. On the other hand, a contributing peer (e.g.,
the top node) gives a reputation value of 0 to each colluder because the con-
tributing peer does not have any prior successful transaction carried out with
a colluder. With this graph, we can apply the maxflow algorithm to compute
the reputation value of a destination peer as perceived by a source peer. For
instance, peer B’s (the destination) perceived reputation value with respect
to peer A (the source) is 0 despite that many colluders give a high reputation
value to B.

C CC CC

B

A

100 100 100 100 100 0

20
000 0 0

20

C

FIGURE 5.2: A graph depicting the perceived reputation values among
peers (C denotes a colluder) [Feldman et al., 2004a].

Finally, an adaptive stranger policy is proposed to deal with whitewashing.
Instead of always penalizing a new user (which would discourage expansion of
the P2P network), the proposed policy requires that each existing peer, before
deciding whether to do a sharing transaction with a new user, computes a ratio
of amount of services provided to amount of services consumed by a new user.
If this ratio is great than or equal to 1, then the existing peer will work with
the new user. On the other hand, if the ratio is smaller than 1, then the ratio
is treated as a probability of working with this new user.

Sun and Garcia-Molina [Sun and Garcia-Molina, 2004] suggested an in-



86 Peer-to-Peer Computing

centive system called Selfish Link-based InCentive (SLIC), which is based on
pairwise reputation values. Specifically, any peer u maintains a reputation
value W (u, v) for each of its neighbor peer v, where the reputation value is
normalized such that 0 ≤ W (u, v) ≤ 1. Here, “neighbor” means a peer v
currently having a logical connection with u and thus, such a peer v can po-
tentially request for service from u. With these reputation values, the peer u
can then allocate the uploading bandwidth to any requesting neighbor peer v
with a value of W (u, v)/

∑

i W (u, i). The reputation value W (u, v) is updated
periodically based on an exponential averaging method.

Under this model, Sun and Garcia-Molina [Sun and Garcia-Molina, 2004]
observed that each peer has the incentive to do some or all of the following, in
order to increase its reputation values as perceived by other peers (and hence,
enjoy a better quality of service).

• Sharing out more file data;

• Connecting to more peers (to increase the opportunities for serving oth-
ers);

• Increasing its total uploading capacity.

5.2.1.6 Penalty-Based Approaches

Feldman et al. [Feldman et al., 2004b] also investigated disincentive mech-
anisms that can discourage free-riding. Specifically, they considered various
possible penalty schemes in deterring free-riders. A simple model is used. At
the core of the model, each user i in the P2P sharing network is characterized
by a positive real-valued type variable, denoted as ti. Another key feature of
the model is that the cost of contributing is equal to the reciprocal of the cur-
rent percentage of contributors, which is denoted as x. Thus, for any rational
user with type ti, the user will choose to contribute if 1/x < ti and free-ride
if 1/x ≥ ti.

Furthermore, the benefit each user derived from the P2P network is as-
sumed to be of the form αxβ , where β ≤ 1 and α > 0. With this benefit func-
tion, the system performance is defined as the difference between the average
benefit and the average contribution cost. Specifically, system performance is
equal to: αxβ − 1.

Even with the simplistic model described above, Feldman et al. provided
several interesting conclusions. Firstly, it is found that excluding low type
users can improve system performance only if the average type is low and α
is large enough. Unfortunately, exclusion is impractical because a user’s type
is private and thus, cannot be determined accurately by other peers. It is
then assumed that free-riding behaviors are observable (i.e., free-riders can be
identified). Such free-riders are then subject to a reduction in quality of service.
Quantitatively, the benefit received by a free-rider is reduced by a factor of
(1−p), where 0 < p ≤ 1. A simple implementation of this penalty is to exclude
a free-rider with a probability of p. The second interesting conclusion is that



Incentives 87

the penalty mechanism is effective in deterring free-riders when the penalty is
higher than the contribution cost. In quantitative terms, the condition is that
p > 1/α. Finally, another interesting conclusion is that for a sufficiently heavy
penalty, no social cost is incurred because every user will contribute (i.e.,
choose not to be a free-rider) so that optimal system performance is achieved.
In particular, to deal with the whitewashing problem, the analysis suggests
that every new user is imposed a fixed penalty. Essentially, this is similar to
the case in the eBay system where every new user has a zero reputation and
thus, will less likely be selected by other users in commercial transactions.
However, this is in sharp contrast to the adaptive stranger policies suggested
also by Feldman et al. in another study [Feldman et al., 2004a] that we have
described earlier.

5.2.1.7 Game Theoretic Modeling

Ranganathan et al. [Ranganathan et al., 2003] proposed and evaluated
three schemes induced by the Multi-Person Prisoner’s Dilemma (MPD) [Os-
borne, 2004,Schelling, 1978]. The basic Prisoner’s Dilemma game models the
situation where two competitors are both better off if they cooperate than
when they do not. However, without communication, the unfortunate stable
state is that both competitors would choose not to cooperate. An MPD is
a generalization of the basic PD. Specifically, the key features of the MPD
framework can be briefly summarized as follows:

• The MPD game is symmetric in that each of n players has the same
actions, payoffs, and preferences.

• Any player’s payoff is higher if other players choose some particular
actions (e.g., “quiet” instead of “fink”).

The MPD framework is used for modeling P2P file sharing as follows. There
are n users in the system, each of which has a distinct file that can be either
shared or kept only to the owner. The system is homogeneous in that all files
have the same size and same degree of popularity. Now, the potential benefit
gained by each user is the access of other users’ files. The cost involved is the
bandwidth used for serving other users’ requests. With this simple model, it
can be shown that the system has a unique Nash equilibrium in which no
user wants to share. Obviously, this equilibrium is sub-optimal (both at the
individual level and at a system-wide level) in that each user could obtain a
higher payoff (i.e., a higher value of net benefit) if all users choose to share
their files.

Motivated by the MPD modeling, Ranganathan et al. proposed three in-
centive schemes:

• Token Exchange: This is a payment-based scheme because each file
consumer has to give a token to the file owner in the sharing process.
Each user is given the same number of tokens initially and each file has
the same fixed price.



88 Peer-to-Peer Computing

• Peer-Approved: This is a reputation-based scheme in that each user
is associated with a rating which is computed using metrics such as the
number of requests successfully served by the user. A user can download
files from any owner who has a lower or the same rating. Thus, to gain
access to more files in the system, a user has to actively provide service
to other users so as to increase the rating.

• Service Quality: This is also a reputation-based scheme similar to
Peer-Approved. The major difference is that a file owner provides dif-
ferentiated service qualities to users with different ratings.

Theoretical analysis [Ranganathan et al., 2003] indicates that the Peer-
Approved policy with a logarithmic benefit function (in terms of number of ac-
cessible files) can lead to the optimal equilibrium where every user contributes
fully to the system. Simulation results also suggest that Peer-Approved gen-
erates performance (in terms of total number of files shared) comparable to
that of Token Exchange, which entails a higher difficulty in practical imple-
mentation as it requires a payment system.

Becker and Clement [Becker and Clement, 2004] also suggested an inter-
esting analysis of the sharing behaviors using variants of the classical 2-player
Prisoner’s Dilemma. Specifically, the P2P file sharing process is divided into
three different stages: introduction, growth, and settlement. In the introduc-
tion stage, the P2P network usually consists of just a few altruistic users
who are eager to make the network viable. Thus, sharing of files is a trusted
social norm. The payoffs of the two possible actions (supply files or not sup-
ply files) are depicted in Figure 5.3. Here, we have the payoffs ranking as:
R > T > S > P (note: T: Temptation, R: Reward, S: Sucker, P: Punishment).
Consequently, the Nash equilibrium profile is: (Supply, Supply). Notice that
the payoffs ranking in the original Prisoner’s Dilemma is: T > R > P > S,
and as such, the Nash equilibrium is the action profile in the lower right corner
of the table.

Player 1

Player 2

Action: Supply
1

1
g

Action: No Supply
2

1
g

Action: Supply
1

2
g

Action: No Supply
2

2
g

R

R

S

T

T

S

P

P

FIGURE 5.3: Payoff table in the introduction stage [Becker and Clement,
2004].

In the growth stage, we can expect that more and more non-cooperative
users join the network. For these users, the payoffs ranking becomes: T > R >



Incentives 89

P > S, which is the same as the original Prisoner’s Dilemma. Thus, the Nash
equilibrium for such users occurs at the profile: (No Supply, No Supply). As
the P2P network progresses to the mature stage (i.e., the size of the network
becomes stabilized), we can expect that a majority of users are neither fully
altruistic nor fully non-cooperative. For these users, the payoffs ranking is:
R > T > P > S. As a result, the payoff matrix is depicted in Figure 5.4. As
can be seen, there are two equally probable Nash equilibria: (Supply, Supply)
and (No Supply, No Supply). Consequently, whether or not the P2P network
is viable or efficient depends on the relative proportions of users in these two
equilibria. Results obtained in empirical studies [Becker and Clement, 2004]
using real P2P networks conform quite well to the simple analysis described
above.

Player 1

Player 2

Action: Supply
1

1g

Action: No Supply
2

1g

Action: Supply
1

2g

Action: No Supply
2

2g

R

R

S

T

T

S

P

P

FIGURE 5.4: Payoff table in the settlement stage [Becker and Clement,
2004].

Ma et al. [Ma et al., 2004a, Ma et al., 2004b] suggested an analytically
sound incentive mechanism based on a fair bandwidth allocation algorithm.
Indeed, the key idea is to model the P2P sharing as a bandwidth allocation
problem. Specifically, the model is shown in Figure 5.5. Here, multiple file
requesting peers compete for uploading bandwidth of a source peer. Each
requesting peer i sends a bidding message bi to the source peer NS . The
source peer then divides its total uploading bandwidth WS into portions of xi

for the peers. However, due to network problems such as congestion, each peer
i may receive an actual uploading bandwidth of x′

i which is smaller than xi.
Each bidding message bi is the requested amount of bandwidth. Thus, we

have xi ≤ bi. To achieve a fair allocation, the source peer uses the contribu-
tion level Ci of each competing peer i to determine an appropriate value of xi.
Ma et al. [Ma et al., 2004a,Ma et al., 2004b] described several allocation algo-
rithms with different complexities and considerations: simplistic equal sharing,
max-min fair allocation, incentive-based max-min fair allocation, utility-based
max-min fair allocation, and incentive with utility-based max-min fair alloca-
tion. The last algorithm is the most comprehensive and effective. It works by
solving the following optimization problem:

max

N
∑

i=1

Ci log(
xi

bi
+ 1) (5.8)



90 Peer-to-Peer Computing

N1

N2

NS
Submitting bids

1b

2
b

1t()x

2x

SW

1x 2x

Bandwidth Allocation
Result

t()

t()
t()

t() t()

FIGURE 5.5: Two file requesting peers (N1 and N2) compete for uploading
bandwidth of a source peer (NS) [Ma et al., 2004a].

where:
N
∑

i=1

xi ≤ WS (5.9)

Here, the logarithmic function represents the utility as perceived by each
peer i.

The above optimization problem can be solved by a progressive filling
algorithm that prioritizes competing peers in descending order of the marginal
utility Ci/(bi + xi).

Given values of bi and Ci, the source peer can compute the allocations in
a deterministic manner. However, from the perspective of a requesting peer,
a problem remains as to how it should set its bidding value bi. Using a game
theoretic analysis, it is shown that the action profile in which:

bi =
WSCi
∑N

j=1 Cj

∀i

is a Nash equilibrium. Furthermore, provided that all cooperative peers use
their respective strategies as specified in the Nash equilibrium action profile,
collusion among non-cooperative peers can be eliminated. Notice that each
requesting peer i needs to know the values of WS and

∑N
j=1 Cj in order to

determine its own bid bi. In a practical situation, these two values can be
supplied by the source peer to every requesting peer.



Incentives 91

5.2.1.8 Auction-Based Approaches

Gupta and Somani [Gupta and Somani, 2004] proposed an auction-based
pricing mechanism for P2P file object lookup services. In their model, each
resource (e.g., a file object) is stored in a single node. However, the indices
for such a file object are replicated at multiple nodes in the network and
these nodes are called terminal nodes. When a peer initiates a lookup request
for a certain file object, the request is sent through multiple paths toward
the terminal nodes, as shown in Figure 5.6. The problem here is that the
intermediate nodes need some incentives in order to participate in the request
forwarding process.

Client
Server

......

......

......

Intermediate nodes along a request path

Terminal nodes that participate in the auction

FIGURE 5.6: The request forwarding process [Gupta and Somani, 2004].

Gupta and Somani [Gupta and Somani, 2004] suggested a novel solution to
the incentive problem. Specifically, the initiating peer attaches a price in the
request message it sends to the first layer of nodes in the request chains. Each
intermediate node on the request chains then updates the price by adding
its own “forwarding cost.” The terminal nodes also do the same updating
before sending the request messages to the data source. Upon receiving all
the request messages, the data source then performs a second price sealed
bid auction (also referred to as Vickrey auction) [Osborne, 2004] to select
the highest bid among the terminal nodes. The selected terminal node then
needs to pay the price equal to the value of the second highest bid. With
this auction-based approach, all the intermediate nodes on the request chains
have the incentive to participate in the forwarding process because they might
eventually get paid by the requester should their respective request chain wins
the auction.

For example, consider the lookup process shown in Figure 5.7. We can see



92 Peer-to-Peer Computing

that the request chain terminated by node T1 wins the auction process and
the payoff to the data source node B is 60. The only intermediate node (node
1) then also gets a payoff. Gupta and Somani [Gupta and Somani, 2004] also
showed that a truthful valuation is the optimal strategy for each intermediate
node. Furthermore, based on the requirement that every message cannot be
repudiated, it is also shown that the proposed mechanism can handle various
potential threats such as malicious auctioneer, collusion between data source
and a terminal node, forwarding of bogus request message, etc.

A

10

15

20

10

15

20

B

90

90

90

1

2

3

T1

T2

T3

60

70

50

80

75

70

RC
1

RC
2

RC
3

Initial offered price

Two-phase Vickrey auction
where T1 is the winner

Pay
B 

= 60

Profit
A 

= 3.33
Price

A
 = 100

Pay
1 

= 13.33 Pay
T1 

= 13.33

10
10

FIGURE 5.7: An example of the auction process in request forwarding
[Gupta and Somani, 2004].

Wongrujira and Seneviratne [Wongrujira and Seneviratne, 2005] also pro-
posed a similar auction-based charging scheme for forwarding nodes on a path
from a requesting peer to a data source. However, they pointed out an im-
portant observation that some potentially malicious peers could try to reduce
the profits of other truthful peers by dropping the price messages. To mitigate
this problem, a reputation system is introduced in that every peer maintains
a history of interactions with other peers. The reputation value of a peer is in-
creased every time a message is forwarded by such a peer. On the other hand,
if an expected message exhibits a timeout, the responsible peer’s reputation
value is decreased.

Wang and Li [Wang and Li, 2005] also considered a similar problem in
which a peer needs to decide how much to charge for forwarding data. Instead
of using auction, a comprehensive utility function is used. The utility func-
tion captures many realistic factors: the quantitative benefits of forwarding
data, the loss in delivering such data, the cost and the benefit to the whole
community. With this utility function, an upstream peer has the incentive to
contribute its forwarding bandwidth while a downstream peer is guided toward
spending the upstream bandwidth economically. Furthermore, a reinforcement
learning component is incorporated so that each peer can dynamically adjust



Incentives 93

the parameters in its utility function so as to optimally respond to the current
market situations.

Sanghavi and Hajek [Sanghavi and Hajek, 2005] observed that in a typical
auction-based pricing mechanism as described above, there is a heavy com-
munication burden on the peers. Indeed, the entire set of user preferences
has to be communicated from a peer to the auctioneer. Sanghavi and Hajek
then analytically derived a class of alternative information mechanisms that
can significantly reduce the communication overhead. Specifically, each peer’s
bid is only a single real number in each case, instead of an entire real-valued
function.

Hausheer and Stiller [Hausheer and Stiller, 2005] studied a completely
decentralized auction approach for electronic P2P pricing of goods in a system
called PeerMart (which is built on top of Pastry [Rowstron and Druschel,
2001b]). The key idea is the usage of a broker set which comprises other peers
in the electronic marketplace. Specifically, a broker set consists of peers whose
IDs are closest to the ID of the good in the auction. Each of these peers then
potentially acts as the auctioneer in the selling process. The advantage of the
broker set-based method is that in case a particular peer in the set is faulty
(or even malicious in the sense that it does not respond to auction requests),
another member in the set can take up the role of auctioneer. An example is
shown in Figure 5.8.

5.2.1.9 Exchange-Based Systems

Motivated by the fact that any payment/credit-based system entails a
significant transaction and accounting overhead, Anagnostakis and Greenwald
[Anagnostakis and Greenwald, 2004] proposed an exchange-based P2P file
sharing system. The fundamental premise is that any peer gives priority to
exchange transfers. That is, in simple terms, any peer is willing to send a file
to a peer that is able to return a desired file. However, based on this idea, it
is incorrect to consider two-way exchanges only. Indeed, a “ring” of exchange
involving two or more peers, as shown in Figure 5.9, is also a proper P2P file
transfer.

In the exchange-based P2P file sharing system, each peer maintains a data
structure called incoming request queue (IRQ). Now, a crucial problem is how
each peer can determine whether an incoming request should be entertained,
i.e., whether such a request comes from some peer on a ring of exchange
requests. It is obviously computationally formidable to determine all the po-
tential multi-peer cycles. Fortunately, Anagnostakis and Greenwald [Anagnos-
takis and Greenwald, 2004] argue that based on simulation results, in practice
a peer only needs to check for cycles with up to five peers.

Each peer uses a data structure called request tree to check for potential
request-cycles. For example, as we can see in Figure 5.10, a peer A decides to
entertain a request for file object o2 because A finds that peer P9 possesses
an object that is needed by A. Based on this checking mechanism, the in-



94 Peer-to-Peer Computing

Consumer 1 bids $3 for x

Provider 1 asks $1 for x

Provider 2 asks $2 for

x

Broker
set

service ID
x

Broker set lookup

Recursive
lookup for

broker
set

FIGURE 5.8: An example of a fully decentralized auction [Hausheer and
Stiller, 2005].

coming requests are prioritized. Simulation results indicate that the proposed
exchange-based mechanisms are effective in terms of file object download time.

Table 5.2 gives a qualitative comparison of different incentive approaches
proposed for P2P file sharing systems. In general, systems that involve pay-
ment would be more difficult to implement because it is not trivial to design a
global “currency” for use in such systems. Furthermore, security requirement
would be high because the payment could be forged by malicious peers. On
the other hand, exchange-based or reciprocity-based are easier to implement
and hence, are more scalable. The major crux is that there is much less state
information to be kept by each peer. More importantly, the accuracy of such
state information (e.g., reputation) does not need to be absolutely very high.
Thus, we expect that future P2P file sharing would still be based on similar
approaches.



Incentives 95

o
1 P1 P2

o
2

o
1 P

1
P

3
o

3

P
2

o
2

o
1 P1 Pn-1

o
n-1

Pn

o
n

P2...Pn-2

2-way

3-way

n-way

o
i

Pi

File object

Peer

FIGURE 5.9: Different feasible forms of exchanges [Anagnostakis and Green-
wald, 2004].

5.2.2 Media Streaming Systems

In this section, we describe several interesting techniques for providing
incentives in a P2P media streaming environment. Broadly speaking, there
are two different structures employed in P2P media streaming: asynchronous
layered streaming and synchronous multicast streaming.

5.2.2.1 Layered Many-to-One Streaming

Xu et al. [Xu et al., 2002] proposed a fully distributed differentiated ad-
mission control protocol called DACp2p. In this model, each requesting peer
needs multiple supplying peers to send different layers of media data. That is,
from a topological perspective, each streaming session involves one single re-
cipient and multiple sources, structured as a two-level inverted tree network.



96 Peer-to-Peer Computing

A

P
2

o
2

P
1

o
1

P
4

o
3

P
11

P
9

P
3

P
5

P
6

o
4

o
5

o
6

o
7

o
8

P
10

o
9

P
7

P
8

o
10

o
11

A

P
2

o
2

P
1

o
1

P
4

o
3

P
11

P
9

P
3

P
5

P
6

o
4

o
5

o
6

o
7

o
8

P
10

o
9

P
7

P
8

o
10

o
11

Request cycle
detection

FIGURE 5.10: Request cycle detection using the request tree data structure
maintained at each peer [Anagnostakis and Greenwald, 2004].



Incentives 97

TABLE 5.2: A qualitative comparison of different incentive approaches for
P2P file sharing.

Payment Auction Exchange Reciprocity Reputation

Example Hauscheer Gupta and Anagnostakis BitTorrent Sun and
et al.

[Hausheer
et al., 2003]

Somani
[Gupta and
Somani,
2004]

and Green-
wald [Anag-
nostakis and
Greenwald,
2004]

Garcia-
Molina [Sun
and Garcia-
Molina, 2004]

Practical Complex Complex Easy Easy Easy
Implementation
Security High High Low Low Medium
Requirement
Centralized Yes Yes No No Yes/No
Authority
Required
Scalability Medium Low High High High

Of course, each supplying peer may also be a recipient of another logically
different streaming session. With this streaming model, each requesting peer
needs to actively contact several supplying peers in order to start a session.

This streaming model is based on a practical observation that peer re-
quests are asynchronous and each peer’s communication capability is different
(i.e., heterogeneous streaming capabilities), as illustrated in Figure 5.11 where
peers with different communication supports (e.g., DSL, dial-up, etc.) initiate
streaming requests at different times.

A layer-encoded media streaming process is assumed, as shown in Fig-
ure 5.12. As can be seen, each peer performs buffered playback so that the
received media data are kept in a buffer and thus, can be used for streaming
to other later-coming peers. For example, H1 initiates a streaming session first
and thus, it is served solely by the server. Peer H2 starts its session next and
so it can request H1, which has buffered some media data, together with the
server to send it the required data. Similarly, H3 can stream from H1 and
H2 without the server as it starts its session just-in-time to use the buffered
data from the two earlier peers. On the other hand, H4, which starts too late,
cannot stream from H1 and H2. Instead, it receives media data from H3 and
the server.

Each potential supplying peer has only a limited capacity and thus, an
admission control mechanism is needed. Peers in the system are classified into
N classes according to the different levels of uploading bandwidth available at
the peers. Each potential supplying peer PS maintains an admission probabil-
ity vector: (Pr[1], P r[2], . . . , P r[N ]). Here, a smaller index represents a class
with a larger uploading bandwidth. Suppose PS is itself a class-k peer. Then,
its probability vector is initialized as follows:

• For 1 ≤ i ≤ k, Pr[i] = 1.0;



98 Peer-to-Peer Computing

Internet

Server

Ethernet

ADSL
Cable

Modem

Dial-up

Different
request
times

FIGURE 5.11: Asynchrony and heterogeneity of media streaming peers [Cui
and Nahrstedt, 2003].

0 1 0 1

2

00:01 00:02

1 2

0

0 1

00:04 00:08

2 3

00:00

H
0
 has: H

1
 has: H

2
 has: H

3
 has: H

4
 has:

Request
Time

0 1 2 3 0 1 0 1 2 0 1 2 0 1 2 3

Server

H
0 H

1 H
4

H
3

H
2

FIGURE 5.12: Layered streaming with buffering for serving asychronous
requests [Cui and Nahrstedt, 2003].

• For k < i ≤ N , Pr[i] = 1
2i−k .

Thus, PS always grants media streaming requests from a higher class peer
(i.e., one that has a larger uploading bandwidth). Notice that this is similar in
spirit to the incentive approach used in BitTorrent [Cohen, 2003]. For requests
from lower class peers, PS may serve them as governed by the respective
probabilities Pr[i] in the vector. If PS has not served any request during a
certain period of time, then the admission probabilities of lower class peers
will be increased.

Similar to the case in BitTorrent, each peer has the incentive to report a
higher uploading bandwidth because doing so will increase its probability of
admission when it needs to initiate a media streaming session. Xue et al. [Xue
et al., 2004] extended the DACp2p to a wireless environment. The key idea in



Incentives 99

the extension is to exploit the spatial distribution of mobile devices to form
clusters. Users in a cluster interact using the DAC mechanism.

Habib and Chuang [Habib and Chuang, 2006] also explored a similar idea
in providing differentiated peer selection to participating peers. Specifically,
a peer has only a limited set of choices (with possibly low media quality) if
it behaves selfishly in the system. The degree of selfishness is reflected by a
score known to other peers. The score is increased if the peer contributes to
other peers, and is decreased if it refuses the requests of other peers. Based
on a practical emulation study using the PROMISE [Hefeeda et al., 2003]
streaming system implemented on top of PlanetLab [PlanetLab, 2006], Habib
and Chuang [Habib and Chuang, 2006] found that the proposed incentive
scheme is effective in enhancing the performance of the system.

5.2.2.2 Multicast One-to-Many Streaming

Ngan et al. considered an application level multicast system for video
streaming. The system is based on SplitStream [Castro et al., 2003a] which in
turn is built on top of Pastry [Rowstron and Druschel, 2001b]. The multicast
system considered critically relies on a payment-based scheme. Specifically,
there are five components:

• Debt Maintenance: When a peer A forwards video streaming data to
a downstream peer B, B owes A a unit of debt.

• Periodic Tree Reconstruction: The multicast tree is reconstructed
periodically in order to avoid prolonged unfair connections among peers.
An unfair connection is one between a well-behaved peer and a selfish
peer.

• Parental Availability: Any new peer can obtain location and address-
ing information about any potential parent peers in the multicast tree.
Thus, the new peer can identify a potential selfish parent if the latter
consistently refuses connection.

• Reciprocal Requests: In the system, any two well-behaved peers are
expected to have an equal chance of being parent or child in any given
multicast tree.

• Ancestor Rating: This is a generalization of the Debt Maintenance
component. Here, debts are also accounted for all ancestors of a peer.
Specifically, all nodes on a path in forwarding data from the source to a
peer are credited or debited in cases where expected data is successfully
received or not, respectively.

Simulation results indicate that a selfish free-rider is effectively penalized
in terms of the amount of video streaming data received.

Chu and Zhang [hua Chu and Zhang, 2004] also considered a multicast-
based streaming environment. The streaming process is synchronous and is



100 Peer-to-Peer Computing

supported by a multiple description codec (MDC), in which a server provides
several different stripes of video with different quality. A key feature in this
streaming environment is that during each streaming session, multiple mul-
ticast trees are used, each of which is for sending different stripes of video.
This is illustrated in Figure 5.13. With such a streaming structure, a peer
can logically join different trees simultaneously at a different position in each
tree. Specifically, when a peer joins a certain multicast tree at a higher level
(e.g., peer A in the tree for stripe II), it needs to provide a larger uploading
bandwidth to serve the lower level peers in the same tree. On the other hand,
a peer can also join a tree as a leaf so that it becomes a pure recipient in the
tree.

Peer B

Source

Stripe I

Stripe
II

Stripe
III

Internal
nodes

Leaf
nodes

Peer A

Peer C Others

FIGURE 5.13: Layered video streaming using multiple multicast trees [hua
Chu and Zhang, 2004].

With this model, Chu and Zhang [hua Chu and Zhang, 2004] then studied
the effects of different degrees of altruism. They used a parameter K = f/r,
where f is the total uploading bandwidth provided by a peer and r is its
total downloading bandwidth. Thus, a larger value of K indicates a higher
degree of altruism for the peer. Similar to many other P2P sharing systems
described above in this chapter, a peer with a higher value of K can enjoy a
better performance (in terms of media quality in the streaming application).
Simulation results indicate that a small average value of K (e.g., 1.5) can
already improve the overall performance of the whole system.

Shrivastava and Banerjee [vivek Shrivastava and Banerjee, 2005] demon-
strated that streaming based on a multicast structure could be a result of



Incentives 101

natural selection. The key idea is depicted in Figure 5.14. The left part of
the figure illustrates a situation where multiple peers are sharing the capacity
of a single server. As a result, each peer can only enjoy a small downloading
data rate. However, when peers are organized as a multicast tree, based on
strategic natural selection (detailed below), each peer can enjoy a much larger
downloading rate.

The natural selection process can be illustrated in Figure 5.15. Here, ini-
tially the root is the only source in the system and thus, peer A selects the
root as the source, enjoying a downloading rate of 500 kbps. Now, when a new
peer B joins the system, peer A has basically two choices: (1) serve peer B;
or (2) do not serve peer B. To implement the second choice which seems to
be a more favorable one, peer A can declare to the BSE that its uploading
rate is 0 or a value smaller than 250Kbps (which is half of the capacity of the
root). However, in doing so, peer B has no choice but naturally selects the root
to be its streaming source. In that case, peers A and B will share the root’s
uploading capacity and thus, each obtains only 250Kbps data rate. On the
other hand, in anticipation of such an actually unfavorable outcome, peer A
should instead strategically declare its uploading bandwidth to be 300Kbps,
which is slightly higher than the capacity declared by the root. Consequently,
peer A can continue to enjoy a high downloading rate from the root, at the
expense of its uploading of data to peer B at a rate of 300Kbps.

Ye and Makedon [Ye and Makedon, 2004] proposed a useful detection
and penalty scheme to tackle the existence of selfish peers in a multicast
streaming session. They observed that a selfish peer may lie to other peers in
that it claims its uploading bandwidth is large so that it can enjoy a higher
probability of being admitted into a streaming session or enjoy a higher quality
of media data. The key of the detection mechanism is that a downstream peer
in a multicast tree returns a “streaming certificate” back to its parent peer.
For example, as shown in Figure 5.16, peers P4, P5, and P6, send streaming
certificates SCert(Pi,P3) to the parent peer P3 (i = 4, 5, 6). The certificates
are sent periodically and are time-stamped with authentication. Thus, a higher
level peer, e.g., P1, can periodically check whether its children peers (i.e., P2

and P3) are selfish by asking for certificates they have received (if any) from
their own children peers. If a peer cannot produce such a certificate, the higher
level peer can then remove such a potentially selfish peer from the tree. The
removal process is manifested as a termination of media data transmission.

Jun et al. [Jun et al., 2005] also explored a similar idea in their proposed
Trust-Aware Multicast (TAM) protocol. Targeted for detecting and deterring
uncooperative peers which can modify, fabricate, replay, block, and delay data,
the TAM protocol is based on a message structure that contains four fields:
sequence number, timeout period, data payload, and cryptographic signature.
The sequence number is used for detecting duplicated or missing data. The
timeout period is used for detecting delayed data. Thus, a selfish (or even
malicious) peer can be identified by its children peers in the multicast tree.
Different from the approach suggested by Ye and Makedon [Ye and Makedon,



102 Peer-to-Peer Computing

Outgoing bandwidth
400Kbps

Incoming bandwidth
80Kbps

C

Publisher

D EA B

Publisher

DA

CB

Incoming bandwidth
200Kbps

Outgoing
bandwidth limit

400Kbps

Incoming bandwidth
200Kbps

Outgoing bandwidth
400Kbps

E

Incoming bandwidth
200Kbps

Outgoing
bandwidth limit

400Kbps

Incoming bandwidth
200Kbps

FIGURE 5.14: A multicast streaming structure is better off for every peer
[vivek Shrivastava and Banerjee, 2005].



Incentives 103

(Root, 500, 0)

BSE

QR

Root
M-Quote (Root, 500, 0)

A

Request for QR

QR: (Root, 500, 0)

(Root, 250, 0)

BSE

QR

Root

Revised quote:
(Root, 250, 0)

A
M-Quote (A, 300, lat

A
)

(A, 300, lat
A
)

Incoming
bandwidth
500Kbps

Outgoing
link capacity

600Kbps

(Root, 250, 0)

BSE

QR

Root

B

Request for QR

QR: (Root, 250, 0),
(A, 300, lat

A
)

(A, 300, lat
A
)

A
Outgoing

link capacity
600Kbps

Incoming
bandwidth
500Kbps

Join

M-Quote: Market Quote of the tuple
               (peer id, bandwidth advertised, latency of data at the peer)
        QR: Quote Repository

FIGURE 5.15: An illustration of the strategic natural selection process in
connecting streaming sources and destinations (BSE is the bootstrap entity
providing service information) [vivek Shrivastava and Banerjee, 2005].



104 Peer-to-Peer Computing

P
1

P
3

P
2

P
5

P4P6

P7

P8

P1

P3 P7

P5

P4P6

P2

P8

Media stream

Streaming certificate

FIGURE 5.16: Detection and removal of a selfish peer from the streaming
multicast tree [Ye and Makedon, 2004].



Incentives 105

2004], the children peers are responsible for reporting such suspicious selfish
peers to the root (or the server) in the tree. Jun et al.’s scheme is also more
flexible in that even upon receiving such “negative reports,” the root may not
discard such suspected selfish peers immediately. Instead, the root keeps track
of a trust metric for each peer in the tree. A negative report only decreases
the trust value. Only when the trust value falls below some threshold, the
suspected selfish peer is discarded from the tree and the peers under its sub-
tree are relocated.

5.2.2.3 Coalition-Based Media Streaming

In P2P media streaming, each peer can choose its upstream peers (parents)
and downstream peers (children). In a recent study by Yeung and Kwok [Ye-
ung and Kwok, 2009], they consider peers as rational entities and model the
peer selection process as a strategic game.

They first focus on the case where there is only one parent, p, and a
set of children, c1, c2, · · · , cn. The objective is to study how p should select
its children such that the resultant parent-child relationships are stable and
resilient to peer dynamics. Specifically, Yeung and Kwok [Yeung and Kwok,
2009] formulate a cooperative game where the players are the parent and
its children. The objective is to form a stable coalition which creates the
highest aggregate value. Here, stability is defined as the probability that a
participant departs from the coalition and acts alone. The aggregate value is
to be distributed among the members. In other words, two inter-related issues
need to be tackled: (1) formation of a stable coalition; and (2) distribution of
the aggregate value. The elements of cooperative game and what constitutes
a stable coalition are defined as follows.

A cooperative game consists of a finite set of players, N , and a scalar-
valued function, V (·), which associates every subset G of N a real number,
V (G). For each coalition, G, the number V (G) represents the total payoff to
be divided among the members of G, i.e.,

V (G) =
∑

∀x∈G

v(x) (5.10)

where v(x) represents the value allocated to player x.
Here, V (G) is called the value of the coalition, G. Players can form other

coalitions to obtain different values. We say that a stable coalition is formed
when players have no incentive to deviate from joining the coalition. Specifi-
cally, a coalition, G, is stable if we cannot find a better coalition, G′, G′ ⊆ G,
with respect to V (·). This implies:

∑

x∈G

v(x) ≥ V (G′) ∀G′ ⊆ G (5.11)

In other words, if a coalition is unstable, it is possible for a subset of players
to deviate such that each deviating player can obtain a larger value than they



106 Peer-to-Peer Computing

do staying put. In game theory literature, the above definition of stability is
called the core of the cooperative game. In our context, it is undesirable for
peers to deviate after joining as that would disrupt the structure of the P2P
network and, in turn, adversely affect the streaming quality.

With the above definitions, a cooperative game, called the peer selection
game, can be devised to model the peer selection process. The players are a
parent p and a set of children, c1, c2, · · · , cn. The set of all players are denoted
as Ga, i.e.,

Ga = {p, c1, c2, · · · , cn} (5.12)

The players can freely form other coalitions, G, among themselves, where
G ⊆ Ga. In general, different coalitions lead to different values. The function
V (G) should satisfy the following conditions:

V (G) = 0 if p /∈ G (5.13)

V (G) ≤ V (G′) if G ⊆ G′ (5.14)

V (G1 ∪ ci) − V (G1) 6= V (G2 ∪ ci) − V (G2) (5.15)

Condition (5.13) dictates that the parent, p, is a necessary member in any
coalitions that generate non-zero values. In other words, p is the veto player
of the game. This is a reflection of the reality where downstream peers depend
on their parent for media packets. Without the participation of p, a coalition
does not bring any value to the members.

Condition (5.14) indicates that when comparing two coalitions, G and G′,
the coalition with more members always generates a value no smaller than
the other does. This property precisely models a practical scenario where a
parent having a larger number of children is more important because if such
a parent departs, a large number of other peers will be disconnected. Thus,
the system should attach a higher value to such a coalition.

Condition (5.15) means that, in general, the same peer, ci, brings different
marginal utilities to different coalitions. The discrepancy is attributed to the
heterogeneous nature of P2P media streaming. For instance, the presence of ci

would be more significant if the coalition contains only a few children. On the
other hand, ci does not create much value if it joins another coalition already
having many children.

We require the value function V (G) to satisfy all the three conditions
discussed above. However, the precise definitions depend on the specific char-
acteristics of the application. A specific value function is defined below.

In the peer selection game, the formation of a coalition G, would create an
aggregate value, represented by V (G) =

∑

∀x∈G v(x), where v(x) represents
the utility allocated to player x. It is assumed that each player would like
to maximize its share of utility, i.e., player x is interested in maximizing
v(x). This is reasonable because each peer x is more concerned with its own
performance in terms of v(x). On the other hand, V (G) is a measure of the
value of coalition G, in the P2P network.

The participating cost of peers should also be taken into consideration.



Incentives 107

Specifically, player x incurs some cost to be a member of a coalition. The
amount of player x’s coalitional effort is denoted as e(x). This can be inter-
preted as the amount of outgoing bandwidth and other resources consumed.
The utility of player x is then defined as the difference between the share of
value obtained from the coalition v(x), and the amount of effort contributed
to the coalition e(x). That is, utility is defined as:

u(x) = v(x) − e(x) (5.16)

Moreover, it is assumed that e(x) depends on the number of peers in the
coalition, i.e.,

e(x) =

{

(|G| − 1)e x = p
e x ∈ G \ {p}

(5.17)

where e is a non-negative constant.
It is clear that if player x does not join any coalition, its utility is zero, i.e.,

u(x) = 0 if x /∈ G. This implies that a rational player will only join a coalition
providing non-negative utility, u(x) ≥ 0 if x ∈ G. This is called the incentive
compatibility constraint:

u(x) ≥ 0 if x ∈ G (5.18)

Here, Ga is defined as the set of players and can be used to analyze the
peer selection game as Ga increases:
Case 1 Ga = {p}

This is the baseline case where the parent is the sole player. There is only
one possible coalition, G1 = {p}. The player obtains all the value created by
the coalition, which is given by:

V (G1) = v(p) (5.19)

Since p has no downstream peer, its effort is zero, i.e., e(p) = 0. The utility
of p is u(p) = v(p).
Case 2 Ga = {p, c1}

The set of players includes the parent and one potential child, i.e., P =
{p, c1}. If p accepts ci as its child, they form a coalition, G2 = {p, c1}. The
value created by the coalition is to be distributed between the two players,
i.e.,

V (G2) = v(p) + v(c1) (5.20)

The value V (G2) needs to be distributed judiciously in order to make G2

a stable coalition such that neither p nor c1 has an incentive to leave. This
requires the following conditions to be satisfied:

v(p) − e ≥ V (G1) (5.21)

v(c1) − e ≥ 0 (5.22)

Condition (5.21) suggests that p should receive a utility larger than the



108 Peer-to-Peer Computing

value created by acting alone. Condition (5.22) requires that the share of value
allocated to c1 should be at least the amount of its contributed effort.

In other words, the share of value allocated c1, denoted by v(c1), should
be:

e ≤ v(c1) ≤ V (G2) − V (G1) − e (5.23)

Case 3 Ga = {p, c1, c2}
The set of players now includes p and two potential children, i.e., P =

{p, c1, c2}. If the parent accepts both peers, they form a larger coalition, G3,
and create a value of V (G3). This is to be distributed among the three players:

V (G3) = v(p) + v(c1) + v(c2) (5.24)

It should be ensured that G3 is a stable coalition where the parent and the
two children have no incentive to leave. This requires the following conditions
to be satisfied:

v(p) − 2e ≥ V (G1) (5.25)

v(c1) − e ≥ 0 (5.26)

v(c2) − e ≥ 0 (5.27)

v(p) + v(c1) ≥ V ({p, c1}) (5.28)

v(p) + v(c2) ≥ V ({p, c2}) (5.29)

Condition (5.25) ensures that the parent would not drop the two chil-
dren. Conditions (5.26) and (5.27) lead to non-negative utilities for c1 and c2,
respectively. In other words, these two conditions are the incentive compati-
bility constraint in (5.18). The last two conditions, on the other hand, cause
dropping one of the two children an undesirable move. The conditions can be
simplified as follows:

v(c1) ≤ V (G3) − V ({p, c2}) (5.30)

v(c2) ≤ V (G3) − V ({p, c1}) (5.31)

v(c1) + v(c2) ≤ V (G3) − V (G1) − 2e (5.32)

v(c1), v(c2) ≥ e (5.33)

Case n Ga = {p, c1, · · · , cn−1}
This is the general scenario where the parent is encountered with (n − 1)

potential children. If they form a single coalition of size n, this creates a value
of V (Gn), which is to be distributed among the members, i.e.,

V (Gn) = v(p) +
∑

ci∈Gn

v(ci) (5.34)

For Gn to be stable, peers should have no incentive to leave the coalition



Incentives 109

individually or as a group. Similar to previous cases, the following conditions
can be obtained:

v(cr) ≤ V (Gn) − V (Gn \ {cr}) ∀cr (5.35)
∑

∀ci∈P

v(ci) ≤ V (Gn) − V (G1) − (n − 1)e (5.36)

v(cr) ≥ e ∀cr (5.37)

The term “V (Gn)−V (Gn \ {cr})” is called the marginal utility of cr. It is
the additional amount of value created by cr to the original coalition. Since
p’s effort is increased by e if cr is accepted as its child, the share of value
allocated to cr is:

v(cr) = V (Gn) − V (Gn \ {cr}) − e (5.38)

A Specific Value Function
A specific value function for the peer selection game is proposed [Yeung

and Kwok, 2009]:

V (G) =







log(1 +
∑

∀i6=p

1

bi
) p ∈ G

0 otherwise

(5.39)

Without loss of generality, the value function is zero when the parent is
the sole coalition member, i.e., V (G1) = 0. This is an increasing function in
coalition size. In other words, a new peer always brings additional value to an
existing coalition. Furthermore, a peer may create different values to different
coalitions. Therefore, the value function satisfies Conditions (5.13), (5.14), and
(5.15).

Besides the above characteristics, the value function can also differentiate
peers according to their outgoing bandwidth values. For the same coalition,
G, peer x would receive a larger share of the value than peer y if bx < by.
The reason for that arrangement would become evident with the following
numerical example.

Consider two coalitions: GX and GY where GX = {px, c1, c2} and GY =
{py, c3, c4, c5}. A peer c6 would like to join one of the two coalitions. We take
e = 0.01 and the outgoing bandwidths of the peers are listed as follows:

b1 b2 b3 b4 b5 b6

1 2 2 2 3 2

It is easy to see that V (GX) = 0.92 and V (GY ) = 0.85. If c6 joins the
coalition GX , we have V (G′

X) = 1.10 and its share of value is: V (G′
X) −

V (GX)− e = 0.17. On the other hand, c6 joining coalition GY would result in
V (G′

Y ) = 1.04 and its share of value is: V (G′
Y )−V (GY )−e = 0.18. Therefore,

c6 joins GY and v(c6) = 0.18. The peer’s share of value, i.e., v(x), in the
coalition is then used by the parent in determining the amount of bandwidth
allocation [Yeung and Kwok, 2009].



110 Peer-to-Peer Computing

5.3 Incentive Issues in Wireless P2P Systems

Wireless P2P systems [Hsieh and Sivakumar, 2004] are proliferating in
recent years. Thanks to the widely available hot-spot wireless environments,
users handheld devices can work with each other in an ad hoc and impromptu
manner. As will be evident in this section, many techniques designed for wired
environments are also applied in a wireless system in a similar manner. Nev-
ertheless, there is a unique challenge in a wireless environment, namely the
connectivity issue. Furthermore, there is also one more dimension of cost in-
curred in each wireless P2P user—the energy expenditure, which is of prime
concern to the user as wireless devices are largely powered by batteries.

5.3.1 Routing and Data Forwarding

In a wireless P2P system, the connectivity among peers is itself a boot-
strap sharing problem. Indeed, if wireless users are unwilling to cooperate
in performing routing and data forwarding, the wireless network can become
partitioned so that service providers cannot be reached by potential service
consumers. In view of this critical challenge, there has been a plethora of im-
portant research results related to incentive issues for ad hoc routing and data
forwarding. In the following, we briefly cover several interesting techniques
that are based on payment mechanisms, auction mechanisms, reputation sys-
tems, and game theoretic modeling.

Ileri et al. [Ileri et al., 2005] proposed a payment-based scheme for enticing
devices to cooperate in forwarding data for other devices in the network. The
payment is not in monetary terms but in terms of bits-per-Joule. Specifically,
the utility of a user i in the network is defined as:

ui(pi) =
Ti(pi)

pi
(5.40)

where ui is the utility, pi is the transmit power, and Ti is the throughput.
That is, the utility is equal to the average amount of data received per unit
energy expended, also in bits-per-Joule.

The payment system also involves an access point in the wireless network.
Specifically, the access point also tries to maximize its revenue by using two
parameters, µ and λ, judiciously. Here, λ is the unit price of service provided
by the access point to any device in the network. On the other hand, µ is the
unit reimbursement the access point provides to any device which has helped
forward other devices’ traffic. The access point’s revenue is therefore given by:

ρ =
∑

all users i

λTini
−

∑

all forwarders j

µT eff−for
ja (5.41)

where Tini
is the service provided by the access point to user i and T eff−for

ja



Incentives 111

is the service forwarded by a forwarder j to the access point. The situation is
as shown in Figure 5.17.

Access point maximizes revenue
over broadcasted     and  

User responses are different for
every     and  

Fraction (1 - l) of
user 1's data stream

User 2 maximizes its net utility
over p2 and k for every     and  

User 1 maximizes its net utility
over p1 and l for every     and  

Fraction l of user 1's data streamFraction (1 - k) of user 2's channel
is reserved for its own data

Fraction k of user 2's channel is
devoted to forwarding for user 1

FIGURE 5.17: Charging of network service and reimbursement of data for-
warding [Ileri et al., 2005].

Simulation results indicate that the proposed service reimbursement
scheme generally improves the network aggregate utility.

Salem et al. [Salem et al., 2006] also considered a payment-based scheme for
encouraging cooperation. However, their scheme involves real monetary costs
and a payment clearance infrastructure (e.g., a billing account for each user).
The charging and rewarding scheme is similar to that we described above—a
forwarder will get reimbursed and a normal user using network service will
get charged.

Marbach and Qiu [Marbach and Qiu, 2005] investigated a similar problem
based on individual device pricing. However, the main differences are that each
device is allowed to freely decide how much to charge for forwarding traffic
(in previous researches, usually the unit price is the same for all devices) and
there is no budget constraint on all the devices.

Wang and Li [Wang and Li, 2005] proposed an auction-based scheme sim-
ilar to the work by Gupta and Somani [Gupta and Somani, 2004] that we
described in Section 5.2.1.8. Specifically, each device in a wireless ad hoc net-
work declares its cost for forwarding data when some other device wants to
initiate a multihop transmission. After considering all possible paths that are
able to reach the destination device, the least cost path is chosen and the
devices on the path are paid for their forwarding. Again using a VCG-based
analysis, it is shown that the dominant action for each device is to report its
true cost of forwarding. Wang and Li also showed that no truthful mechanism



112 Peer-to-Peer Computing

can avoid collusion between two neighboring devices in the forwarding auction
game.

Buchegger and Le Boudec [Buchegger and Boudec, 2005] observed that
economic incentives such as payment approaches can entice selfish users to
help in routing and forwarding data but may not be able to handle other types
of misbehaviors such as packet dropping, modification, fabrication, or timing
problems. Thus, they proposed to use a reputation system in which every
user provides “opinion” data to the network based on observing the behaviors
of neighboring devices. After a user device has gathered such opinions (both
from itself or from others, i.e., second-hand information), it can carry out a
Bayesian estimation so as to classify the neighboring devices as malicious or
normal. A neighboring device that is identified as a malicious user is then
isolated from the network by rejecting its routing and forwarding requests.

Felegyhazi et al. [Felegyhazi et al., 2006] reported an interesting game
theoretic analysis of the forwarding problem in ad hoc networks. Instead of
using a payment-based strategy, the model employs a purely utility concept
in that a device’s utility is equal to its payoff when it acts as a data source
(i.e., the sender of a multihop traffic), minus the cost when it acts as an
intermediate device (i.e., a forwarder of other sender’s traffic) in any time-
slot. Here, both the payoff and cost are defined in terms of data throughput.
Thus, an important assumption in this model is that only the sender has a
positive payoff, while all the intermediate devices enjoy no payoff but just
incur forwarding costs. Specifically, the destination device (i.e., the receiver
of the multihop traffic) also enjoys no payoff. This may not conform to a
realistic situation. Simulations were done to estimate the probability that the
conditions for a cooperative equilibrium hold in randomly generated network
scenarios.

Table 5.3 gives a qualitative comparison of various data forwarding ap-
proaches in wireless ad hoc networks. In general, some form of payment is
required. However, as the devices in a wireless ad hoc network are not under a
centralized authority’s control, it is very difficult to enforce a secure payment
clearance mechanism. Auction schemes are interesting but are also difficult to
implement in practice because a highly trusted communication infrastructure
is required for exchanging bidding information. Yet this is a paradoxical re-
quirement as the communication among wireless peers is itself the ultimate
goal in data forwarding. Similarly, a reputation-based approach, while not dif-
ficult to implement in practice, could also lead to a paradoxical situation in
the sense that the reputation values may not be trustworthy.

5.3.2 Wireless Information Sharing Systems

Wolfson et al. [Wolfson et al., 2004] investigated an interesting opportunis-
tic wireless information exchange problem in which a moving vehicle transmits
the information it has collected to encountered vehicles, thereby obtaining
other information from those vehicles in exchange. The incentive mechanisms



Incentives 113

TABLE 5.3: A qualitative comparison of various wireless ad hoc data for-
warding approaches.

Proposed Incentive Implementation Security Major
Approach Scheme Difficulty Required Drawback

Ileri et al. [Ileri et al.,
2005]

Payment Low High Energy-Based
Currency

Salem et al. [Salem et al.,
2006]

Payment High High Real Money

Marbach and Qiu [Mar-
bach and Qiu, 2005]

Payment High High Unlimited
Budget

Wang and Li [Wang and
Li, 2005]

Auction High High Communication

Buchegger and Le
Boudec [Buchegger and
Boudec, 2005]

Reputation Low Low Trust

Felegyhazi et al. [Felegy-
hazi et al., 2006]

Utility Low Low Receiver’s

Payoff

suggested are based on virtual currency. Specifically, each mobile user carries
some virtual currency in the form of a protected counter. Two different mech-
anisms are considered: producer-paid and consumer-paid. In the former, the
producer of information pays while the consumer pays in the latter. The price
P of a piece of information item (e.g., availability information about a parking
lot) is given by:

P = E − t −
d

v
(5.42)

where E is the gross valuation of the information item, t is the time elapsed
since the information item is created, d is the distance to travel before the user
of the information can reach the relevant location (e.g., the parking space),
and v is the speed of the user. Simulation results under a simple situation
where there is only one consumer and two parking spaces indicate that the
proposed incentive mechanisms are effective.

Yeung and Kwok [Yeung and Kwok, 2006a] considered an interesting sce-
nario in wireless data access: a number of mobile clients are interested in a
set of data items kept at a common server. Each client independently sends
requests to inform the server of its desired data items and the server replies in
the broadcast channel. Yeung and Kwok investigated the energy consumption
characteristics in such a scenario.

Figure 5.18 depicts the system model for wireless data access. It consists
of a server and a set of clients, N . The clients are interested in a common
set of data items, D, which are kept at the server. To request a specific data
item, da, client i is required to inform the server by sending an uplink request,
represented by qi(da). The server then replies with the content of the requested
data item, da, in the common broadcast channel. This allows the data item to
be shared among different clients. As illustrated in Figure 5.18, both clients



114 Peer-to-Peer Computing

d
a

L+tt

d
c

d
b

time

q
i
(d

a
)

Downlink broadcast traffic (server) Query arrives; Send request (client)

q
j
(d

c
) q

i
(d

b
) q

k
(d

c
)

FIGURE 5.18: System model for wireless data access [Yeung and Kwok,
2006a].

j and k request the same data item, dc, in the second interval. However,
the server is required to broadcast the content of dc only once in the next
broadcast period, which reduces the bandwidth requirement.

To successfully complete a query, a client expends its energy in two dif-
ferent parts: (1) informing the server of the desired data item, EUL; and (2)
downloading the content of the data item from the common broadcast chan-
nel, EDL. The energy cost of sending a request to the server is represented by
Es. If a client sends a request for each query, then EUL would be the same
as Es. However, we show that clients need not send requests for each query
even without caching. This implies that EUL does not necessarily equal Es.
In general, the total energy required to complete a query, EQ, is given by:

EQ = EUL + EDL (5.43)

It is assumed that EDL is the same for all clients, but its value depends
on the size of a data item. In practice, Es is a function of various quantities,
including spatial separation, speed, instantaneous channel quality, bit-error
rate requirement, etc. For simplicity, however, Es is also assumed to be a
fixed quantity.

Based on this model of wireless data access, a novel utility function for
quantifying performance is defined as follows:

Ui =
Etotal

Ei
Q

(5.44)

where Etotal is the total energy available. The objective is then to reduce
the amount of energy consumed in the query process such that every client’s
utility (Equation (5.44)) is increased.

Based on the utility function, Yeung and Kwok formulate the wireless data
access scheme as a non-cooperative game—wireless data access (WDA) game.
Game theoretic analysis shows that while the proposed scheme does not rely
on client caching, clients do not always send requests to the server. Simulation



Incentives 115

results also suggest that the proposed scheme, compared with a simple always-
request one, increases the utility and lifetime of every client while reducing
the number of requests sent, at the cost of slightly larger average query delay.
They also compared the performance of the proposed scheme with two popular
schemes that employ client caching. The simulation results show that caching
only benefits clients with high query rates while resulting in both shorter
lifetime and smaller utility in other clients.

5.3.3 Network Access Sharing

Efstathiou and Polyzos [Efstathiou and Polyzos, 2003] studied the problem
of building a federation of wireless networks using a fully autonomous P2P
approach. Specifically, in their system model, there are multiple WLANs, each
of which is considered to be completely autonomous. When a user of one
WLAN enters the domain of a different nearby WLAN, the latter would also
admit the user based on a reciprocity idea. To achieve this, each WLAN is
equipped with a domain agent (DA) which is responsible for managing the
roaming of foreign users. Each DA maintains a counter of tokens, which is
increased when a foreign user is admitted to its WLAN, and is decreased when
a local user travels to a foreign WLAN. The DAs of different WLANs interact
with each other in a pure P2P fashion. Thus, the advantage of this approach
is that there is no need to set up prior pairwise administrative agreements
among different WLANs.

Based on a prototype built using Cisco WLANs, it is found that the pro-
posed P2P-based roaming scheme is efficient.

Kang and Mutka [Kang and Mutka, 2005] considered an interesting prob-
lem in which peers share the access cost of wireless multimedia contents.
Specifically, one peer in the network serves as a proxy which pays a network
server in order to download some multimedia contents in a wireless fashion.
Other peers in the system then share the contents without incurring any cost.
This is achieved by having the proxy broadcast the received multimedia data
to the peers within its transmission range. For other distant peers, rebroad-
casting by the edge peers is employed to serve them. This is illustrated in
Figure 5.19 (left side).

This idea of cost sharing in wireless data access is called CHUM (coop-
erating ad hoc networking to support messaging). A key component in such
sharing is the cost sharing mechanism. In the CHUM system, the peers take
turn, in a round-robin manner, to serve as the proxy. This is illustrated in
Figure 5.19 (right side). It is assumed that the peers have the incentive to fol-
low this round-robin rule based on the reciprocity concept. Simulation results
indicate that 80% of network access cost is saved even with just six peers in
the system.



116 Peer-to-Peer Computing

Internet

Content
provider

ISP

Chumcast
server

Active
server

A

B

C

D

E

F

G

Proxy

Internet

Content
provider

ISP

Chumcast

server

A

B

C

D

E

F

G

Proxy

Active

server

FIGURE 5.19: Illustration of network access cost sharing (left), and round-
robin scheduling of proxy (right) [Kang and Mutka, 2005].



Incentives 117

5.3.4 Wireless P2P Media Streaming

Yeung and Kwok [Yeung and Kwok, 2008] studied an interesting incentive
protocol for energy efficient wireless P2P media streaming. In a wireless me-
dia streaming application, users obtain media feeds from subscribed servers for
video entertainment or useful information access (e.g., video clips for impor-
tant stock market information). However, such convenience inevitably comes
with a price in that the energy consumption of the device is greatly increased
due to the continuous isochronous nature of media streaming and the high
volume of data involved (e.g., in video streaming). Thus, energy efficiency is
of a prime concern in supporting media streaming applications.

For this problem of providing energy efficient media streaming to mobile
users, an insight is that we can consider the availability of multiple wire-
less networking interfaces in devices nowadays. For instance, it is now quite
common for a commodity wireless gadget to have at least two wireless inter-
faces, e.g., a CDMA2000 cellular interface and an IEEE 802.11x wireless LAN
(WLAN) interface. Here, we call the former kind of interface the server inter-
face while the latter the client interface. A key observation is that the energy
consumption characteristics of the two interfaces are very different [Cisco,
2009,GTRAN, 2009]. Specifically, the peer interface consumes less energy to
deliver the same amount of traffic than the server interface does. Notice that
some higher end devices can even have more than one client interface, e.g.,
having both WLAN and Bluetooth.

Equipped with two heterogeneous networking interfaces, devices can form
a hybrid wireless network in which some devices are connected to wireless
servers (via cellular base-stations) using the server interfaces while connecting
to other devices using the client interfaces. Some devices may only connect to
other wireless peers but not connect to the servers. While this hybrid wireless
networking infrastructure is feasible and interesting, how it can help in sup-
porting energy efficient media streaming is still a largely unexplored research
issue.

5.3.4.1 System Model

c
1

Server

c
2

c
3

c
4

c
5

media
content

FIGURE 5.20: System model—a media server and a set of mobile clients.



118 Peer-to-Peer Computing

Let us consider a non-interactive media streaming application in a hybrid
wireless network, which consists of a server and a set of mobile clients, as
shown in Figure 5.20. In this scenario, the primary QoS requirement is to
provide clients with sufficient bandwidth in order to achieve uninterrupted
streaming. The effect of delay jitter could be largely compensated by having
enough playback buffers. Thus, we can focus on the amount of bandwidth
from the server to clients.

Each mobile client uses its server interface to access the server, while the
peer interface allows neighboring clients to communicate with one another.
The clients are interested in a piece of media content owned by the server.
We represent the rate of the media content as rkbps and its duration as ts.
Here, the server splits the media content into n stripes using a multiple de-
scription coding scheme. Each stripe is then delivered as a separate stream of
media packets. These n stripes are assumed to be independent and of equal
rate. This arrangement allows heterogeneous clients to adjust their streaming
quality by subscribing to a different number of stripes. The primary QoS re-
quirement is to maintain sufficient bandwidth in order to receive those media
packets from the subscribed stripes. Besides satisfying the bandwidth require-
ment, we focus on the energy cost of clients in obtaining the media packets.
Specifically, we treat the QoS requirement as a constraint for optimizing the
energy consumption in the clients.

Ignoring control overheads, the energy cost of receiving the complete media
content, i.e., all n stripes, through the server interface is (Table 5.6 summarizes
the list of symbols and their definitions):

ERX
s =

PRX
s

Rs
× r × t (5.45)

Correspondingly, the energy cost of receiving the complete media content
through the peer interface is:

ERX
p =

PRX
p

Rp
× r × t (5.46)

Tables 5.4 and 5.5 show the technical specifications of typical server and
peer interfaces, respectively. Using these numbers, we have: ERX

s = 103.13J
and ERX

p = 8.62J. This suggests that it is possible to utilize the peer interface
for energy efficient media streaming in a hybrid wireless network. In particular,
it is interesting to study how heterogeneous clients collaborate to stream the
media content from the server.

To quantify heterogeneity, we represent the type of client x as αx, which
is defined as:

αx =
amount of energy client x willing to consume

ERX
s (n)

(5.47)

Depending on client x’s preferences, αx may be any non-negative value.



Incentives 119

TABLE 5.4: Technical specifications of a typical server interface.

GTRAN DotSurfer 6210 [GTRAN, 2009]
(1xEV-DO Release 0)

Voltage 3.3V
Receive current 150mA
Receive power 495mW
Data rate 2.4Mbps

TABLE 5.5: Technical specifications of a typical peer interface.

Cisco AIR-CB21AG [Cisco, 2009]
(IEEE 802.11a/b/g)

Voltage 3.3V
Transmit current 530mA
Transmit power 1749mW
Receive current 282mA
Receive power 930.6mW
Data rate 54Mbps

For example, αx > 1 means that x is willing to consume more energy than the
cost of subscribing to all n stripes (ERX

s (n)), e.g., a mobile device equipped
with plentiful energy resources. On the other hand, αx ≤ 1 means that x is
more concerned with the energy cost than the streaming quality, e.g., a mobile
device with little residual energy. Specifically, the value of αx determines the
number of stripes client x would subscribe to. Since the n stripes are assumed
to be of equal rate, i.e., r/nkbps, the energy cost of streaming i stripes via
the server interface is:

ERX
s (i) =

i

n
×

PRX
s

Rs
× r × t (5.48)

This implies that client x would stream up to i stripes from the server if
αx ≥ α1(i), where α1(i) is given by:

α1(i) =
ERX

s (i)

ERX
s

=
i

n
(5.49)

The set of α1(i), i ∈ [0, n], are the threshold values when client x inde-
pendently streams from the server. Figure 5.21 shows the variation of the
number of subscribed stripes with the type of client for n = 10. For exam-
ple, if αx = 0.55, client x would subscribe to 5 stripes from the server. This
represents the performance of media streaming when each client acts inde-
pendently. However, neighboring clients could utilize their peer interfaces to
improve streaming performance without violating their energy consumption



120 Peer-to-Peer Computing

TABLE 5.6: Symbols.

Symbol Definition
r rate of the media content
t duration of the media content
n number of stripes
PRX

s receive power of the server interface
Rs data rate of the server interface (downlink)
PRX

p receive power of the peer interface
Rp data rate of the peer interface (symmetric)
ERX

s (i) energy cost of receiving i stripes through the server inter-
face (i ≤ n)

ERX
p (i) energy cost of receiving i stripes through the peer interface

(i ≤ n)
ETX

p (i) energy cost of transmitting i stripes through the peer in-
terface (i ≤ n)

αx client x’s type
α1(i) threshold value for a client to receive i stripes from the

server
αM (i) threshold value for a master to receive i stripes, i ≤ n
αS(i) threshold value for a slave to receive i stripes, i ≤ n
α′

r(i) threshold value for a coordinator with (r − 1) helpers to
receive i stripes

αr(i) threshold value for a helper to receive i stripes

constraints. Since clients are autonomous entities, we should also consider their
incentives for collaboration. Specifically, each client is modeled as a selfish but
rational entity whose degree of selfishness is characterized by its type. Here,
client x would only collaborate with other clients provided that the number of
stripes x obtained from collaboration is no smaller than s1, where s1 is given
by:

s1 = argmax∀i≤n{α ≤ α1(i)} (5.50)

This means that each client is only interested in improving its own stream-
ing performance. We note that the type of a client quantifies its selfishness.
For example, when αx = 0.8, client x would collaborate with other clients for
media streaming if it can receive more stripes from collaboration; otherwise,
x would rather stream the media content from the server independently. It is
then interesting to study the feasibility of collaboration among these selfish
clients.

As in all practical P2P data sharing systems (e.g., BitTorrent), there are
always some enthusiastic participants that would be willing to spend more re-
sources in return of a larger participating population. Such enthusiastic clients
can be modeled as masters which have a larger value of α, as detailed below.



Incentives 121

FIGURE 5.21: Number of subscribed stripes versus the type of a client
(n = 10).

5.3.4.2 Two Neighboring Clients

x y
i stripes

i stripes
(from server)

(a)

x y

i stripes

j stripes

sepirts jsepirts i
)revres morf()revres morf(

(b)

FIGURE 5.22: A scenario with two neighboring clients. (a) Master-slave.
(b) Peer-to-peer.

First, let us consider a simple scenario with two neighboring clients: {x, y}.
There are two cases: (1) x and y form a master-slave relationship, as shown
in Figure 5.22(a); (2) x and y form a peer-to-peer relationship, as shown in
Figure 5.22(b).

Without loss of generality, let us assume that x is the master while y is
the slave. As depicted in Figure 5.22(a), x subscribes to i stripes from the
server and sends them to y through the peer interface. In this case, x is an
enthusiastic client, serving y at the expense of its own energy resources. This
requires that the type of master x should satisfy: αx ≥ αM (i), where αM (i)
is given by:

αM (i) =
ERX

s (i) + ETX
p (i)

ERX
s

(5.51)

On the other hand, client y may decide to “free-ride” because its residual
energy is low. This requires that the type of slave y should satisfy: αy ≥ αS(i),



122 Peer-to-Peer Computing

where αS(i) is given by:

αS(i) =
ERX

p (i)

ERX
s

(5.52)

From Equations (5.51) and (5.52), the threshold values for master and
slave as α varies between 0 and 1.2, are shown in Figure 5.23. When two
neighboring clients whose types satisfy the two thresholds collaborate, they
form a master-slave relationship for media streaming. We can see that the type
of a slave is much smaller than that of a master. This is because the slave does
not contribute but relies mostly on the master for all media packets. On the
other hand, the energy cost of being a master is higher than that of acting
alone, which leads to the increase in the threshold values. Let us illustrate the
master-slave relationship with the following numerical example.

FIGURE 5.23: Master-slave: number of subscribed stripes versus the type
of a client (n = 10).

Consider two neighboring clients: x and y whose types are 1.2 and 0.25,
respectively. If each of them independently streams the media from the server,
x will subscribe to 10 stripes while y will subscribe to 2 stripes. However, they
may collaborate and form a master-slave relationship for media streaming, as
illustrated in Figure 5.22(a). Specifically, x becomes the master and y is the
slave. Equation (5.51) suggests that x subscribes to 10 stripes and also sends
them to y, which receives the 10 stripes via its peer interface.

The master-slave collaboration arrangement allows the slave to take advan-
tage of the generosity of the master, which provides the media content through
its peer interface. The performance of the slave is improved at the expense of
the master’s energy resources. However, it would be more interesting if both
clients contribute their resources to form a peer-to-peer relationship, as de-
picted in Figure 5.22(b). Here, we can assume that client x and y subscribe to
i and j stripes from the server, respectively. They periodically exchange their
stripes with each other using the peer interfaces. Effectively, each client ob-
tains (i+ j) stripes of the media content, where (i+ j) ≤ n. This peer-to-peer
collaboration arrangement improves the performance of both clients. However,
the values of i and j depend on the type of the corresponding clients. If client
x subscribes to i stripes from the server, we require: αx ≥ α2(i), where α2(i)



Incentives 123

is given by:

α2(i) =
ERX

s (i) + ETX
p (i) + ERX

p (j)

ERX
s

(5.53)

Similarly, we require: αy ≥ α2(j), where α2(j) is given by:

α2(j) =
ERX

s (j) + ETX
p (j) + ERX

p (i)

ERX
s

(5.54)

j = 1

j = 3

j = 5

FIGURE 5.24: Peer-to-peer: number of subscribed stripes versus the type
of a client (n = 10).

Figure 5.24 shows the variation of the number of subscribed stripes with
the type of client x, αx, for j = 1, 3, 5. This means that if αx = 0.5, x will
obtain 7 stripes when j = 3, i.e., i = 4. Let us illustrate the peer-to-peer
relationship with the following numerical example.

Consider two neighboring clients: x and y whose types are 0.75 and 0.55,
respectively. If they independently stream the media from the server, x will
subscribe to 7 stripes while y will subscribe to 5 stripes. However, they may
collaborate and form a peer-to-peer relationship for media streaming, as shown
in Figure 5.22(b). With reference to Equations (5.53) and (5.54), x subscribes
to 6 stripes from the server and y subscribes to another 4 stripes from the
server. Besides that, they periodically exchange media packets via their peer
interfaces. This effectively allows them to receive the complete 10 stripes, i.e.,
the complete media content.

With the peer-to-peer relationship, both clients increase the number of
received stripes without violating their types. Thus, the collaboration between
two neighboring clients would improve the performance of media streaming
under the same energy consumption constraints.

5.3.4.3 Three Neighboring Clients

Next, let us consider the scenario with three neighboring clients: {x, y, z},
where y and z are the neighbors of x but they may not be able to communicate
with each other directly. Similar to the two-client scenario, the collaboration
among the three clients can take on two different forms: master-slave and
peer-to-peer.



124 Peer-to-Peer Computing

y z

x

i stripes
(from server)

i stripesi st
ripe

s

(a)

y z

x

i stripes
(from server)

k stripes
(from server)

(i+
j+k

)

stri
pes

j
stri

pes

(i+j+k)
stripes

kstripes

j stripes
(from server)

(b)

FIGURE 5.25: The scenario with three neighboring clients. (a) Master-slave.
(b) Peer-to-peer.

Without loss of generality, let us assume that x is the master while y and z
are the slaves. Specifically, x subscribes to i stripes from the server and sends
them to y and z through the peer interface, as depicted in Figure 5.25(a).
Because the master can broadcast the media content to its slaves, the energy
cost of being a master does not change with the number of slaves. It follows
that the threshold values for both master and slave remain the same, i.e.,
αx ≥ αM (i) and αy, αz ≥ αS(i).

For the peer-to-peer relationship, all three clients contribute their resources
for media streaming, where x, y, z independently subscribe to i, j, and k
stripes from the server, respectively, as shown in Figure 5.25(b). Because y
and z are generally out of their respective communication ranges, we let x
act as the coordinator. Specifically, y and z periodically send j and k stripes
to x, respectively. Together with the media content received from the server,
x broadcasts (i + j + k) stripes to y and z. This collaboration arrangement
makes each of the three clients effectively subscribe to (i+j+k) stripes, where
(i + j + k) ≤ n. Obviously, the type of x should be higher than the others.
Thus, the following condition is necessary: αx ≥ α′

3(i), where α′
3(i) is given

by:

α′
3(i) =

ERX
s (i) + ETX

p (i + j + k) + ERX
p (j + k)

ERX
s

(5.55)

On the other hand, y and z have similar type requirements, which depend
on the number of subscribed stripes. In particular, the type of y should satisfy:
αy ≥ α3(j), where α3(j) is given by:

α3(j) =
ERX

s (j) + ETX
p (j) + ERX

p (i + k)

ERX
s

(5.56)

Similarly, the type of z should satisfy: αz ≥ α3(k), where α3(k) is obtained



Incentives 125

by interchanging the roles of j and k in Equation (5.56). Let us illustrate the
peer-to-peer relationship with the following numerical example.

Consider three neighboring clients: x, y, and z whose types are 0.65, 0.45,
and 0.45, respectively. If they independently stream the media from the server,
x will subscribe to 6 stripes while both y and z will subscribe to 4 stripes.
However, they may collaborate and form a peer-to-peer relationship for media
streaming, as illustrated in Figure 5.25(b). For y and z, each of them subscribes
to 3 stripes from the server and periodically sends them to the coordinator,
x. On the other hand, x subscribes to another 4 stripes from the server and
periodically broadcasts all media packets to y and z. Effectively, this peer-to-
peer relationship allows the three clients to receive 10 stripes, i.e., the complete
media content.

5.3.4.4 The General Scenario

Now, let us generalize the analysis to the scenario with r neighboring
clients. Because the master-slave relationship does not change with the number
of neighboring clients, we focus our attention on the peer-to-peer relationship.
Without loss of generality, let us assume that x is the coordinator, which is
connected to a set of (r − 1) neighboring helpers, denoted by Rx. In general,
these (r − 1) helpers may not be able to communicate with one another. We
can denote the number of subscribed stripes by y as sy, where y ∈ Rx. On the
other hand, x subscribes to sx stripes from the server, where

∑

s ≤ n. We
can obtain the threshold value for client x’s type, i.e., α′

r(sx), which is given
by:

α′
r(sx) =

ERX
s (sx) + ETX

p (
∑

s) + ERX
p (

∑

s − sx)

ERX
s

(5.57)

Similarly, the threshold value for helper y’s type is: αr(sy), which is given
by:

αr(sy) =
ERX

s (sy) + ETX
p (sy) + ERX

p (
∑

s − sy)

ERX
s

(5.58)

This suggests that a number of neighboring clients satisfying the above
thresholds may collaborate to improve the performance of media streaming
by utilizing their peer interfaces. This collaboration arrangement allows clients
to share the higher energy cost involved in receiving media packets from the
server directly. Although the coordinator requires a larger threshold, its energy
cost may not be the highest because it may only subscribe to few stripes from
the server, i.e., sx is small or even zero. Because the number of subscribed
stripes depends on the client types, heterogeneous clients may form either
the master-slave relationship or the peer-to-peer relationship. Motivated by
the above analysis, Yeung and Kwok [Yeung and Kwok, 2008] proposed two
protocols to guide the establishment of the two relationships.



126 Peer-to-Peer Computing

5.4 Discussion

We have seen that in both wired and wireless systems, the major techniques
for providing incentives are: payment (virtual or real), exchange (barter), reci-
procity (pairwise), reputation (global), and game theoretic utility. Payment-
based systems work by exploiting a user’s incentive in increasing or even max-
imizing its “revenue.” However, such an incentive may not be appropriate in
some practical situations. For instance, a cellular phone user may not be in-
terested in his or her income (from such sharing) but care more about the
quality of service derived from the device. Exchange-based systems fit very
well in file sharing applications because users have strong incentives for trad-
ing interested files (e.g., music files). For other applications such as forwarding
of data (e.g., in wireless ad hoc networks), it is debatable as to whether in
practice a user would be interested in exchanging data forwarding capabilities.
Reciprocity (in a pairwise manner) is similar in spirit as an exchange-based
mechanism. The major difference is that exchange is usually memoryless in
that every exchange transaction is treated as a rendezvous event, while a
general reciprocity is achieved when devices help each other during different
points in time. Thus, such a difference leads to the requirement that users
have to keep memory about the prior transactions so that users can “pay
back” each other. Due to this history-based feature, reciprocity mechanism
suffers from one drawback—a user may be out of the system when he/she
needs to pay back. Such a possible “future loss” may deter a user from gen-
uinely contributing to the community for the fear of not getting deserved pay
back. Reputation-based systems can be seen as a generalized form of reci-
procity. Specifically, while reciprocity is about a particular user pair, a repu-
tation value is a global assessment perceived by all users in the sense that the
reputation value is computed by using observations made by many different
users. By nature, similar to reciprocity mechanism, reputation systems require
substantial memory, centralized or distributed, for recording the reputation
values. Thus, it seems that such a system is more suitable for situations where
there is a persistent entity, which is logically external to the P2P system, for
keeping track of the reputation values. For example, such an entity may be a
centralized auctioneer in an electronic auction community, or the base station
(access point) in a wireless network. Game theoretic incentive mechanisms are
convincing in the sense that the utility function used can usually cover a mul-
titude of important metrics. But the problem is that it is sometimes difficult
to achieve an efficient distributed implementation of the resultant protocols.

Perhaps except in an exchange-based system which involves “stateless”
interactions, all other incentive mechanisms could suffer from tampering or
fabrication of the “incentive parameter” used: the money (virtual or real) in a
payment-based system, the reciprocity metric, and the reputation value. Thus,
additional mechanisms, usually based on cryptographic techniques, are needed



Incentives 127

to guard against such potential malicious attacks to the incentive mechanisms.
In particular, whitewashing is widely considered as a very low cost technique
for a selfish or malicious user to work around the incentive scheme.

Obviously, there is plenty of room for future research about incentive mech-
anisms in P2P sharing environments. Most notably, revenue maximizing [Ye-
ung and Kwok, 2006b] in a hybrid P2P system (e.g., the so-called converged
wireless architecture where an infrastructure-based cellular network is tightly
coupled with P2P WLANs) is of a high practical interest because there are
more and more cellular subscribers trying to share their resources without the
intervention of the cellular service provider. In a data sharing environment,
server peer selection [Leung and Kwok, 2005a] is another important direction
because we believe that users care more about the quality of service achieved
than about the revenue or cost they incur in participation. In economics terms,
people, especially wired or wireless game players, are quite inelastic about the
costs. Nevertheless, energy conservation [Leung and Kwok, 2005c,Leung and
Kwok, 2005b] is still of a prime concern in any wireless P2P sharing network
because energy depletion cannot be compensated in any way by increased
revenue generated in a payment-based sharing system. Thus, perhaps in a
game theoretic setting, we should incorporate energy expenditure in the utility
function. Finally, topology control [Leung and Kwok, 2005d] in a wired (over-
lay) network or wireless (ad hoc) network is also important in the sense that
sharing is usually interest based, meaning that users naturally form clusters
with similar interests, and as such, related users would be more cooperative
in following the incentive protocols. Consequently, building an interest-based
sharing topology could be helpful in enhancing the effectiveness of sharing.

5.5 Case Study: PPLive

As in many contemporary practical P2P applications, apparently PPLive
does not incorporate any systematic incentive mechanism to promote peer
contributions that can possibly lead to an optimized overall performance.
Specifically, based on performance studies reported recently [Piatek et al.,
2010,Horvath et al., 2008,Vu et al., 2010], it is observed that even a tit-for-
tat-like mechanism as that used in BitTorrent clients is not implemented in
PPLive. The only premise that such a lack-of-incentive approach can be relied
upon is the proprietary nature of the PPLive client programs. Indeed, it is not
an exaggeration to say that PPLive is a centralized software system from an
implementation point of view because users currently have no control over the
client programs’ behaviors. Nevertheless, such a situation is bound to change
in the near future. More importantly, it is highly probable that system per-
formance can be much enhanced if proper incentive mechanism is in place, as
evident by the fact that peers switch channels very often and participation in
multiple overlays is far from coordinated.



128 Peer-to-Peer Computing

5.6 Summary

In this chapter, we have presented a detailed survey of incentive tech-
niques for promoting sharing (discrete or continuous data) in a peer-to-peer
system. We have considered well-known mechanisms that are proposed and
have been deployed on the Internet environment. The techniques used can be
classified into: payment based, exchange based, reciprocity, reputation, and
game theoretic. These techniques are also applicable in general to a wireless
environment. However, a wireless P2P system, while still in its infancy, has a
unique challenge—the connectivity among devices is by itself a crucial “shar-
ing” problem (sharing of energy and bandwidth). Much more work needs to
be done in related problems such as revenue maximizing (or pricing) in a hy-
brid wireless P2P system, intelligent peer selection in a data sharing network,
energy aware incentive mechanisms, and interest-based topology control. Fur-
thermore, in systems that require payments or some form of critical informa-
tion items (e.g., reputation values), the security aspect needs to be properly
addressed.

Finally, we can see that the amounts of work done in the areas of media
streaming and wireless P2P systems are much smaller than that in the area
of file sharing. This indicates that these two areas are wide open and are a
fertile ground of further research.

5.7 Review Questions

1. What are the different categories of incentive schemes?

2. What are the drawbacks of a payment-based system?

3. What are the main features of BitTorrent’s incentive scheme?

4. What are the special incentive requirements for a media streaming sys-
tem?

5. What are the difficulties involved in enforcing cooperation in a wireless
P2P system?

6. What are the adverse effects from the lack of an effective incentive
scheme?



Chapter 6

Trust

6.1 Introduction

By nature of a P2P system, trust is a fundamental issue because each peer
interacts with another peer which does not have any well-known authority
(as in a Web server) and worse still, may “disappear” afterward. Indeed, even
for a fully cooperative peer (possibly due to the existence of an incentive
system), it is necessary for the peer to determine whether its counterpart in
a P2P transaction (e.g., a file downloading operation) is trustworthy or not.
For instance, in simple terms, an untrustworthy peer might be one which
deliberately injects wrong file data into the network. Consequently, a “good”
peer might download some malware from an untrustworthy peer.

There are at least three important issues [Li and Singhal, 2007,Mondal
and Kitsuregawa, 2006, Suryanarayana et al., 2005] in the design of a trust
management system for P2P networks.

1. We need to quantify “trust” so that each peer can compute the trust
values of other peers.

2. We need to specify where the trust values should be stored and main-
tained. Should we require every peer to store the trust values of every
other peer? What about consistency of trust values?

3. We need to come up with a communication protocol for exchanging trust
values among peers. More importantly, a proper aggregation mechanism
must be designed so that each peer can improve the accuracy of its local
trust values of other peers by incorporating the trust values sent from
remote peers.

In this section, we survey several recently proposed trust management
schemes that provide practical answers to the above questions.

6.1.1 Trust Modeling

Azzedin and Maheswaran [Azzedin and Maheswaran, 2003,Azzedin and
Maheswaran, 2004] suggested a practical trust computation and management

129



130 Peer-to-Peer Computing

system that is suitable for a P2P computing environment. Specifically, they
defined a practical trust model suitable for a P2P computing environment.

Domain (D)
Domain (D)

Trust Agent
(TA)

Trust Agent
(TA)

Trust Agent
(TA)

Domain (D)

Source
Domain

(SD)

Resource
Domain

(RD)

Client
Domain

(RD)

Trust Agent
(TA)

Target
Domain

(TD)

Resource
Domain

(RD)

Client
Domain

(RD)

Trust Agent
(TA)

Direct
Relationship

Set of Recommenders

Recommendation

FIGURE 6.1: Trust model for a generic P2P computing system [Azzedin
and Maheswaran, 2003].

Figure 6.1 depicts the trust model for a P2P system. The model is parti-
tioned into domains (denoted as D’s). There are two virtual domains associ-
ated with each D: (1) a resource domain (RD) to signify the resources within
the D; (2) a client domain (CD) to signify the clients within the D. Trust
agents (TAs) are designated in each D. Each TA has the following functions:

• update the D’s trust tables;

• allow entities to join D’s and inherit their trust attributes; and

• apply a decay function to reflect the decay of trust between D’s.

Each D maintains two data structures: DTT and RTT, which are updated by
the TA. The DTT is updated using the trust values observed based on the
direct transactions with other D’s. The RTT is updated by monitoring the
accuracy of recommendations given about target D’s.

To illustrate the trust modeling, suppose that an RD in a source domain
(SD) is about to establish a trust relationship with a CD associated with a
target domain (TD). The SD gathers information to build its direct relations
by obtaining its direct relationship TL to TD from its DTT which is internal
to the SD. The SD can obtain the reputation value of TD by asking its R.
Figure 6.2 shows a recommendation network that enables the establishment
of a trust relationship. Each member z ∈ R provides recommendations based
on its DTT. If TD is unknown to recommender z, then z will ask its R. To



Trust 131

Source
Domain

(SD)

Target
Domain

(TD)

Trust
Relationship

SD's DTT
Direct

Relationship

Domain (D) Set of Recommenders... Domain (D)

Domain (D) Set of Recommenders... Domain (D)

Recommendation requested

Recommendation given based on direction relationship

Recommendation given based on recommendations received

FIGURE 6.2: The trust recommendation mechanism [Azzedin and Mah-
eswaran, 2003].

set up the trust relationship with TD, SD uses two sources of information: (a)
the direct trust relationship with TD obtained from SD’s DTT, and (b) the
reputation trust relationship of TD obtained from SD’s R. These two sources
of information need to be evaluated and updated if necessary. To update the
DTT, a running average of DTT can be kept.

Simulation results indicated that the proposed trust model was not adap-
tive to inconsistent DTT. Furthermore, if the trust model relies entirely on
the direct trust relationship, then it takes a long time to identify the bad
domains. However, if the trust model uses both direct relationships and rep-
utation values, identification of bad domains can be more efficient.



132 Peer-to-Peer Computing

6.2 EigenTrust

Kamvar et al. [Kamvar et al., 2003] proposed the widely cited EigenTrust
system. In EigenTrust, each peer i keeps track of the number of satisfactory
transactions it has had with peer j, denoted by sat(i, j) and the number of
unsatisfactory transactions it has had with peer j, denoted by unsat(i, j).
With these parameters, sij is defined as:

sij = sat(i, j) − unsat(i, j) (6.1)

Kamvar et al. pioneered to point out an insight that the challenge for
reputation systems is how to aggregate the local trust values sij without a
centralized storage and management facility. Accordingly, EigenTrust is based
on the notion of transitive trust: A peer i will have a high opinion of those
peers who have supplied authentic files to it previously. More importantly,
peer i is likely to trust the opinions of such peers. Such transitivity of trust is
based on the premises that peers who are honest about the files they provide
are also likely to be honest in reporting their local trust values.

In quantitative terms, the global reputation of each peer i is given by the
local trust values assigned to peer i by other peers, weighted by the global
reputations of the assigning peers. Specifically, in EigenTrust, the normalized
local trust value, cij , is defined as:

cij =
max(sij , 0)

∑

j max(sij , 0)
(6.2)

However, there are several potential drawbacks in the local trust compu-
tation. Firstly, the normalized trust values do not distinguish between a peer
with whom peer i did not interact and a peer with whom peer i has had poor
experience. Secondly, these cij values are relative, and there is no absolute
interpretation. Specifically, if cij = cik, we know that peer j has the same
reputation as peer k in the opinion of peer i. However, there is no way to tell
if both of them are very reputable, or if both of them are just mediocre.

Thus, aggregation of local trust values is necessary. To achieve this, peer
opinions are also factored in the weighted evaluation:

tik =
∑

j

cijcjk (6.3)

where tik represents the trust that peer i places in peer k based on asking
the trusted peers. Let us denote C as the matrix [cij ] and ~ti as the vector of
values tik. Thus, the aggregation is given by:

~ti = CT ~ci (6.4)

If a peer i carries out this aggregation process for n times, then we have



Trust 133

~ti = (CT )n~ci and it can be shown that [Kamvar et al., 2003] ~ti will converge
to the same vector for all i. Specifically, ~ti will converge to the left principal
eigenvector of C.

Kamvar et al. suggested a probabilistic interpretation of EigenTrust: if an
agent searches for reputable peers, it can crawl to peer j with probability cij .
After crawling for a while in this manner, the agent is more likely to be at
reputable peers than unreputable peers.

In a practical P2P system, there are always a set of enthusiastic peers (i.e.,
the peers that initiate the system) that warrant unconditional a priori trust.
To incorporate this feature in the EigenTrust model, Kamvar et al. modeled
such a set P of pre-trusted peers by a vector ~pi, where each element pik = 1/|P |
if k ∈ P and pik = 0 otherwise. Thus, each peer i can use this vector to

bootstrap the initial trust aggregation: ~ti
(0)

= CT ~pi and ~ti
(k+1)

= CT ~ti
(k)

for
all k ≥ 0.

To combat collusion where a set of malicious peers give each other high
reputation values, Kamvar et al. suggested a weighted approach:

~t(k+1) = (1 − a)CT~t(k) + a~p (6.5)

where a is some constant less than 1. Kamvar et al. offered a probabilistic
justification for this approach: when a peer is crawling the network, it is less
likely to get stuck crawling a malicious member of a collusion because there is
a non-zero probability that it ends up at a pre-trusted peer. Another merit of
this weighted approach is that the matrix C becomes irreducible and aperiodic,
thereby forcing the computation to converge.

Simulation results indicated that using EigenTrust to guide files download-
ing in a Gnutella-like network can reduce the number of bogus files downloaded
under a wide variety of threat scenarios.

However, as shown by Abrams et al. [Abrams et al., 2005], the EigenTrust
algorithm can also potentially facilitate a selfish peer to lie about its recom-
mendation to gain a higher trust value. Specifically, to maximize its trust, a
peer must always recommend a peer that recommended it. Consider the down-
load graph of Figure 6.3(a), and assume a uniform distribution for pre-trusted
peers over all n peers: if the middle peer reports a download from the right

peer, it will have trust (2−ǫ)ǫ
n . If, on the other hand, it reports a download

from the left peer, it will only have a trust value of 1/n.
Abrams et al. [Abrams et al., 2005] suggested a modified EigenTrust algo-

rithm which works by first creating a query topology and then making each
peer’s trust independent of his/her reporting of downloads. Specifically, the
EigenTrust algorithm is modified as follows:

Initialization At the initialization of the modified algorithm, peers are
partitioned into groups evenly (depicted by different colors), where
C = {c1, c2, . . . , cm} is the set of partitions. Each color has either ⌊ n

m⌋
or ⌈ n

m⌉ peers. The colors are arranged into a directed cycle chosen uni-
formly at random. Then, ∀c ∈ C, let pred(c) be the color which is the



134 Peer-to-Peer Computing

(a) possible cheating in EigenTrust

c succ(c)

Uniform Links

(b) a partition approach

FIGURE 6.3: Drawback of EigenTrust and a modified situation [Abrams
et al., 2005].

predecessor of c in the cycle and succ(c) the successor of c. The distri-
bution p over pre-trusted peers is restricted in such a way to assign an
equal amount of pre-trusted weight to each color.

Run Transactions Each peer i in every color c is allowed to query and
download only from peers in succ(c). Thus, for every query q, the set of
servers contains only peers in succ(c).

Compute Trust Values In order to compute the trust score for nodes of
a given color c, the stationary distribution of a modified Markov chain
is determined. The outgoing links from color c are set to be uniform
over succ(c), and then the trust values of the nodes in c in this modified
Markov chain are computed as shown in Figure 6.3(b).

Simulation results indicated that the improved EigenTrust algorithm per-
formed almost as well as the original EigenTrust but demonstrated better load
balancing properties.



Trust 135

6.3 PeerTrust

Xiong and Liu [Xiong and Liu, 2004] proposed the PeerTrust mechanism.
In PeerTrust, similar to prior approaches such as EigenTrust, a peer’s trust-
worthiness is defined by an evaluation of the peer it receives in providing
service to other peers in the past. Xiong and Liu identify five important fac-
tors for such evaluation:

1. the feedback a peer obtains from other peers;

2. the feedback scope, such as the total number of transactions that a peer
has with other peers;

3. the credibility factor for the feedback source;

4. the transaction context factor for discriminating mission-critical trans-
actions from less or noncritical ones; and

5. the community context factor for addressing community-related charac-
teristics and vulnerabilities.

Xiong and Liu’s approach is based on the notation as shown in Table 6.1.

TABLE 6.1: Notation used in Xiong and Liu’s PeerTrust system.

Symbol Definition
I(u, v) total number of transactions performed by peer u with v
I(u) total number of transactions performed by peer u with all

other peers
p(u, i) other participating peer in peer u’s ith transaction
S(u, i) normalized amount of satisfaction peer u receives from p(u, i)

in its ith transaction
Cr(v) credibility of the feedback submitted by v
TF (u, i) adaptive transaction context factor for peer u’s ith transaction
CF (u) adaptive community context factor for peer u

Note: From Xiong and Liu, 2004.

The trust value of peer u denoted by T (u) is then defined as:

T (u) = α

I(u)
∑

i=1

S(u, i)Cr(p(u, i))TF (u, i) + βCF (u) (6.6)

where α and β denote the normalized weight factors for the collective evalua-
tion and the community context factor. The first part of the trust computation
equation is a weighted average of amount of satisfaction a peer receives for each



136 Peer-to-Peer Computing

transaction. The second part scales the first part by an increase or decrease
of the trust value based on community-specific characteristics and situations.

For the first part, there are two variations in defining the credibility mea-
sure. The first one is to use a function of the trust value of a peer as its credibil-
ity factor. Thus, feedback from trustworthy peers is considered more credible
and, consequently, weighted more than that from untrustworthy peers. This
definition of credibility measure is based on two assumptions: (1) untrustwor-
thy peers are more likely to submit false or misleading feedback in order to
cover up their own malicious behavior; (2) trustworthy peers are more likely
to be honest on the feedback they provide. Accordingly, considering only the
first component, the trust metric is now given by:

TTV M (u) =

I(u)
∑

i=1

S(u, i)
T (p(u, i))

∑I(u)
j=1 T (p(u, j))

(6.7)

The second possible credibility measure is for a peer w to use a personal-
ized similarity measure to rate the credibility of another peer v through w’s
prior interactions experience. Specifically, peer w uses a personalized similar-
ity between itself and another peer v to weight the feedback by v on any other
peers. Let IS(v) denote the set of peers that have interacted with peer v.
Thus, the common set of peers that have interacted with both peer v and w,
denoted by IJS(v, w), is given by IS(v) ∩ IS(w).

To measure the feedback credibility of peer v, peer w computes the feed-
back similarity between w and v over the common set IJS(v, w) of peers that
they have interacted with in the past. Here, the feedback by v and the feedback
by w over IJS(v, w) are modeled as two vectors. As a result, the credibility
can be defined as the similarity between the two feedback vectors. The root-
mean-square or standard deviation (dissimilarity) of the two feedback vectors
can then be used to compute the feedback similarity. Accordingly, the trust
metric (considering only the first component) is given by:

TPSM (u, w) =

I(u)
∑

i=1

S(u, i)
Sim(p(u, i), w)

∑I(u)
j=1 Sim(p(u, j), w)

(6.8)

where:

Sim(v, w) = 1 −

√

√

√

√

√

∑

x∈IJS(v,w)

(

PI(x,v)
i=1 S(x,i)

I(x,v) −
PI(x,w)

i=1 S(x,i)

I(x,w)

)2

|IJS(v, w)|
(6.9)

Figure 6.4(a) gives a sketch of the system architecture of PeerTrust. First
of all, we can see that there is no central database, implying that trust data
that are needed to compute the trust measure for peers are stored across
the network in a fully distributed manner. The trust manager performs two
main functions. Firstly, it submits feedback to the network through the data



Trust 137

Feedback
Submission

Peer 1

Peer 4

Peer 2

Peer 3Peer 5

Peer 6

P2P
Network

Trust
Evaluation

Data
Locator

Trust
Data

Trust Manager

(a) architecture

Peer 1

Peer 4

Peer 2

Peer 3Peer 5

Peer 6

Peer 61

Peer 301

Routing Table Keys

001

Peer 10

Peer 610

Routing Table Keys

110

Peer 61

Peer 100

Routing Table Keys

010
011

Peer 41

Peer 500

Routing Table Keys

010
011

Peer 41

Peer 201

Routing Table Keys

001

Peer 30

Peer 411

Routing Table Keys

100
101

1. Query for Key 110

2. Route Query

3. Route Query

4. Return Data

(b) data location

FIGURE 6.4: System architecture and data location mechanism in
PeerTrust [Xiong and Liu, 2004].

locator, which routes the data to appropriate peers for storage. Secondly, it is
responsible for evaluating the trustworthiness of a particular peer. This task is
performed in two steps. It first collects trust data about the target peer from
the network through the data locator and then computes the trust value.

Trust data location is based on P-Grid [Aberer, 2001]. As shown in Fig-
ure 6.4(b), the trust data about a peer u, i.e., feedback u receives for each
transaction, are stored at designated peers that are located by hashing a
unique ID of peer u to a data key. Each piece of feedback includes the fol-
lowing information: ID of peer u as the data key, timestamp, or counter of
the transaction, feedback for that transaction, ID of the peer who provides
feedback, and other applicable transaction contexts. Each peer is responsible
for multiple keys and maintains a routing table for other keys. When a peer
receives a search or update request with a data key that it is not responsible
for, it forwards the request according to its routing table. Consequently, the
storage cost at each peer is proportional to the degree of replication and the
amount of history information data that it needs to store.

Simulation results indicated that PeerTrust is effective in combating col-
lusion attacks and has a reasonably low error in trust computations.

6.4 Trust-χ

Motivated by the observation that many previous work in trust modeling
mainly focused on only one aspect of trust negotiation such as policy and



138 Peer-to-Peer Computing

credential negotiation, or the selection of the negotiation policy, Bertino et
al. [Bertino et al., 2004] proposed a comprehensive solution called Trust-χ, an
XML-based system addressing all the phases of a negotiation and providing
novel features with respect to existing approaches.

The first component of Trust-χ is an XML-based language, named χ-TNL,
for composing certificates and policies. Trust-χ certificates are either creden-
tials or declarations. Here, a credential states personal characteristics of its
owner, certified by a Credential Authority (CA), whereas declarations collect
personal information about its owner that do not need to be certified (such
as, for instance, specific preferences) but may help in better customizing the
offered service. A novel aspect of χ-TNL is the support for trust tickets, which
are issued upon the successful completion of a negotiation and can be used to
speed up subsequent negotiations for the same resource. Additionally, χ-TNL
allows the specification of a wide range of policies and provides a mechanism
for policy protection, based on the notion of policy preconditions.

A Trust-χ negotiation consists of a set of phrases to be sequentially exe-
cuted. A salient feature of Trust-χ is that it provides a variety of strategies for
trust negotiations, which allow a peer to better trade off between efficiency
and protection requirements. The motivation behind this design is that, since
trust negotiations can be executed for several types of resources and by a
variety of entities having various security requirements and needs, a single
approach to perform negotiation processes may not be adequate in all the cir-
cumstances. As a result, Trust-χ is very flexible and can support negotiations
in a variety of scenarios, involving entities like business, military and scientific
partners, or companies and their cooperating partners or customers.

As shown in Figure 6.5, according to the design rationales underlying
Trust-χ, each entity in the P2P system can be the controller of one or more
resources, a third-party credential issuer, or a requester. Typically, a negotia-
tion involves two entities: the entity providing negotiated resources, referred
to as the controller, and the entity wishing to access the resources, referred to
as requester. Note that the controller does not necessarily coincide with the
owner of the resource, it may be the manager of the resource entitled by the
real owner.

Each entity, characterized by a Trust-χ profile of certificates, can act as
a requester in one negotiation and as a controller in another. During a ne-
gotiation, mutual trust might be established between the controller and the
requester. Specifically, the requester has to show its certificates to obtain the
resource, and the controller, whose honesty is not always assured, submits cer-
tificates to its counterpart in order to establish trust before receiving sensitive
information. Release of information is regulated by disclosure policies, which
are exchanged to inform the other party of the trust requirements that need
to be satisfied to advance the state of the negotiation. Trust-χ participants
are both considered equally important. Thus, each party has an associated
system managing negotiation and always has a complete view of the state of
the negotiation process.



Trust 139

Compliance Checker

Sequence
Cache

Sequence
Prediction

Module

Tree
Manager

Policy
Base

X-Profile

Compliance Checker

Sequence
Cache

Sequence
Prediction

Module

Tree
Manager

Policy
Base

X-Profile

Policy
Exchange

Requestor Controller

FIGURE 6.5: Trust-χ architecture [Bertino et al., 2004].

The system is also composed of a Policy Base, storing disclosure policies,
the χ-Profile associated with the party, a Tree Manager, storing the state of
the negotiation, and a Compliance Checker, to test policy satisfaction and
determine request replies. The Compliance Checker includes a credential ver-
ification module, which performs a validity check of the received credentials
in order to verify the document signature, check for credential revocation,
and discovery credential chain, if necessary. Finally, Trust-χ system has a
complementary module named Sequence prediction module, for caching and
managing previously used trust sequences.

6.5 FuzzyTrust

Based on a detailed analysis on the characteristics of eBay’s transaction
data, Song et al. [Song et al., 2005] developed a FuzzyTrust prototype system
for evaluating peer reputation in P2P transactions. The FuzzyTrust is built
with a fuzzy logic inference technique (elaborated below). A salient and novel
feature of FuzzyTrust is that the system is capable of handling imprecise or
uncertain information collected from the peers.

To explain basic fuzzy concepts, let us consider the seller’s local score in-



140 Peer-to-Peer Computing

ference example. In fuzzy theory, the membership function µ(x) for a fuzzy
variable x specifies the degree of an element belonging to a fuzzy set. It maps x
into the range [0, 1], where 1 is full membership and 0 is no membership. Fig-
ure 6.6(a) shows a high membership function for modeling the local score (Γ),
and Figure 6.6(b) shows the five levels of membership function. Figure 6.6(c)
illustrates the inference process. Consider two fuzzy variables: one is the prod-
uct quality (Q) and another is the delivery time (T ), with initial values Q =
0.84 and T = 0.26. To illustrate, we apply the following two simple fuzzy
inference rules in Figure 6.6:

1. If Q is very good AND T is moderate, then Gamma is high.

2. If Q is ordinary AND T is fast, then Gamma is medium.

0.2 0.4 0.6 0.8 1.00.0

0.5

1.0

( )
high

μ = Γ

High(0.75) 1μ =

(0.6) 0.26μ =

(a) high local score

0.2 0.4 0.6 0.8 1.00.0

0.5

1.0

( )μ Γ High Very HighMediumLowVery Low

(b) five levels of local scores

Rule 1: Q is very good

Rule 2: Q is ordinary

T is moderate

T is fast

AND

AND

Q = 0.84

is high

is medium

IMPLY

IMPLY

Γ

Γ

T = 0.26 = 0.6Γ

Aggregate

(c) trust aggregation

FIGURE 6.6: Illustration of fuzzy inference [Song et al., 2005].

All rules are processed in parallel. The resulting membership is determined
by assessing all terms in the premise. The fuzzy operator AND is then applied
to determine the support degree of the rules. The AGGREGATE operator
superimposes two resulting membership curves. The final local score Γ = 0.6
is generated by defuzzifying from the aggregation result. This is done by taking
the centroid of the superimposed membership curve in Figure 6.6(c). In a real-
life P2P reputation system, this fuzzy logic inference process could demand
tens to hundreds of rules.

In FuzzyTrust, three system design criteria are developed below to match
with the eBay characteristics.

1. The network bandwidth consumption required to exchange local trust
scores for hot spots can be extremely high. Thus, a reputation system



Trust 141

for e-transactions should consider the unbalanced transactions among
users.

2. Second, to address the lesser impact from small users, a reputation sys-
tem should not apply the same evaluation cycle for all peers. The super
users should be updated more often than the small users.

3. Third, with skewed transaction amount, it makes sense to evaluate the
large transactions more often than the small ones.

Buyer's Local
Trust Score

Payment
Method

Payment
Time

Fuzzy Inference

Seller's Local
Trust Score

Goods
Quality

Delivery
Time

Fuzzy Inference

(a) local trust inference

Global Reputation
Aggregation Weight

Remote Peer's
Trust Score

Transaction
Date

Fuzzy Inference

Transaction
Amount

(b) global trust aggregation

FIGURE 6.7: Local and global trust management mechanisms in FuzzyTrust
[Song et al., 2005].

As shown in Figure 6.7, the FuzzyTrust system works by performing two
major inference steps: local-score calculation and global reputation aggrega-
tion.

Local-Score Calculation. In FuzzyTrust, peers perform fuzzy inference on
local parameters to generate the local scores. Figure 6.7(a) illustrates
the local-score calculation for eBay transactions. The fuzzy logic sidebar
shows a detailed fuzzy inference procedure. The fuzzy inference mecha-
nism can capture some uncertainties and is self-adjusting. It can adap-
tively track the variation of local parameters such as payment method
and time, goods quality, and delivery time, etc.

Global Reputation Aggregation. The FuzzyTrust system must then ag-
gregate local trust scores collected from all peers to produce a global
reputation for each peer. The system uses fuzzy inference to obtain the
global reputation aggregation weights, as illustrated in Figure 6.7(b).
The aggregation weights are determined by three variables: the peer’s
reputation, transaction date, and transaction amount.

Listed below are several frequently used fuzzy inference rules in the pro-
totype FuzzyTrust system construction. In a full-scale P2P reputation
system, the number of fuzzy inference rules could be extended to several
hundreds.



142 Peer-to-Peer Computing

1. If the transaction amount is very high and the transaction time is new,
then the aggregation weight is very large.

2. If the transaction amount is very low or the transaction time is very old,
then the aggregation weight is small.

3. If a peer’s reputation is good and the transaction amount is high, then
the aggregation weight is very large.

4. If a peer’s reputation is good and the transaction amount is low, then
the aggregation weight is medium.

5. If a peer’s reputation is bad, then the aggregation weight is very small.

FuzzyTrust then computes the global reputation using the following defi-
nition:

Ri =
∑

j∈S

(

wj
∑

j∈S wj
tji

)

(6.10)

where Ri is the global reputation of peer i, S is the set of peers with whom
peer i has conducted transactions, tji is the local trust score of peer i rated
by peer j, wj is the aggregation weight of tji. The global aggregation process
runs multiple iterations until each Ri converges to a stable global reputation
rating for peer i.

Song et al. implemented the prototype FuzzyTrust system on a DHT-based
P2P overlay network, with an architecture similar to that of Chord. This
DHT ring provides fast trust aggregation and secure message transmission.
The Chord system is highly scalable, robust to failure, and self-organizing in
that it handles peer join and leave from the system. Figure 6.8 shows the
DHT-based FuzzyTrust system architecture.

Each peer maintains two tables: a transaction record table to maintain
transaction records with remote peers, and a local score table to main-
tain remote peers’ evaluated trust scores. Based on the transaction records,
FuzzyTrust infers the global aggregation weights through the fuzzy inference
system. When performing global reputation aggregation, each peer queries the
trust scores from remote peers. To tackle the hot-spot issue, the system par-
tially queries qualified peers that meet an aggregation threshold. Figure 6.9
shows an example of global reputation aggregation based on the DHT config-
uration in Figure 6.8.

In Song et al.’s simulation study based on eBay trace data, FuzzyTrust
consistently outpeformed EigenTrust in terms of convergence time, error in
detecting malicious users, and message overheads.

Griffiths et al. [Griffiths et al., 2006] extended Song et al.’s FuzzyTrust
framework by incorporating a new notion called undistrust. Griffiths et al.
observed that most previous work on trust has concentrated on the positive
aspect of trust but largely ignored the notion of distrust.

Griffiths et al. insightfully observed that distrust is not simply the negation



Trust 143

Peer 2

Peer 16

Peer 4

Peer 9Peer 20

Peer 28

Remote
Peer ID

Local
Score

2 0.7

...

Peer 4 Score Table

Remote
Peer ID

Local
Score

2 0.6

...

Peer 9 Score Table

16 0.8

Remote
Peer ID

Local
Score

2 0.7

...

Peer 20 Score Table

16 0.9

Remote
Peer ID

Local
Score

2 0.9

...

Peer 28 Score Table

4 0.7

Remote
Peer ID

Remote Peer's
Trust Score

Transaction
Amount

Transaction
Date

Global Aggregation
Weight

Peer 16 Transaction Record Table

20 0.9 $5 02/01/2005 0.5

9 0.8 $100 02/15/2005 0.9

Remote
Peer ID

Remote Peer's
Trust Score

Transaction
Amount

Transaction
Date

Global Aggregation
Weight

Peer 2 Transaction Record Table

4 0.5 $15 02/11/2005 0.5

9 0.7 $10 02/15/2005 0.6

20 0.9 $99 02/13/2005 0.8

28 0.8 $399 02/14/2005 0.9

t 28, 2
 = 0.9

t 20
, 
2
 =

 0
.7

t 9, 1
6
 =

 0.
6

FIGURE 6.8: Illustrative example of FuzzyTrust [Song et al., 2005].

of trust but rather it is a belief that a peer will act against the best interests
of another. Alternatively, untrust corresponds to the space between distrust
and trust, in which an agent is positively trusted, but not to the extent that
it warrants full cooperation. This view of trust was originally advocated by
Marsh and Dibben [Marsh and Dibben, 2005]. Inspired by this definition,
Griffiths et al. suggested a novel concept called undistrust.

According to Griffiths et al., a similar region of undistrust is needed,
namely negative trust, but insufficient to make definite conclusions in the
trust reasoning process.

Figure 6.10(b) illustrates their definition of the notions of trust, distrust,
untrust, and undistrust.

Preliminary results presented in [Griffiths et al., 2006] indicated that the



144 Peer-to-Peer Computing

Peer 28 Peer 20 Peer 9 Peer 4

Peer 2

28,2 0.9t = 20,2 0.7t =

20 0.8w =28 0.9w = 9 0.6w = 4 0.5w =

Qualified Peers Disqualified Peers

Aggregation
Threshold = 0.7

28 20
2 28,2 20,2

28 20 28 20

0.9 0.8
0.9 0.7

0.9 0.8 0.9 0.8

0.81

w w
R t t

w w w w
= +

+ +

= × + ×
+ +

=

FIGURE 6.9: Example of global trust aggregation [Song et al., 2005].

Untrust TrustDistrust

-1 0 1

(a) Marsh and Dibben’s definition

Distrust Undistrust Untrust Trust

-1 0 1

(b) Griffiths et al.’s new notion

FIGURE 6.10: Notions of trust [Griffiths et al., 2006].

proposed new notion of undistrust can generate better performance in terms
of errors in identifying malicious peers.

6.6 Game Theoretic Analysis on Trust Management

Recently, Tuan [Tuan, 2006] presented an interesting and insightful game
theoretic analysis of a general trust management system. Tuan started by
modeling the trust reporting process as a mixed strategy game [Osborne, 2004],
and found that if a reputation system is not incentive-compatible, the more
the number of peers in the system, the less likely that anyone will report about
a malicious peer.

Specifically, Tuan made use of a reasonable assumption that the cost of re-



Trust 145

porting a malicious peer might be very high. Specifically, the cost of reporting
might be time and/or the risk of possible retaliation. To model the situation,
Tuan assumed that there exists a certain level of incentive for each peer to
report about a malicious peer. However, peers would prefer someone else to
do that (i.e., she is better off if other peers do the reporting). This is a typical
“reporting a crime” situation [Osborne, 2004] where many people witnessed a
crime but any one of them is unwilling to report the crime [Rosenthal, 1964].

In Tuan’s model, assume that each peer is satisfied if a malicious peer is
reported and attaches a value s to this. Reporting is costly and the cost is
assumed to be c, where s > c > 0. Thus, there are three possible cases for
each peer: (1) the malicious peer is not reported and the payoff is 0; (2) the
malicious peer is reported by the peer and thus the payoff is s− c; and (3) the
malicious peer is reported by some other peer and thus the payoff is s.

Consider a mixed strategy situation where each peer probabilistically
chooses to report or not. Denote the probability that each peer would re-
port as p. Given a peer, the probability that no one out of (n − 1) remaining
peers reports is thus (1− p)n. Consequently, the probability that at least one
peer (out of the remaining (n− 1) peers) reports is 1− (1 − p)n−1. By defini-
tion, in equilibrium state [Osborne, 2004] the expected payoff of reporting for
each peer is equal to the expected payoff of not reporting. Thus, we have:

s − c = 0 + s(1 − (1 − p)n−1) (6.11)

Solving this equation gives:

p = 1 −
( c

s

)
1

n−1

(6.12)

Now, we can see that the probability that each peer reports about the
malicious peer decreases as the number of reporting peers increases.

Furthermore, Tuan also addressed the issue of voting for exclusion of a
(maliciously believed) peer and provided an analysis of the problem. By mod-
eling the decision process as a Bayesian game [Osborne, 2004], Tuan found
that the possible application of exclusion in P2P system might be dangerous.
In Tuan’s Bayesian game model, the voting super peers have some a priori
belief about the type of the peer in question. Now, depending on the availabil-
ity and accuracy of new information about such a suspicious peer, this belief
can be changed. Tuan’s analysis showed that, under certain assumptions, the
more the number of voting peers, the more likely that an innocent peer is
excluded from the network.



146 Peer-to-Peer Computing

6.7 SuperTrust

Dimitriou et al. [Dimitriou et al., 2007] recently proposed an interesting
scheme called SuperTrust. A novel feature of SuperTrust is that the trust
reports are encrypted and are never opened during the submission or aggre-
gation processes, thus guaranteeing privacy, anonymity, fairness, persistence,
and eligibility of transactions.

SuperTrust is a decentralized framework that ensures the security of trust
handling in K-redundant super peer networks. Thus, in some sense, Su-
perTrust is orthogonal to existing trust management systems for ordinary
peers. However, SuperTrust relies on a hybrid network architecture in that it
assumes the existence of some certificate authority (CA) that can generate or
certify special purpose keys and whose public key can be trusted as authentic.

Associated with each peer v in SuperTrust is a chosen set of n super
peers (i.e., aggregators) that are responsible for “collecting” the votes/reports
of other peers that have interacted with v. The aggregators for each peer
are chosen by the CA amongst the K super peers responsible for the various
clusters. Furthermore, in each cluster, the CA delegates a storage node chosen
amongst the K super peers to act as a storage facility for the reputations
of the peers/resources located in the corresponding cluster (alternatively, as
suggested by Dimitriou et al., this role can be assumed by the aggregators,
thus eliminating single point of failure in the system).

Such a semi-centralized, semi-distributed approach guarantees that each
aggregator peer is within a fixed number of hops from each peer, thereby po-
tentially improving the overall performance of the system. The various actions
of a peer v in SuperTrust are outlined below (see Figure 6.11) [Dimitriou et al.,
2007]:

Step 1: Send a file request. Peer v isssues a request for resource r. Upon
reception of v’s request, one of the super peers responsible for v’s cluster
broadcasts this request to their neighbors.

Step 2: Receive a list of relevant peers. Upon reception of v’s request,
each super peer checks whether the resource requested is within its clus-
ter. Peer u issues a reply confirming his/her possession of the requested
resource. In addition, each of n aggregators of u partially decrypts the
encrypted trust value of u using a (t, n) Paillier-based threshold cryp-
tosystem [Paillier, 1999], and responds to v with their decrypted shares
allowing v to compute the final trust value.

Step 3: Select a set of peers. Once peer v receives the replies and the de-
crypted shares from a sufficient number t of aggregators, it calculates
the global trust value of the replying peers and chooses to download the
resource from the most reputable peer.



Trust 147

Peer Peer 

s Aggregators

Storage
Super Peer

s Aggregators

Storage
Super Peer

Network of Super Peers

Super Peers
Responsible for

s Cluster

Super Peers
Responsible for

s Cluster

s Cluster s Cluster

Request for resource 

Request broadcast

Step 1:
Send a file
request

Super nodes
check if

resource is  
within their

clusters

Reply for the possession of
resource 

Reply forward

Reply forward

Reply forward s trust value

s trust value

s trust value

Step 2:
Receive a list of
relevant peers

(Other peers possessing
resource will also reply)

Calculate the global
trust values of replying

peers to find out the
most reputable peer(s)

Download of resource

Step 3:
Select a set of
peers

Rate peer ;
Send trust report

Trust report

Trust report

Update s trust value

Step 3:
Send vote

FIGURE 6.11: Example of secure trust aggregation in SuperTrust [Dim-
itriou et al., 2007].

Step 4: Send vote. Peer v rates the interaction it had with peer u. It first
encrypts the report with the public key of the u’s aggregators. Doing
this allows encapsulating its rating for both peer u and its resource. The
peer then submits it to the designated super peer. The latter forwards
the encrypted vote to its neighbors. Upon reception of the trust report
for v, the aggregators fetch from the storage super peer v’s previous en-
crypted ratings, update it using a homomorphic encryption scheme [Pail-
lier, 1999], and submit the aggregation result back to the storage Super
peer in order to guarantee the durability of the ratings in the system.
In turn, the storage super peer only stores the encrypted value that was
advertised by the majority of the aggregators. Here, we can see that such
a scheme protects against up to n/2 suspicious aggregators (where n is



148 Peer-to-Peer Computing

the total number of aggregators in some cluster) that are trying to cheat
the system by submitting erroneous aggregation results. Now, the global
trust value of v is updated by v’s aggregators without decrypting the
intermediate reports, thereby ensuring privacy and integrity of votes.

Simulation results indicated that SuperTrust performed well in terms of
message overhead and response time.

6.8 PowerTrust

Zhou and Hwang proposed a DHT-based trust management scheme called
PowerTrust [Zhou and Hwang, 2007b]. Figure 6.12(a) shows the system archi-
tecture of PowerTrust. First, a trust overlay network (TON) is built on top
of all peers in the P2P system. All peers send local trust scores among them-
selves periodically. The PowerTrust system then aggregates the local scores
to compute the global reputation score of each participating peer. All global
scores form a reputation vector V = (v1, . . . , vn), where

∑

i vi = 1.
As shown in Figure 6.12(a), the regular random walk module supports the

initial reputation aggregation. The lookahead random walk (LRW) module is
used to update the reputation score periodically. To this end, the LRW also
works with a distributed ranking module to identify the power peers (i.e.,
peers with prior trust). The system leverages the power peers to update the
global reputation scores.

In PowerTrust, feedback scores are generated by Bayesian learning or by
an average rating based on peer satisfaction. Each peer normalizes all issued
feedback scores. Consider the trust matrix R = (rij) defined over the n-peer
TON, where rij is the normalized local trust score defined by rij =

sij
P

j sij
,

and sij is the most recent feedback score that peer i rates peer j. If there is
no link from peer i to peer j, sij is set to 0. Thus, for all 1 ≤ i, j ≤ n, we have
0 ≤ rij ≤ 1 and ∀i,

∑n
j=1 rij = 1. In other words, matrix R is a stochastic

matrix in which all entries are fractions and each row sums to 1. This requires
that the scores issued by the same peer to other peers are normalized.

The reputation vector is then recursively updated as follows:

V(t+1) = RT × V(t) (6.13)

This updating is done until |V(i) − V(i−1)| ≤ ǫ.
Using the parameter sweeping P2P Grid applications in their simulation

study, Zhou and Hwang found that PowerTrust performed well in terms of
trust aggregation accuracy, message overhead, and makespan of the Grid ap-
plications.



Trust 149

6.9 GossipTrust

Recently Zhou and Hwang also proposed another novel trust management
scheme, called GossipTrust [Zhou and Hwang, 2007a], designed for unstruc-
tured P2P systems such as KaZaA. Figure 6.12(a) shows the architecture of
GossipTrust.

Underlying P2P Network

Initial Reputation
Computation

Gossip-Based Reputation Aggregation

Reputation
Updating

Power Nodes

<n1, v1> <n2, v2> <n3, v3> ...

Storage Service

Global Reputation Scores V

Local Trust Scores

Converged

(a) GossipTrust architecture

V(0)

1 2 k k+1 g... ...

Gossip Steps

V(1)

V(t)

.

.

.

.

.

.

V(d)

A
g

g
re

g
a

ti
o

n
 C

y
c
le

s

(b) gossiping procedure

FIGURE 6.12: GossipTrust [Zhou and Hwang, 2007b, Zhou and Hwang,
2007a].

In GossipTrust, each peer keeps a row vector of trust matrix S based
on its outbound local trust scores. In addition, each peer also maintains a
global reputation vector V (t) at aggregation cycle t. Internally, this vector is
represented by a collection of <nodeID, score> pairs. At the first aggregation
cycle, V (0) is initialized with equal global reputation scores, i.e., vi(0) = 1/n,
for i = 1, 2, . . . , n.

To compute the successive reputation vectors, GossipTrust uses a gossip-
based protocol to perform the matrix-vector computation. Gossiping supports
lightweight communications among nodes during the aggregation process. In
GossipTrust, each aggregation cycle consists of several gossip steps as shown
in Figure 6.12(b). In a gossip step, each peer receives reputation vectors from
others, selectively integrates the vectors with its current reputation vector, and
then sends the updated one to a random peer in the network. This gossiping
process continues until the gossiped scores converge in g steps, where g is
determined by a set of gossiping error threshold ǫ. After the convergence
of gossip steps, GossipTrust continues the next aggregation cycle until the
global reputation vectors converge in d cycles, where d is determined by the
aggergation error threshold δ.

Simulation results indicated that GossipTrust generated good performance



150 Peer-to-Peer Computing

in terms of trust aggregation accuracy, convergence rate, and message over-
head.

6.10 Trust Establishment in Wireless Sensor Networks

As discussed in Chapter 2, wireless sensor networks (WSNs) are consid-
ered practical P2P distributed processing platforms for many applications
(e.g., battle-field data processing). Trust establishment has long been a chal-
lenging problem in WSNs due to high security requirements and strict re-
source constraints in WSNs. Recent approaches based on randomized key
pre-distribution schemes mainly focus on key allocations supported by the
pre-deployment estimations of the post-deployment information items. Un-
fortunately, such information items may be unavailable or may change over
time. The performance of the resulting network may be unstable and unable
to react to the change of topology due to sensor node dynamics.

In the following, we present a detailed survey of recently proposed tech-
niques for trust establishment in WSNs.

6.10.1 Symmetric Key-Based Approaches

Generally, these schemes are further divided into two categories: determin-
istic and probabilistic key pre-distribution schemes.

6.10.1.1 Deterministic Key Pre-Distribution Schemes

A deterministic scheme assigns keys to each node intentionally so that
these keys are used for specific purposes. Since each key is selected care-
fully, it is expected that the number of keys stored for each node will not be
large; otherwise, the cost of key assignment will be very high if the network
is deployed in a large scale. Thus, this scheme usually focuses on the com-
munication between a fixed number of entities such as node-to-base station,
node-to-gateway, and gateway-to-base station. A simple example is the mas-
ter key approach in which each node communicates with a single common
key [Kwok, 2007].

Jolly et al. [Jolly et al., 2003] proposed a lightweight key management
protocol. They observed that sensor-to-sensor secure communication is not
always necessary in some applications. Thus, very few keys (typically two)
are enough to establish secure connections between nodes and base station
as well as cluster gateways. Since there is no sensor-to-sensor communication,
the first key is used to talk with the base station while the second one is used
to talk with the cluster gateway. These two keys can be computed efficiently
and distributed to sensor nodes before deployment. Their objective is to pro-



Trust 151

vide a cost-effective key infrastructure to secure the sensor network. However,
their design requires a centralized key server and the re-keying1 process sug-
gested is inefficient due to the large amount of message exchanges (i.e., a large
overhead).

Based on a trusted intermediary node and the underlying routing protocol,
Chan and Perrig [Chan and Perrig, 2005] introduced a class of key establish-
ment protocols, called Peer Intermediaries for Key Establishment (PIKE). By
assuming the existence of routing information, PIKE uses a third node C lo-
cated somewhere in the network to act as a trusted intermediary between two
nodes A and B. The trusted entity shares a common key with both node A
and node B so that the key establishment protocols can be securely routed
through node C to perform connection establishment. The objectives of PIKE
are to provide a uniform communication pattern for key establishment and
reduce the communication and memory overheads when the network size in-
creases. However, the dependence on the underlying routing protocol makes
this scheme less attractive and it is hard to adapt to topology changes. It is
noted that PIKE is considered as a deterministic key pre-distribution scheme
because any two nodes are guaranteed to be able to set up a key.

6.10.1.2 Probabilistic Key Pre-Distribution Schemes

Eschenauer and Gligor [Eschenauer and Gligor, 2002] proposed a random
key pre-distribution scheme (referred to as basic scheme in this chapter) in
2002. Based on random graph theory [Erdös and Rényi, 1960], the basic scheme
relies on probabilistic key sharing among nodes and uses a simple shared
key discovery protocol and path key establishment for the connection setup
process. This scheme assumes that the sensor network forms a random graph
and keys are installed in nodes prior to deployment. Each sensor node installs
a random set of keys from the key pool. Any two neighbors are connected if
they are able to find a common key.

The principle of key pre-distribution is widely adopted in many key man-
agement schemes in WSNs. One of the major reasons is that it can provide
an acceptable level of security on the resource-constrained sensor nodes. After
the pioneering work of the random key pre-distribution scheme proposed by
Eschenauer and Gligor [Eschenauer and Gligor, 2002], many enhancements
on the basic scheme have been proposed. In the following, we briefly discuss
several typical trust establishment schemes which enhance the basic scheme
in different ways.

Chan et al. [Chan et al., 2003] proposed a q-composite key pre-distribution
scheme in which q common keys (q > 1) are required to establish a single se-
cure link between two neighboring nodes. This scheme achieves better security
under small scale attack (when the fraction of compromised nodes is less than
0.5%) while increasing the vulnerability when the number of compromised
nodes increases. They also proposed a random pairwise scheme which can

1Re-keying refers to the process of replacing an old key with a new one.



152 Peer-to-Peer Computing

be regarded as a randomized version of the pairwise scheme. In the pairwise
scheme, each sensor node has n − 1 keys which are privately shared with
another node in the network. To reduce the memory storage, the random
pairwise scheme only picks a subset of keys from those n − 1 keys. Thus, the
memory usage of the sensor node is reduced but the network connectivity is
also decreased. The random pairwise scheme provides full resilience against
node capture attack as even when some nodes are compromised, the remain-
der of the network remains fully secure. However, due to the limited memory
storage of sensors, each node can only hold a limited amount of unique keys.
The number of keys stored cannot scale well with the increasing network size.
As a result, the maximum network size supported is smaller than that of the
basic scheme.

Based on the known attack probabilities2 in different regions, Chan et
al.’s scheme [Chan et al., 2005b] targets at enhancing the overall network re-
silience3. Their scheme adjusts the number of distinct keys stored in a sensor
node depending on the attack probability of the region they are going to be
deployed. If a node is going to be deployed in a region with a higher attack
probability, fewer keys will be assigned to it and vice versa. In this case, the
adversaries have a higher probability to attack a node with fewer keys stored,
and therefore the number of keys exposed to the adversaries after each attack
is smaller. It is clear that there are two drawbacks in this approach. Firstly,
a certain extent of connectivity is sacrificed. Secondly, additional informa-
tion on a known and fixed attack probability is required to be known before
deployment. Nevertheless, the authors showed that there is a substantial im-
provement in network resilience.

Du et al. [Du et al., 2005] proposed a random key pre-distribution method
built on the Blom key pre-distribution scheme [Blom, 1984] to improve net-
work resilience. Blom’s original scheme uses a single key space to allow any
pair of nodes to compute a secret key. Each node is required to store λ+1 keys
and the scheme guarantees that as long as no more than λ nodes are compro-
mised, all the links between non-compromised nodes remain secure. Du et al.
extended this idea to multiple key spaces instead of a single one. Two nodes
share a pairwise key only if they hold a common key space. Their scheme keeps
the λ-secure property but relaxes the memory requirement. Consequently, the
network formed results in a connected graph with a probability instead of a
guaranteed complete graph by Blom’s scheme. Later, Du et al. [Du et al., 2004]
tried to reduce the memory usage using the deployment knowledge (e.g., lo-
cation) while achieving the same level of connectivity. However, such a piece
of knowledge is not always available, especially in a hostile area and dynamic
network environment. Specifically, offline estimation of the node distribution

2Attack probability refers to the probability that a node within a certain region will be
captured.

3Network resilience generally refers to the ability of a network to resist being affected by
some attacks.



Trust 153

after deployment is generally considered as unrealistic and inaccurate under
these situations.

Liu et al. [Liu et al., 2005a] proposed a polynomial pool-based pairwise key
pre-distribution scheme. Instead of deploying keys, their scheme uses bivariate
t-degree polynomials f(x, y) =

∑t
i,j=0 aijx

iyj , such that f(x, y) = f(y, x), to
compute the pairwise communication keys between nodes. For each node i,
the setup server computes a polynomial share f(i, y), which is derived from
the polynomial function f(x, y), and installs f(i, y) into node i prior to de-
ployment. Based on the property of bivariate polynomial, two nodes i and
j are able to establish a secure connection if they can compute the same
key f(i, j) = f(j, i). This polynomial pool-based scheme is based on the ba-
sic polynomial-based key pre-distribution proposed by Blundo et al. [Blundo
et al., 1992]. Two nodes are able to establish a secure connection only if they
share at least one polynomial function in common by exchanging polynomial
function IDs. An attacker requires to capture at least t + 1 polynomial shares
in order to retrieve the original t-degree polynomial function. This scheme
shows a significant enhancement of network resilience as long as the number
of nodes captured is under a certain threshold, i.e., t in this case. It is in-
teresting to note that this scheme is equivalent to Du et al.’s pairwise key
pre-distribution scheme discussed above.

Eltoweissy et al. [Eltoweissy et al., 2006] developed a protocol for dynamic
re-keying in the post-deployment phase. Under the long life cycle assumption,
re-keying is necessary in the addition or revocation4 of nodes. By doing so,
node capture attacks can no longer further compromise the rest of the net-
work. When some nodes are suspected to be compromised, the base station
sends the re-keying instruction(s) to the cluster controllers5 to trigger the
corresponding re-keying operations. The drawbacks are that their approach
requires the coordination among a base station and the cluster controllers. In
addition, there is an assumption that the compromised nodes can be detected
accurately by the base station.

Based on the design objectives (or constraints consideration) of the above
schemes, we summarize this comparison in Table 6.2.

6.10.2 Asymmetric Key-Based Approaches

It is well known that public key cryptosystems are in general more versatile
than the symmetric cryptography. They can provide more functions such as
digital signature and key exchange. However, they are computationally expen-
sive and undesirable to be implemented in the resource-constrained sensor net-
works. With advancement of sensor network technologies in recent years, im-

4Node revocation is used to remove some detected misbehaving nodes.
5A cluster controller is responsible for organizing and managing a particular cluster of

nodes.



154 Peer-to-Peer Computing

TABLE 6.2: Comparison of popular symmetric trust establishment schemes
in WSNs.

Scheme Energy

awareness

Memory

consumption

Network

resilience

Network

connectivity

Additional

requirement

Eschenauer [Es-
chenauer and
Gligor, 2002]

Average High Poor Average None

Jolly [Jolly et al.,
2003]

Very good Very low Poor N/A None

Chan [Chan et al.,
2005b]

Good High Good Average Attack proba-
bilities

Du [Du et al.,
2004]

Good Low Average Good Location
information

Liu [Liu et al.,
2005a]

Average High Good Average None

Eltoweissy [El-
toweissy et al.,
2006]

Average Low Good Average None

plementation of asymmetric cryptographic protocols in resource-constrained
sensor devices becomes possible. In this section, we review several public key
cryptosystems for trust establishment systems in WSNs.

Watro et al. [Watro et al., 2004] proposed a set of public key-based pro-
tocols, called TinyPK, to support authentication and key agreement between
a sensor network and a commonly trusted third party outside the sensor net-
work. They exploited the efficiency of the public operations in RSA [Rivest
et al., 1978] cryptosystems with the characteristic that the public operations
are very fast compared to other public key technology computations by explic-
itly choosing some small indices as public keys. Their protocols are specially
designed such that the computationally expensive operations are placed on the
third parties whenever possible. However, some basic functions, such as revo-
cation of compromised private keys, are not supported. Using their protocols,
they demonstrated that the RSA [Rivest et al., 1978] and Diffie-Hellman key
agreement techniques [Diffie and Hellman, 1976] can be deployed in existing
sensor network devices.

As for energy efficient cryptosystems, there are some other options pro-
posed, such as the XTR public key system [Lenstra and Verheul, 2000], and El-
liptic Curve Cryptography (ECC) [Koblitz, 1987,Miller, 1985]. Among them,
ECC receives most attention. ECC operates on groups of points over elliptic
curves. Its security stems from the hardness of elliptic curve discrete loga-
rithm problem (ECDLP). To solve the integer factorization problem of RSA,
there are sub-exponential algorithms. However, only exponential algorithms
are known for solving the ECDLP. This is the reason why ECC can achieve
the same level of security with smaller key sizes. In the future, it is believed



Trust 155

that ECC will dominate the area of developing public key cryptosystems in
WSNs [Gura et al., 2004].

Malan et al. [Malan et al., 2004] presented a public key infrastructure
(PKI) based on ECC to be executed on the MICA2 Mote. They argued that
by carefully implementing the multiplication of points on elliptic curves, PKI
for secret keys’ distribution is tractable on the MICA2 platform. In fact, ECC
is believed to offer security computationally equivalent to that of RSA with
significantly smaller key size. For instance, a 163-bit ECC key is computa-
tionally equivalent to a 768-bit RSA key [Lorincz et al., 2004]. ECC offers an
alternative solution to make public key cryptography become feasible on lower
power sensor devices.

6.11 Case Study: PPLive

Similar to the incentive aspect discussed in Chapter 5, PPLive does not
incorporate any systematic trust management facilities in the client programs.
Again this approach works because the PPLive client programs are proprietary
and under centralized control. Thus, mutual trust between peers is handled
by default. However, when malicious behaviors abound (if they have not,
they will), proper trust management controllable at the user level has to be
included.

6.12 Summary

Table 6.3 gives a qualitative comparison of different trust management ap-
proaches proposed for Internet-based P2P systems. In general, for each peer,
local trust scores are based on just a sum of prior transaction ratings. But dif-
ferent approaches are employed for the global aggregation step. Based on the
simulation results reported, most of the approaches perform well in terms of
convergence rate, trust aggregation accuracy, and message overhead. One par-
ticular point to note is that the recently proposed GossipTrust scheme [Zhou
and Hwang, 2007a] is the only approach that can work under an unstructured
P2P network. This is important because future P2P systems are likely to be
unstructured to achieve a higher scalability. Reputation systems [Lethin, 2001]
are also considered as promising solutions.

Recently, there are numerous other interesting trust management schemes
proposed [Lin et al., 2007,Lu et al., 2007a,Nakajima et al., 2007,Schmidt et al.,



156 Peer-to-Peer Computing

TABLE 6.3: A qualitative comparison of different trust management ap-
proaches for P2P systems.

Local Global Convergence Trust Message Structured
Evaluation Aggregation Rate Accuracy Overhead Network

Azzedin and
Maheswaran
[Azzedin and
Maheswaran,
2003]

Ratings
sum

Combined
with recom-
mender’s
scores

Fast Moderate High Yes

EigenTrust
[Kamvar
et al., 2003]

Ratings
sum

Iterative Fast High Moderate Yes

PeerTrust
[Xiong and
Liu, 2004]

Normalized
ratings sum

Local compu-
tation based
on 5 factors

Fast High Moderate Yes

FuzzyTrust
[Song et al.,
2005]

Fuzzy based Fuzzy based Fast High Moderate Yes

SuperTrust
[Dimitriou
et al., 2007]

Ratings
sum

Combined
with recom-
mender’s
scores

Fast High High Yes

PowerTrust
[Zhou and
Hwang,
2007b]

Bayesian LRW based Fast High Low Yes

GossipTrust
[Zhou and
Hwang,
2007a]

Ratings
sum

Gossip based Fast High Low No

2007,Xu et al., 2007,Zhang and Fang, 2007]. The reader is highly encouraged
to study these recent results.

Finally, we have also surveyed in detail practical trust establishment
schemes for wireless sensor networks.

6.13 Review Questions

1. What are the essential components of a P2P trust scheme?

2. What are the salient features of the EigenTrust system?

3. How do you compare EigenTrust and PeerTrust?

4. What is the relationship between a trust system and a reputation sys-
tem?

5. What are the impacts of selfishness in the effectiveness of a trust system?

6. What are the most vulnerable components in a trust system?



Trust 157

7. What is the major challenge in trust establishment in a wireless sensor
network?

8. What are the differences in handling trust management between a WSN
and an Internet-based P2P system?



This page intentionally left blankThis page intentionally left blank



Chapter 7

Security Issues

7.1 Overview

Security issues are even more prominent in a P2P network, compared with
a traditional client-server system. This is because without centralized author-
ity (i.e., trusted servers), it is very difficult to guarantee data integrity and
confidentiality in the P2P data sharing process. Specifically, it is difficult to
encrypt data because key management is hard in a P2P network. Without
such confidentiality protection, all kinds of serious problems arise, such as file
content poisoning, routing table pollution, etc. The key issue here is that there
is little a peer can do to verify the data being shared.

Another baffling issue is the use of a P2P network as a vehicle to launch
further attacks. The most probable situation is that some malicious peers, by
controlling a large number of other peers, can perform DDoS attacks on some
specific peers. The way to control a large number of peers can be done through
routing table pollution as detailed in this chapter below.

Speaking of controlling the P2P network, it is not necessary to control a
large number of physical peers. A malicious peer can actually launch a Sybil
attack—to obtain a large number of valid identities on the network. Combating
Sybil attacks is therefore a very important area of research. We will discuss
some recently proposed schemes below.

Finally, we will also discuss an interesting way to make use of legitimate
peers to deliberately poison the contents sent to identified pirates.

7.2 Content Pollution

Pollution attacks refer to the situations where attackers deliberately spread
corrupted or faked data in a P2P network. At the very least, the damage is
that benign or honest peers’ download bandwidth and storage are wasted. In
the worst case, such corrupted data could even contain malicious code which
can lead to further damages.

Kumar et al. [Kumar et al., 2006] presented an interesting mathemati-

159



160 Peer-to-Peer Computing

cal analysis of the proliferation of polluted data in a P2P network. In their
model, peers are classified into two types: attackers and benign peers. The
former injects polluted data in the network while the latter might inadver-
tently download them. Here, a complete file is considered as an atomic unit
of data. Thus, a downloaded file can either be considered as corrupted and
cannot be used, or be considered good as a whole. Furthermore, Kumar et al.
characterize the peers’ behaviors as follows:

1. As soon as a peer downloads a good file, it stops searching for the file.

2. If a peer finds a downloaded file is corrupted, it deletes the file and then
searches again. (Kumar et al. also considered the case where the peer
stops searching after a number of unsuccessful downloads.)

3. After a peer has got a good file, it makes the file available indefinitely in
the network. (Kumar et al. also considered the case where the peer just
leaves the system without contributing the good file, i.e., free-loading.)

4. All peers are homogeneous.

Peers’ downloading actions are modeled stochastically. That is, a peer
selects a certain version v of a file with a probability, denoted as qv(t), which
is a time-varying quantity. In general, this probability is a function of the
availability of different versions and how many copies of each exist at a given
time in the network, i.e.,

qv(t) = fv(nu(t), u ∈ V (t)), v ∈ V (t) (7.1)

where nu(t) is the number of copies of version u, V (t) is the set of different
versions of the file, and fv(.) is a function such that

∑

v∈V (t) qv(t) = 1.
Under this framework, Kumar et al. considered two different downloading

behaviors:

Copy Centric Downloading. In this situation, a peer just randomly
chooses a certain copy of the file to download, without regard to its
version. Thus, the probability function can be expressed as:

qv(t) =
nv(t)

∑

u∈V (t) nu(t)
(7.2)

Version Centric Downloading. In this situation, a peer is sensitive to dif-
ferent versions that exist in the network, and chooses a particular version
at random to download. Thus, the probability function can be expressed
as:

qv(t) =
1

|V (t)|
(7.3)



Security Issues 161

Let us consider the Copy Centric Downloading case in a bit more detail.
Suppose the attackers inject N polluted copies of the file in the network. Fur-
thermore, suppose that there are M (assumed to be a constant throughout)
benign peers in the network and each peer’s time spent to inspect a down-
loaded file (to see if it is a good copy) is exponentially distributed with rate
m. Now, we can use x and y to denote the number of benign peers with good
and corrupted copies, respectively. Using the tuple (x, y) as a system state,
Figure 7.1 depicts the state transitions of the system. Specifically, starting at
state (x, y), the system can change to one of the following states:

• (x + 1, y): a peer with no copy gets a good copy;

• (x, y + 1): a peer with no copy downloads a corrupted copy;

• (x + 1, y − 1): a peer with a corrupted copy gets a good copy; and

• (x, y): a peer with a corrupted copy downloads a polluted copy again.

x+1, y-1

x+1, y

x, y x, y+1

FIGURE 7.1: System state transitions in the Copy Centric Downloading
model [Kumar et al., 2006].

Unfortunately, this Markov process is intractable to solve because M is
typically a very large number (e.g., 100,000 or more). Thus, Kumar et al.
[Kumar et al., 2006] resorted to tackling the state transition modeling from
an individual peer’s perspective. Specifically, at time t, the probability that a
peer chooses a corrupted file to download is given by:

p(t) =
y(t) + N

x(t) + y(t) + N
(7.4)

A useful insight is that the number of good copies, i.e., x(t), increases when a
peer with no copy gets a good copy. This event occurs at the following rate:

[M − x(t) − y(t)]m(1 − p(t))



162 Peer-to-Peer Computing

Alternatively, x(t) also increases when a peer with a corrupted copy gets a
good copy. This event occurs at the following rate:

y(t)m(1 − p(t))

Combining these two cases, we can express the rate of change of x(t) as follows:

dx(t)

dt
= [M − x(t) − y(t)]m(1 − p(t)) + y(t)m(1 − p(t)) (7.5)

Similarly, we can also express the rate of change of y(t) as follows:

dy(t)

dt
= [M − x(t) − y(t)]mp(t) − y(t)m(1 − p(t)) (7.6)

We can also visualize these observations from the state transition diagram
shown in Figure 7.2. With some simple algebraic manipulations, the two dif-
ferential equations can be rewritten as:

dx(t)

dt
= [M − x(t)]m(1 − p(t)) (7.7)

dy(t)

dt
= [M − x(t)]mp(t) − my(t) (7.8)

Polluted

Copy

No Copy

Good Copy

m p(t)

m (1 - p(t))
m p(t)

m (1 - p(t))

FIGURE 7.2: State transitions for a peer in getting a file in the Copy Centric
Downloading model [Kumar et al., 2006].

Kumar et al. [Kumar et al., 2006] showed that there is a unique solution:

x(t) =
c2M(emt − c1

M+N )
M

M+N

1 + c2(emt − c1

M+N )
M

M+N

(7.9)

y(t) = M − c1e
−mt − x(t) (7.10)

where c1 = M − x(0) − y(0) and

c2 =
x(0)

M − x(0)

(

N + x(0) + y(0)

M + N

)− M
M+N



Security Issues 163

As illustrated by Kumar et al.’s numerical results, the above solution gen-
erates very accurate data as compared to a simulated system, especially when
M is large (e.g., 100,000). Using this model, many interesting conclusions can
be drawn. For instance, the number of corrupted copies reaches a peak and
then quickly drops off to zero in an exponential manner. Similar mathemati-
cal analysis is also given by Kumar et al. [Kumar et al., 2006] for the Version
Centric Downloading model.

Yang et al. [Yang et al., 2008] also proposed a content pollution dynamics
model for live video streaming systems. They found that the most critical
factors are the access bandwidth and the degree of participating peers, but
not the number of initial polluters.

To combat pollution attacks, a typical approach is still based on reputation
scores associated with the files as well as the peers that are sharing them.
Specifically, when a peer selects a certain file for downloading, it first requests
for a weighted sum of votes for the file from a set of peers. The latter sends
the requesting peer a vote (e.g., +1 or −1) so that a weighted sum can be
computed. The weights used represent (or are derived from) the reputations
of these responding peers. The systems Credence and Scrubber as described
in [Costa and Almeida, 2007] are based on such ideas. A major performance
criterion for these systems is the convergence rate. As shown in the simulation
results in [Costa and Almeida, 2007], it typically takes several days for the
systems to converge to accurately identify true copies from polluted copies.

7.3 Buffer Map Cheating

Li et al. [Li et al., 2009] studied the problem of buffer map cheating in
P2P video streaming systems. Specifically, they considered the situation where
some selfish peers lie about their buffer map contents in that some available
chunks are held back. The rationale of this selfish behavior is that the upload-
ing burden can be reduced. However, the streaming quality of the requesting
peers could also be reduced.

To combat such malicious behaviors, Li et al. [Li et al., 2009] proposed
a simple incentive scheme, which works by sorting the requests at a chunk
uploading peer in descending order of previous contribution levels. Conse-
quently, if a selfish peer holds back some chunks, its contribution level would
be reduced, and thus, it will be placed at a later position in the request queue
when it requests chunks from another peer. Li et al.’s simulation results show
that the proposed simple incentive scheme works quite well in deterring selfish
behaviors.



164 Peer-to-Peer Computing

7.4 Sybil Attacks

It is conceivable that a malicious user in the P2P network controls a large
number of peers. Specifically, for instance, such a user runs a large number
of P2P client programs on the network so that different peers are actually
representing the same physical user behind the scene. Such dominance in
participation could possibly lead to controlling the operations of the P2P
system. For example, the malicious user can easily out-vote other honest peers
in the system. This is commonly known as the Sybil attack [Douceur, 2002,
Dinger and Hartenstein, 2006]. The root of this problem is the mapping of
peer identifiers to physical users.

Dinger and Hartenstein [Dinger and Hartenstein, 2006] formalized the
Sybil attack as follows. The set of participants in the P2P network is denoted
by: N = {p1, . . . , pn}. The set of physical users in the network is denoted
by: U = {u1, . . . , um}. We have n ≥ m. The set of peers controlled by (or
representing) a physical user ui is denoted by Ni. It follows that Ni

⋂

Nj for
all i 6= j, and N1

⋃

. . .
⋃

Nm = N . Now we can characterize a Sybil attack
launched by user ui as |Ni| > c, for a certain constant threshold c.

To prevent Sybil attack, obviously we need a mechanism to avoid assign-
ing multiple peer identifiers to the same physical user. However, under the
assumption that a powerful malicious user can modify the P2P client pro-
gram that is being used, such identifier assignment function cannot be incor-
porated in the P2P client program. In other words, the assignment process
has to be “external” to the client. Now, we have two choices. First, we can
use a centralized entity such as a server (e.g., a particular bootstrap server or
a tracker) for securely assigning identifiers based on each P2P client’s phys-
ical attributes (e.g., IP address, MAC address, etc.). However, doing this is
somewhat contradictory to the original intent of a P2P network because a cen-
tralized authority is involved. Furthermore, this centralized authority would
become a single-point-of-failure or single-point-of-attack.

To use a distributed approach in identifier assignment, multiple currently
participating peers have to be involved. For example, in the DHT-based algo-
rithm suggested by Dinger and Hartenstein [Dinger and Hartenstein, 2006],
multiple peers on a Chord ring have to verify and approve the identifier as-
signed to a new peer. The identifier is generated based on the IP address of
the new peer. A possible loop-hole in this approach is that a malicious user
can still get multiple identifiers by using spoofed IP addresses.

Rowaihy et al. [Rowaihy et al., 2007] described another fully distributed
approach for identifier assignment in a P2P network. Specifically, their ap-
proach is designed for a tree-structured network. In order to be admitted into
the network (i.e., obtaining a legal ID), a new peer has to contact a tree-leave
peer in the tree. The new peer then needs to solve a cryptographic puzzle
which is designed to be resource (e.g., time or memory) constrained. Solv-



Security Issues 165

ing the puzzle is the major barrier in obtaining the admission. The puzzle is
cryptographically safe in the sense that it is based on public key cryptogra-
phy and one-way hash function. Using such an approach, Sybil attack is not
eliminated but just becomes much more resource consuming to launch. Thus,
if a malicious user is equipped with powerful machines or plenty of resources,
a large scale Sybil attack is still possible.

Bazzi and Konjevod [Bazzi and Konjevod, 2005] suggested the use of net-
work coordinates (mentioned in Chapter 4) for honest peers to decide whether
new peers are indeed representing distinct physical users (i.e., having very dif-
ferent network coordinates). However, again if a malicious user can manage
to spoof multiple physical addresses which are then translated into different
network coordinates, the defense is broken.

Yu et al. [Yu et al., 2008] proposed a scheme called SybilGuard, relying
on topological properties of the social network connecting the physical users.
Specifically, based on the social network graph, peers can be logically parti-
tioned into two sets: honest peers and Sybil peers, as shown in Figure 7.3.
Here, the links connecting different nodes representing the declared human
trust relationships. This topology is independent of and could be entirely dif-
ferent from the P2P network topology. Yu et al.’s key insight is that if the
malicious user, controlling a large number of peers, can manifest as a very
strange structure in the social network graph. Specifically, the graph would
have a small quotient cut, i.e., a small set of edges (the attack edges) whose
removal would partition the graph. As observed empirically, a real-life social
network comprising of honest users does not exhibit such a strange property.
Thus, a straightforward method to detect Sybil attack is to search for a quo-
tient cut, or to solve the Minimum Quotient Cut problem. Unfortunately this
problem is known to be NP-hard.

Honest Nodes Sybil Nodes

Attack Edges

FIGURE 7.3: Based on the social network graph, peers can be classified into
honest nodes and Sybil nodes [Yu et al., 2008].

To get around the intractability of the Minimum Quotient Cut problem,
Yu et al. proposed to use verifiable random walk in the social network graph
and the intersections between such walks. Specifically, these random walks
are designed so that the small quotient cut (i.e., the set of attack edges) are
exploited to defend against the malicious user. Consequently, the number of



166 Peer-to-Peer Computing

Sybil identities is bounded. The random walk scheme is outlined as follows.
A peer with degree d carries out d random walks starting from itself of a
pre-defined length w (according to Yu et al., w = 2000 for a one-million node
social network). Now, an honest peer accepts the joining of a new peer if
the random walk of the former intersects with the one of the latter. It is not
difficult to choose an appropriate w based on the size of the social network so
that the random walks of an honest peer reside entirely within the honest peer
set. On the other hand, for a malicious new peer’s random walk to intersect
with some random walks of an honest peer, one of the attack edges must be
used. By monitoring the intersection points (which are the incident nodes of
edge attack edges), a honest peer can judge probabilistically whether a new
peer is indeed a Sybil peer.

7.5 DDoS Attacks

P2P systems are highly vulnerable to be used as a vehicle to launch dis-
tributed denial-of-service (DDoS) attack [Naoumov and Ross, 2006]. Specifi-
cally, there are two types of attack strategies for exploiting a P2P network:
(1) index poisoning; and (2) routing table poisoning.

Every P2P system maintains a certain mapping of keys to values. The most
notable example is the mapping of file names to file data. More precisely, file
names are eventually mapped to locations of file data. In index poisoning
attack, the adversary modifies the index table of peers so that keys are largely
mapped to the address of a victim peer, which in fact does not store the
requested data. Thus, a swarm of peers requesting certain popular files will
make connections with the victim peer, thereby overwhelming it.

In a similar vein, the adversary can also poison the routing table entries
of a large number of peers so that routing requests are directed to a victim
peer.

Brinkmeier et al. [Brinkmeier et al., 2009] also proposed several heuristic
techniques to make a P2P live media streaming system more attack resilient.
The first insight is that each node should have a low dependency (in terms of
data transmission) on other nodes. The rationale is that the streaming quality
will not be too affected by node dynamics. The second trick is to balance the
relevance and importance of nodes across the network so that the whole system
will not be too dependent upon a few key nodes. Finally, it is also important
to keep the topology information a secret so that potential malicious peers
cannot easily identify important target peers for launching the attack.



Security Issues 167

7.6 P2P Worm Propagation

Worm propagation over a P2P network has been considered as a highly
damaging threat [Xie and Zhu, 2007]. The reason is that the spreading of
worms over a P2P network is based on a topological approach—once a certain
peer is compromised by a worm, its routing table information can be ex-
ploited to specifically target active neighboring peers, without relying on the
“traditional” scanning approach. Xie and Zhu [Xie and Zhu, 2007] proposed a
heuristic method to combat worm propagation in a P2P network. First, they
proposed to proactively select a set of immune peers for blocking the worm.
The selection can be based on different schemes. Xie and Zhu considered a
partition-based scheme in which the immune peers are chosen in a way that
they partition the overlay graph into many nearly balanced sub-graphs. The
immune peers in each sub-graph are responsible for blocking the worm in their
own regions. They also considered a Connected Dominating Set-(CDS-) based
approach in which a security patch is sent to a set of un-infected peers. The
set of peers form a dominating set in that every peer not in the subset is
adjacent to at least one peer in the subset. A crux in these two schemes is
that some “security servers,” external to the P2P network, have to carry out
the selection task and the security patch delivery.

From another perspective, researchers also consider using a P2P network to
combat an outbreak of Internet worms. For instance, Shakkottai and Srikant
[Shakkottai and Srikant, 2007] investigated the fundamental insight about
propagation of worms under active defense by a P2P network. They derived
expressions of orders of magnitude of parameters, such as worm propagation
time, maximum number of infected hosts, and patching time. The expressions
are based on the following parameters:

• N : total number of hosts in the system;

• β: the maximum rate at which the worm can spread, known as the
virulence of the worm, expressed as the number of infections per unit
time;

• γ: the ratio of the maximum rate of patch propagation to worm’s viru-
lence;

• IN : the number of infected hosts when the patch is released; and

• PN : the number of dedicated patch servers.

For example, for a worm like Code-Red, the susceptible population is about
360,000 hosts and the number of infections per hour β = 1.8 [Staniford et al.,
2002].

Shakkottai and Srikant [Shakkottai and Srikant, 2007] showed that with
a fixed number of patch servers, the maximum number of infected hosts is



168 Peer-to-Peer Computing

Θ(N) and the time taken to disinfect the system is Θ(N−2PN

PN
). For example,

for Code-Red worm, roughly 200,000 hosts will be infected in 7 hours and it
takes about 25 hours to clean up the system.

On the other hand, with the help of a P2P system, the maximum number

of infected hosts is Θ(IN ( N
PN

)
1
γ ) and the time taken to disinfect the system is

Θ(ln N
PN

+ γ
1+γ ln IN ). For example, for Code-Red worm, even with γ = 2, the

maximum number of infected hosts is on the order of 1000 only and it takes
only 5 hours to clean up the system.

7.7 P2P SIP

A key component in VoIP systems, the SIP (Session Initiation Protocol)
is also considered as an ideal candidate to be carried by a P2P network, from
the robustness perspective [Chopra et al., 2009, Seedorf, 2006]. Specifically,
instead of relying on centralized servers, a DHT is employed for registering
and locating a user ID (i.e., the SIP-URI). However, while the robustness
advantage of this approach is attractive, that is also associated with a whole
lot of security concerns. Indeed, most of the security problems that we discuss
above could render the P2P SIP protocol crippled. For example, the routing
table poisoning attack could make a peer unreachable or overwhelmed with
unnecessary traffic.

7.8 Collusive Piracy

Content piracy has always been a serious problem, even before the advent
of the Internet. The proliferated use of P2P computing clients only makes
this problem worse—many P2P users simply ignore copyright issues to share
commercial contents, reducing the potential profits of online content delivery.

Lou and Hwang [Lou and Hwang, 2009] proposed a very interesting ap-
proach to combat collusive piracy in a P2P network. Specifically, while content
poisoning, as described above, is considered as a vice rather than a virtue, Lou
and Hwang suggested a scheme to deliberately poison the paid contents when
the system detects that some pirates are downloading them.

In their proposed scheme, each peer is identified with its endpoint address,
consisting of an IP address and a listening port number. Notice that for peers
behind an NAT device, the public address representing the NAT box is used as
the IP address. Files to be shared are then incorporated with digital signatures
derived from the endpoint addresses. Legitimate clients can verify the digital



Security Issues 169

signatures based on tokens obtained from the original content source from
which the contents are purchased. These tokens are time-stamped and have a
short valid time periods. Legitimate clients can periodically refresh the tokens
to continue the sharing, while pirates cannot do the same. Upon receiving
downloading requests, legitimate clients verify the identities of the requesting
peers. If the requesting peers are also legitimate, the digital signatures match
those associated with the shared file chunks. On the other hand, pirates are
detected because the signatures do not match.

Once a pirate’s downloading request is detected, legitimate clients send
poisoned chunks to the pirate. Consequently, pirates obtain some poisoned
chunks, which will further affect other colluded pirates. The ultimate result is
that the download time for a complete file will be too long to be tolerated by
the pirates.

7.9 Case Study: PPLive

In many practical P2P systems, sophisticated security measures including
chunk encryption, peer authentication, hashes or chunk signatures, etc. are
largely not implemented. For instance, in PPLive, peers are essentially unpro-
tected from easy attacks such as pollution attacks, making the user machines
highly vulnerable to malicious assaults (e.g., malware spreading). Yet it is
very difficult to implement secure and trustworthy data transfer in live video
streaming due to practical problems like key distribution and management.

7.10 Summary

P2P security subsumes Internet security. Yet due to its remarkable prolif-
eration, a P2P system’s security problems have far more serious adverse con-
sequences. Indeed, one can easily conceive a “nightmare” scenario—a large
P2P network is compromised by content poisoning where file contents have
malicious codes embedded inside, and then the large number of peers are
controlled so as to launch a DDoS attack, at unprecedented scale, to some
well-known commercial servers (e.g., eBay). In this scenario, each of the secu-
rity problems we discussed in this chapter plays a role. Thus, as is always said,
P2P security is a system issue so that it is only as strong as its weakest link.
Unless we can tackle all the problems satisfactorily, the envisioned nightmare
might happen at any time.



170 Peer-to-Peer Computing

7.11 Review Questions

1. Explain content poisoning attack.

2. What is Sybil attack? Why is it a serious problem?

3. Describe a possible scenario of buffer map cheating.

4. Why is it possible to launch a DDoS attack using a P2P network?

5. Why does a P2P network facilitate worm propagation?



Chapter 8

Conclusions

8.1 Where Are We Now?

P2P applications have been proliferating at an ever increasing rate. To
many people, especially the younger generations, using some kind of P2P ap-
plication is already an essential part of daily life. For instance, people routinely
visit some P2P web sites when they want to download some files (e.g., CD im-
ages, etc.). Furthermore, P2P media applications such as Skype and PPLive
are also the default choices for many people. With the advent of smart-phones,
it is widely envisioned that such P2P applications will have an even higher
penetration as people would very likely use them on the go. Indeed, such de-
velopment trends are major motivating factors for even large corporations to
consider a P2P contents delivery model.

By and large, P2P architectures can still be generally classified into struc-
tured and unstructured types. As we have discussed in Chapter 3, both types
have their merits and drawbacks. Yet the current trend is that unstructured
architectures play a more dominant role because of its inherent robustness
and higher scalability. Structured architecture, on the other hand, is mainly
used as an auxiliary component for meta-data indexing, e.g., locating a par-
ticular tracker server. This trend will likely continue as P2P applications are
increasingly used in a wireless and mobile manner.

As discussed in Chapter 4, in order to maintain a specific data sharing
architecture, some pre-defined topology control actions have to be taken by
participating peers. This is all the more important for structured architec-
tures, which, indeed, have stringent requirements for participants. However,
in view of the possibly vigorous peer dynamics, demanding topology control
actions might be a nuisance for the peers. This is one of the reasons why an
unstructured architecture is more appealing in a large scale P2P system with
dynamically changing peer population (i.e., churn). This is fundamentally re-
lated to the autonomous and rationally selfish nature of a peer.

A P2P system, at a fundamental level, is nothing more than a dynamic
“organism” constituted by a large number of self-optimizing peers. As such,
a P2P system’s “survival” (in a holistic sense) largely depends on the cooper-
ation among peers. Yet, each peer, being rationally selfish, contributes to the
community by “accident” rather than “on purpose.” Thus, to ensure that the

171



172 Peer-to-Peer Computing

P2P system is sustainable, which requires a certain minimum level of cooper-
ation, some incentive schemes have to be in place. That is why, for example,
BitTorrent, being the currently most popular file sharing scheme, also has a
simple yet effective incentive mechanism (i.e., the tit-for-tat strategy). How-
ever, for many other existing P2P systems, there is generally a lack of proper
incentive schemes, despite that there are many approaches proposed in the
research community.

Similarly, despite that many trust management schemes have been sug-
gested by researchers, they still do not find their way into real life implemen-
tations. Trust among peers is still largely based on the “real life trust” among
the physical users behind the peers. That is, if a user has interacted with an-
other user for quite some time, there will be a certain level of trust established
between them, and thus, such trust is also manifested between the two peers in
the P2P network. Autonomous trust management by the peer client programs
is still far from a reality. This is true even for some seemingly successful P2P
information sharing (or sometimes called static crowd sourcing) applications
such as Wikipedia [Wikipedia, 2011] in that the “trust” associated with each
information item shared is largely based on offline peer reviewing on the part
of the human users.

With a lack of systematic and autonomic trust management, security issues
are even more important because a peer might be sharing data with another
peer with distrust, which may even be malicious. However, simply put, security
is by and large a void in existing P2P systems. People could easily get bogus
file data which might even contain some malware or virus. Similar to the
situation of trust, security is still based on physical user’s judgment—the user
manually decides which “torrent” to join to download a file, manually observes
whether some links would lead to some phishing sites, etc.

Even when we consider a highly successful P2P streaming system like
PPLive in Chapters 5 to 7, there are voids in key aspects such as incentive,
trust, and security. Thus, these areas are fertile grounds for high impact re-
search.

8.2 Peer into the Future

“Peering” into the future, we would see P2P applications not just allowing
us to share information and processing power but also some more fundamental
resources, such as energy in our mobile devices, network bandwidth, security
keys, etc. In terms of sharing, different P2P applications could be merged
in the sense that getting some video data from a peer would mean giving
some file data to it as exchange. That is, in the future, the currently more or
less homogeneous “trade” (or barter) would become a wholesale “economy”
in which peers trade different kinds of “goods.” To make this happen, we



Conclusions 173

would probably need some “medium of exchange,” also known as “money”
in our physical world. However, such cyberspace “currency” could be totally
independent of and has nothing to do with our physical monetary system.
Much research needs to be done to realize this futuristic scenario. We do not
expect this to be far, though.

With a P2P economy in place, the architecture of the system would be
more robust because some peers would be “selling” infrastructure support
(i.e., forwarding bandwidth) so that a structured architecture could be revived
in many localized regions in the system, mimicking some “cities” in a human
being society. Thus, in the future, peers would form clusters and intra-cluster
topology would be highly structured, while inter-cluster topology would still
be unstructured or in the form of mesh.

Topology control, therefore, becomes a product of some tradings among
peers also. Specifically, some peers would be selling infrastructure support to
get file data in return (or through some medium of exchange in the process).

Incentive issues then are solved implicitly by the “market” forces, i.e., by
demand and supply. Indeed, a peer will be enticed to cooperate if it is given
some “commodities” in need for its service. On the other hand, some “services”
in peers would be eliminated by the market if there is little or even no demand
for them.

Autonomous trust among peers would still be a difficult problem to solve.
Perhaps this is because trust is really a hard-to-quantify notion. A possible
implementation could be based on fuzzy logic. Yet even if we use fuzzy logic,
we cannot do away with the inherent stochastic nature of trust, making it
possible to have erroneous actions.

As mentioned at the beginning of this section, even security resources such
as keys could be commodities for trade. Thus, security problems could also be
handled by the “market.”

Finally, a curious question is whether some form of “government” would
emerge. If so, its manifestation in a P2P system would defy the original pur-
pose of autonomous sharing/trading.



This page intentionally left blankThis page intentionally left blank



Bibliography

[Aberer, 2001] Aberer, K. (2001). P-Grid: A Self-Organizing Access Struc-
ture for P2P Information Systems. In Proceedings of the 9th International
Conference on Cooperative Information Systems.

[Abrams et al., 2005] Abrams, Z., McGrew, R., and Plotkin, S. (2005). A
Non-Manipulable Trust System Based on EigenTrust. ACM SIGecom Ex-
changes, (4):21–30.

[Ahlswede et al., 2000] Ahlswede, R., Cai, N., Li, S.-Y. R., and Yeung, R. W.
(2000). Network Information Flow. IEEE Transactions on Information
Theory, (7):1204–1216.

[Akyildiz et al., 2002] Akyildiz, I. F., Weilian, S., Sankarasubramaniam, Y.,
and Cayirci, E. (2002). A survey on sensor networks. IEEE Communications
Magazine, 40(8):102–114.

[Akyol et al., 2006] Akyol, E., Tekalp, A. M., and Civanlar, R. R. (2006).
Adaptive Peer-to-Peer Video Streaming with Optimized Flexible Multiple
Description Coding. In Proceedings of the 2006 International Conference
on Image Processing, pages 725–728.

[Anagnostakis and Greenwald, 2004] Anagnostakis, K. G. and Greenwald,
M. B. (2004). Exchange-Based Incentive Mechanisms for Peer-to-Peer File
Sharing. In Proceedings of the 24th International Conference on Distributed
Computing Systems.

[Anderson et al., 2002] Anderson, D. P., Cobb, J., Korpela, E., Lebofsky, M.,
and Werthimer, D. (2002). SETIhome: An Experminent in Public-Resource
Computing. Communications of the ACM, (11):56–61.

[Anderson et al., 2004] Anderson, R., Chan, H., and Perrig, A. (2004). Key
Infection: Smart Trust for Smart Dust. In ICNP 2004, pages 206–215.

[Androutsellis-Theotokis and Spinellis, 2004] Androutsellis-Theotokis, S. and
Spinellis, D. (2004). A Survey of Peer-to-Peer Content Distribution Tech-
nologies. ACM Computing Surveys, 36(4):335–371.

[Auvinen et al., 2007] Auvinen, A., Vapa, M., Weber, M., Kotilainen, N., and
Vuori, J. (2007). New Toplogy Management Algorithms for Unstructured

175



176 Bibliography

P2P Networks. In Proceedings of the 2nd International Conference on In-
ternet and Web Applications and Services (ICIW).

[Azzedin and Maheswaran, 2003] Azzedin, F. and Maheswaran, M. (2003).
Trust Modeling for Peer-to-Peer Based Computing Systems. In Proceed-
ings 17th International Parallel and Distributed Symposium (IPDPS).

[Azzedin and Maheswaran, 2004] Azzedin, F. and Maheswaran, M. (2004). A
Trust Brokering System and Its Application to Resource Management in
Public-Resource Grids. In Proceedings 18th International Parallel and Dis-
tributed Symposium (IPDPS).

[Balakrishnan et al., 2003] Balakrishnan, H., Kaashoek, M. F., Karger, D.,
Morris, R., and Stoica, I. (2003). Looking Up Data in P2P Systems. Com-
munications of the ACM, (2):43–48.

[Barabasi and Albert, 1999] Barabasi, A.-L. and Albert, R. (1999). Emer-
gence of Scaling in Random Networks. Science, (5439):509–512.

[Baset and Schulzrinne, 2006] Baset, S. A. and Schulzrinne, H. G. (2006). An
Analysis of the Skype Peer-to-Peer Internet Telephony Protoco. In Pro-
ceedings of INFOCOM 2006.

[Bazzi and Konjevod, 2005] Bazzi, R. and Konjevod, G. (2005). On the Es-
tablishment of Distinct Identities in Overlay Networks. In Proceedings of
the 24th ACM Symposium on Principles of Distributed Computing (PODC
2005), pages 312–320.

[Becker and Clement, 2004] Becker, J. U. and Clement, M. (2004). The Eco-
nomic Rationale of Offering Media Files in Peer-to-Peer Networks. In Pro-
ceedings of the 37th Hawaii International Conference on System Sciences.

[Bertino et al., 2004] Bertino, E., Ferrari, E., and Squicciarini, A. C. (2004).
Trust-χ: A Peer-to-Peer Framework for Trust Establishment. IEEE Trans-
actions on Knowledge and Data Engineering, (7):827–842.

[Bharghavan et al., 1994] Bharghavan, V., Demers, A., Shenker, S., and
Zhang, L. (1994). MACAW: A Media Access Protocol for Wireless LAN’s.
In ACM SIGCOMM Computer Communication Review, pages 212–225.

[BitComet, 2009] BitComet (2009). http://www.bitcomet.com.

[BitTorrent, 2009] BitTorrent (2009). http://www.bittorrent.com.

[Blom, 1984] Blom, R. (1984). An Optimal Class of Symmetric Key Gen-
eration Systems. In EUROCRYPT Workshop on Advances in Cryptology,
pages 335–338.

[Blundo et al., 1992] Blundo, C., Santis, A. D., Herzberg, A., Kutten, S., Vac-
caro, U., and Yung, M. (1992). Perfectly Secure Key Distribution for Dy-
namic Conferences. In CRYPTO 1992, volume 740, pages 471–486.



Bibliography 177

[BOINC, 2009] BOINC (2009). http://boinc.berkeley.edu.

[Bonald et al., 2008] Bonald, T., Massoulie, L., Mathieu, F., Perino, D., and
Twigg, A. (2008). Epidemic Live Streaming: Optimal Performance Trade-
Offs. In Proceedings of ACM SIGMETRICS 2008, pages 325–336.

[Brinkmeier et al., 2009] Brinkmeier, M., Schafer, G., and Strufe, T. (2009).
Optimally DoS Resistant P2P Topologies for Live Multimedia Streaming.
IEEE Transactions on Parallel and Distributed Systems, (6):831–844.

[Buchegger and Boudec, 2005] Buchegger, S. and Boudec, J.-Y. L. (2005).
Self-Policing Mobile Ad Hoc Networks by Reputation Systems. IEEE Com-
munications Magazine, pages 101–107.

[Butler et al., 2000] Butler, R., Welch, V., Engert, D., Foster, I., Tuecke, S.,
Volmer, J., and Kesselman, C. (2000). A National-Scale Authentication
Infrastructure. IEEE Computer, (12):60–66.

[Caizzone et al., 2008] Caizzone, G., Corghi, A., Giacomazzi, P., and Nonnoi,
M. (2008). Analysis of the Scalability of the Overlay Skype System. In
Proceedings of ICC 2008.

[Castro et al., 2003a] Castro, M., Druschel, P., Kermarrec, A., Nandi, A.,
Rowstron, A., and Singh, A. (2003a). Splitstream: High-Bandwidth Multi-
cast in Cooperative Environments. In Proceedings of the 19th ACM Sym-
posium on Operating Systems Principles.

[Castro et al., 2003b] Castro, M., Druschel, P., Kermarrec, A.-M., Nandi, A.,
Rowstron, A., and Singh, A. (2003b). SplitStream: High-Bandwidth Mul-
ticast in Cooperative Environments. In Proceedings of SOSP 2003, pages
298–313.

[Chan et al., 2005a] Chan, H., Gligor, V. D., Perrig, A., and Muralidharan,
G. (2005a). On the Distribution and Revocation of Cryptographic Keys in
Sensor Networks. IEEE Transactions on Dependable and Secure Computing,
2(3):233–247.

[Chan and Perrig, 2005] Chan, H. and Perrig, A. (2005). PIKE: Peer Inter-
mediaries for Key Establishment in Sensor Networks. In INFOCOM 2005,
volume 1, pages 524–535.

[Chan et al., 2003] Chan, H., Perrig, A., and Song, D. (2003). Random Key
Predistribution Schemes for Sensor Networks. In IEEE Symposium on Se-
curity and Privacy, pages 197–213.

[Chan et al., 2005b] Chan, S.-P., Poovendran, R., and Sun, M.-T. (2005b).
A Key Management Scheme in Distributed Sensor Networks Using Attack
Probabilities. In GLOBECOM 2005, volume 2, pages 1007–1011.



178 Bibliography

[Chopra et al., 2009] Chopra, D., Schulzrinne, H., Marocco, E., and Ivov, E.
(2009). Peer-to-Peer Overlays for Real-Time Communication: Security Is-
sues and Solutions. IEEE Communications Survey and Tutorials, (1):4–12.

[Cisco, 2009] Cisco (2009). Technical Specification of Cisco AIR-CB21AG.
http://www.cisco.com.

[Clarke et al., 2000] Clarke, I., Sandberg, O., Wiley, B., and Hong, T. (2000).
Freenet: A Distributed Anonymous Information Storage and Retrieval Sys-
tem. In Proceedings of the Workshop on Design Issues in Anonymous and
Unobservability.

[Cohen, 2003] Cohen, B. (2003). Incentives Build Robustness in BitTorrent.
In Proceedings of the Workshop on Economics of Peer-to-Peer Systems.

[CoolStreaming, 2009] CoolStreaming (2009). http://webtv.

coolstreaming.us.

[Costa and Almeida, 2007] Costa, C. and Almeida, J. (2007). Reputation
Systems for Fighting Pollution in Peer-to-Peer File Sharing Systems. In
Proceedings of the Seventh IEEE International Conference on Peer-to-Peer
Computing.

[Courcoubetis and Weber, 2006] Courcoubetis, C. and Weber, R. (2006). In-
centives for Large Peer-to-Peer Systems. IEEE Journal on Selected Areas
in Communications, 24(5):1034–1050.

[Crossbox Technology, 2008] Crossbox Technology (2008).
http://www.xbow.com/.

[Cui and Nahrstedt, 2003] Cui, Y. and Nahrstedt, K. (2003). Layered Peer-
to-Peer Streaming. In Proceedings of NOSSDAV’03, pages 162–171.

[Dabek et al., 2004] Dabek, F., Cox, R., Kaashoek, F., and Morris, R. (2004).
Vivaldi: A Decentralized Network Coordinate System. In Proceedings of
ACM SIGCOMM.

[Dale et al., 2008] Dale, C., Liu, J., Peters, J., and Li, B. (2008). Evolution
and Enhancement of BitTorrent Network Topologies. In Proceedings of
IWQoS 2008.

[Diffie and Hellman, 1976] Diffie, W. and Hellman, M. (1976). New Directions
in Cryptography. IEEE Transactions on Information Theory, 22:644–654.

[Dimitriou et al., 2007] Dimitriou, T., Karame, G., and Christou, I. (2007).
SuperTrust—A Secure and Efficient Framework for Handling Trust in
Super-Peer Networks. In Proceedings PODC 2007.



Bibliography 179

[Dinger and Hartenstein, 2006] Dinger, J. and Hartenstein, H. (2006). De-
fending the Sybil Attack in P2P Networks: Taxonomy, Challenges, and a
Proposal for Self-Registration. In Proceedings of the First International
Conference on Availability, Reliability and Security (ARES 2006).

[Douceur, 2002] Douceur, J. (2002). The Sybil Attack. In Proceedings of the
1st International Workshop on Peer-to-Peer Systems (IPTPS 2002).

[Du et al., 2004] Du, W., Deng, J., Han, Y. S., Chen, S., and Varshney, P. K.
(2004). A Key Management Scheme for Wireless Sensor Networks Using
Deployment Knowledge. In INFOCOM 2004, volume 1, pages 586–597.

[Du et al., 2005] Du, W., Deng, J., Han, Y. S., Varshney, P. K., Katz, J., and
Khalili, A. (2005). A Pairwise Key Predistribution Scheme for Wireless
Sensor Networks. ACM Transactions on Information and System Security,
8(2):228–258.

[eDonkey, 2009] eDonkey (2009). http://www.brothersoft.com/

downloads/edonkey.html.

[Efstathiou and Polyzos, 2003] Efstathiou, E. C. and Polyzos, G. C. (2003).
A Peer-to-Peer Approach to Wireless LAN Roaming. In Proceedings of
WMASH, pages 10–18.

[Einstein@Home, 2009] Einstein@Home (2009). http://einstein.phys.

uwm.edu.

[Eltoweissy et al., 2006] Eltoweissy, M., Moharrum, M., and Mukkamala, R.
(2006). Dynamic Key Management in Sensor Networks. IEEE Communi-
cations Magazine, 44(4):122–130.

[eMule, 2009] eMule (2009). http://www.emule-project.net.

[Erdös and Rényi, 1960] Erdös, P. and Rényi, A. (1960). On the Evolution of
Random Graph. Publ. Math. Inst. Hung. Acad. Sci., 5:17–61.

[Eschenauer and Gligor, 2002] Eschenauer, L. and Gligor, V. D. (2002). A
Key-Management Scheme for Distributed Sensor Networks. In The 9th
ACM Conference on Computer and Communications Security, pages 41–
47.

[Feldman and Chuang, 2005] Feldman, M. and Chuang, J. (2005). Overcom-
ing Free-Riding Behavior in Peer-to-Peer Systems. ACM SIGccom Ex-
changes, 5(4):41–50.

[Feldman et al., 2004a] Feldman, M., Lai, K., Stoica, I., and Chuang, J.
(2004a). Robust Incentive Techniques for Peer-to-Peer Networks. In Pro-
ceedings of the 5th ACM conference on Electronic Commerce, pages 102–
111.



180 Bibliography

[Feldman et al., 2004b] Feldman, M., Papadimitriou, C., Chuang, J., and Sto-
ica, I. (2004b). Free-Riding and Whitewashing in Peer-to-Peer Systems. In
Proceedings of the 2004 SIGCOMM Workshop on Practice and Theory of
Incentives in Networked Systems, pages 228–235.

[Felegyhazi et al., 2006] Felegyhazi, M., Hubaux, J.-P., and Buttyan, L.
(2006). Nash Equilibria of Packet Forwarding Strategies in Wireless Ad
Hoc Networks. IEEE Transactions on Mobile Computing, 5(5):463–476.

[Feng and Li, 2008] Feng, C. and Li, B. (2008). On Large-Scale Peer-to-Peer
Streaming Systems with Network Coding. In Proceedings of ACM Multi-
media 2008, pages 269–278.

[Figueiredo et al., 2005] Figueiredo, D., Shapiro, J., and Towsley, D. (2005).
Incentives to Promote Availability in Peer-to-Peer Anonymity Systems. In
Proceedings of the 13th IEEE International Conference on Network Proto-
cols.

[Folding@Home, 2009] Folding@Home (2009). http://folding.stanford.

edu.

[Foster and Kesselman, 1999] Foster, I. and Kesselman, C. (1999). The Grid:
Blueprint for a New Computing Infrastructure. San Francisco.

[Foxy, 2009] Foxy (2009). http://tw.myfoxy.net.

[Frey and Murphy, 2008] Frey, D. and Murphy, A. L. (2008). Failure-Tolerant
Overlay Trees for Large-Scale Dynamic Networks. In Proceedings of the
Eighth International Conference on Peer-to-Peer Computing (P2P 2008),
pages 351–361.

[Fu et al., 2005] Fu, H., Kawamura, S., Zhang, M., and Zhang, L. (2005).
Replication Attack on Random Key Pre-Distribution Schemes for Wireless
Sensor Networks. In The 6th Annual IEEE SMC Information Assurance
Workshop, pages 134–141.

[Fu et al., 2008] Fu, L., Qu, H., Chen, H., Wang, H., and Wang, X. (2008).
A Hierarchical and Heterogeneous P2P-SIP Architecture. In Proceedings of
ICPCA 2008, pages 995–998.

[Ge et al., 2003] Ge, Z., Figueiredo, D. R., Sharad, J., Kurose, J., and
Towsley, D. (2003). Modeling Peer-Peer File Sharing Systems. In Pro-
ceedings IEEE INFOCOM 2003, pages 2188–2198.

[giFT-FastTrack, 2009] giFT-FastTrack (2009). http://developer.

berlios.de/projects/gift-fasttrack.

[Gkantsidis and Rodriguez, 2005] Gkantsidis, C. and Rodriguez, P. (2005).
Network Coding for Large Scale Content Distribution. In Proceedings IEEE
INFOCOM.



Bibliography 181

[Gnutella Protocol Development, 2009] Gnutella Protocol Development
(2009). http://rfc-gnutella.sourceforge.net.

[Golle et al., 2001] Golle, P., Leyton-Brown, K., and Mironov, I. (2001). In-
centives for Sharing in Peer-to-Peer Networks. In Proceedings of the ACM
Conference on Electronic Commerce, pages 264–267.

[Goyal, 2001] Goyal, V. K. (2001). Multiple Description Coding: Compression
Meets the Network. IEEE Signal Processing Magazine, (5):74–93.

[GreenTea Technologies Inc., 2009] GreenTea Technologies Inc. (2009). http:
//www.greenteatech.com.

[Griffiths et al., 2006] Griffiths, N., Chao, K.-M., and Younas, M. (2006).
Fuzzy Trust for Peer-to-Peer Systems. In Proceedings 26th IEEE Inter-
national Conference on Distributed Computing Systems Workshops.

[GTRAN, 2009] GTRAN (2009). Technical Specification of GTRAN Dot-
Surfer 6210. http://www.gtran.com.

[Gu et al., 2008] Gu, X., Wen, Z., Yu, P. S., and Shae, Z.-Y. (2008). peerTalk:
A Peer-to-Peer Multiparty Voice-over-IP System. IEEE Transactions on
Parallel and Distributed Systems, 19(4):515–528.

[Gupta and Somani, 2004] Gupta, R. and Somani, A. K. (2004). A Pricing
Strategy for Incentivizing Selfish Nodes to Share Resources in Peer-to-Peer
(P2P) Networks. In Proceedings of the IEEE International Conference on
Networks.

[Gura et al., 2004] Gura, N., Patel, A., Wander, A., Eberle, H., and Shantz,
S. C. (2004). Comparing Elliptic Curve Cryptography and RSA on 8-bit
CPUs. In Workshop on Cryptographic Hardware and Embedded Systems,
pages 119–132.

[Habib and Chuang, 2006] Habib, A. and Chuang, J. (2006). Service Differ-
entiated Peer Selection: An Incentive Mechanism for Peer-to-Peer Media
Streaming. IEEE Transactions on Multimedia, 8(3):601–621.

[Hariri et al., 2007] Hariri, B., Shirmohammadi, S., and Pakravan, M. R.
(2007). A Distributed Toplogy Control Algorithm for P2P Based Simu-
lations. In Proceedings of the 11th IEEE Symposium on Distributed Simu-
lation and Real-Time Applications.

[Hastings, 1970] Hastings, W. (1970). Monte Carlo Sampling Methods Using
Markov Chains and Their Applications. Biometrika, (1):97–109.

[Hausheer et al., 2003] Hausheer, D., Liebau, N. C., Mauthe, A., Steinmetz,
R., and Stiller, B. (2003). Token Based Accounting and Distributed Pricing
to Introduce Market Mechanisms in a Peer-to-Peer File Sharing Scenario.
In Proceedings of the Third International Conference on Peer-to-Peer Com-
puting.



182 Bibliography

[Hausheer and Stiller, 2005] Hausheer, D. and Stiller, B. (2005). Decentral-
ized Auction-Based Pricing with PeerMart. In Proceedings of the 9th
IFIP/IEEE International Symposium on Integrated Network Management.

[Hefeeda et al., 2003] Hefeeda, M., Habib, A., Botev, B., Xu, D., and Bhar-
gava, B. (2003). PROMISE: Peer-to-Peer Media Streaming Using Collect-
Cast. In Proceedings of the ACM Multimedia.

[Hei et al., 2007a] Hei, X., Liang, C., Liang, J., Liu, Y., and Ross, K. W.
(2007a). A Measurement Study of a Large-Scale P2P IPTV System. IEEE
Transactions on Multimedia, 9(8):1672–1687.

[Hei et al., 2007b] Hei, X., Liu, Y., and Ross, K. W. (2007b). Inferring
Network-Wide Quality in P2P Live Streaming Systems. IEEE Journal on
Selected Areas in Communications, 25(9):1640–1654.

[Horvath et al., 2008] Horvath, A., Telek, M., Rossi, D., Veglia, P., Ciullo,
D., Garcia, M. A., Leonardi, E., and Mellia, M. (2008) Dissecting PPLive,
SopCast, TVAnts.

[Hsiao and King, 2003] Hsiao, H.-C. and King, C.-T. (2003). Bristle: A Mobile
Structured Peer-to-Peer Architecture. In Proceedings of IPDPS 2003.

[Hsieh and Sivakumar, 2004] Hsieh, H.-Y. and Sivakumar, R. (2004). On Us-
ing Peer-to-Peer Communication in Cellular Wireless Data Networks. IEEE
Transactions on Mobile Computing, 3(1):57–72.

[hua Chu and Zhang, 2004] hua Chu, Y. and Zhang, H. (2004). Considering
Altruism in Peer-to-Peer Internet Streaming Broadcast. In Proceedings of
NOSSDAV’04, pages 10–15.

[Huang et al., 2007] Huang, C., Li, J., and Ross, K. W. (2007). Can Internet
Video-on-Demand Be Profitable? In Proceedings of SIGCOMM 2007, pages
133–144.

[Huang et al., 2008] Huang, Y., Fu, T. Z. J., Chiu, D.-M., Lui, J. C. S., and
Huang, C. (2008). Challenges, Design and Analysis of a Large-Scale P2P-
VoD System. In Proceedings of ACM SIGCOMM 2008, pages 375–388.

[Ileri et al., 2005] Ileri, O., Mau, S.-C., and Mandayam, N. B. (2005). Pric-
ing for Enabling Forwarding in Self-Configuring Ad Hoc Networks. IEEE
Journal on Selected Areas in Communications, 23(1):151–162.

[iMesh, 2009] iMesh (2009). http://www.imesh.com.

[Jafarisiavoshani et al., 2007] Jafarisiavoshani, M., Fragouli, C., Diggavi, S.,
and Gkantsidis, C. (2007). Bottleneck Discovery and Overlay Management
in Network Coded Peer-to-Peer Systems. In Proceedings ACM INM, pages
293–298.



Bibliography 183

[Jia et al., 2005] Jia, Z., Tiange, S., Liansheng, H., and Yiqi, D. (2005). A
New Micropayment Protocol Based on P2P Networks. In Proceedings of
the 2005 IEEE International Conference on e-Business Engineering.

[Jolly et al., 2003] Jolly, G., Kuscu, M. C., Kokate, P., and Younis, M. (2003).
A Low-Energy Key Management Protocol for Wireless Sensor Networks.
In The 8th IEEE International Symposium on Computers and Communi-
cation, volume 1, pages 335–340.

[Joost, 2009] Joost (2009). http://www.joost.com.

[Jun and Ahamad, 2005] Jun, S. and Ahamad, M. (2005). Incentives in Bit-
Torrent Induce Free Riding. In Proceedings of the ACM SIGCOMM 2005
Workshop.

[Jun et al., 2005] Jun, S., Ahamad, M., and Xu, J. J. (2005). Robust Informa-
tion Dissemination in Uncooperative Environments. In Proceedings of the
25th IEEE International Conference on Distributed Computing Systems.

[Kalogeraki et al., 2003] Kalogeraki, V., Delis, A., and Gunopulos, D. (2003).
Peer-to-Peer Architectures for Scalable, Efficient, and Reliable Media Ser-
vices. In Proceedings of IPDPS 2003.

[Kamvar et al., 2003] Kamvar, S. D., Schlosser, M. T., and Garcia-Molina,
H. (2003). The EigenTrust Algorithm for Reputation Management in P2P
Networks. In Proceedings WWW 2003.

[Kang and Mutka, 2005] Kang, S.-S. and Mutka, M. W. (2005). A Mobile
Peer-to-Peer Approach for Multimedia Content Sharing Using 3G/WLAN
Dual Mode Channels. Wireless Communications and Mobile Computing,
5:633–645.

[Karger et al., 1997] Karger, D., Lehman, E., Leighton, F., Levine, M., Lewin,
D., and Panigrahy, R. (1997). Consistent Hashing and Random Trees: Dis-
tributed Caching Protocols for Relieving Hot Spots on the World Wide
Web. In Proceedings of the 29th Annual ACM Symposium on Theory of
Computing, pages 654–663.

[KaZaA, 2009] KaZaA (2009). http://www.kazaa.com.

[Kho et al., 2008] Kho, W., Baset, S. A., and Schulzrinne, H. G. (2008). Skype
Relay Calls: Measuerments and Experiments. In Proceedings of INFOCOM
2008.

[Koblitz, 1987] Koblitz, N. (1987). Elliptic Curve Cryptosystems. Mathemat-
ics of Computation, 48(177):203–209.

[Krishnana et al., 2003] Krishnana, R., Smith, M. D., and Telang, R. (2003).
The Economics of Peer-to-Peer Networks. Journal of Information Technol-
ogy Theory and Application, 5(3):31–44.



184 Bibliography

[Kumar et al., 2006] Kumar, R., Yao, D. D., Bagchi, A., Ross, K. W., and
Rubenstein, D. (2006). Fluid Modeling of Pollution Proliferation in P2P
Networks. In Proceedings of the ACM SIGMETRICS, pages 335–346.

[Kwok, 2007] Kwok, Y.-K. (2007). Key Management in Wireless Sensor Net-
works. In Security in Distributed and Networking Systems, Yang Xiao and
Yi Pan (eds.), World Scientific Publishing Co.

[Kwong and Tsang, 2008] Kwong, K.-W. and Tsang, D. H. K. (2008).
Building Heterogeneous Peer-to-Peer Networks: Protocol and Analysis.
IEEE/ACM Transactions on Networking, (2):281–292.

[Lagesse and Kumar, 2007] Lagesse, B. and Kumar, M. (2007). UBCA:
Utility-Based Clustering Architecture for Peer-to-Peer Systems. In Pro-
ceedings of ICDCS Workshop 2007.

[Lenstra and Verheul, 2000] Lenstra, A. K. and Verheul, E. R. (2000). The
XTR public key system. In The 20th Annual International Cryptology Con-
ference on Advances in Cryptology, pages 1–19.

[Lethin, 2001] Lethin, R. (2001). Reputation. In Peer-to-Peer: Harnessing
the Benefits of a Disruptive Technology, pages 341–353.

[Leuf, 2002] Leuf, B. (2002). Peer-to-Peer: Collaboration and Sharing over
the Internet. Boston.

[Leung and Kwok, 2005a] Leung, A. K. H. and Kwok, Y.-K. (2005a). An Effi-
cient and Practical Greedy Algorithm for Server-Peer Selection in Wireless
Peer-to-Peer File Sharing Networks. In Proceedings of the International
Conference on Mobile Ad-hoc and Sensor Networks (MSN’2005), pages
1016–1025.

[Leung and Kwok, 2005b] Leung, A. K. H. and Kwok, Y.-K. (2005b).
Community-Based Asynchronous Wakeup Protocol for Wireless Peer-to-
Peer File Sharing Networks. In Proceedings of the IEEE Second Annual
International Conference on Mobile and Ubiquitous Systems: Networking
and Services (MobiQuitous’2005), pages 342–350.

[Leung and Kwok, 2005c] Leung, A. K. H. and Kwok, Y.-K. (2005c). En-
ergy Conservation by Peer-to-Peer Relaying in Quasi-Ad Hoc Networks. In
Proceedings of the IFIP International Conference on Network and Parallel
Computing (NPC’2005), pages 45l–460.

[Leung and Kwok, 2005d] Leung, A. K. H. and Kwok, Y.-K. (2005d). On
Topology Control of Wireless Peer-to-Peer File Sharing Networks: Energy
Efficiency, Fairness and Incentive. In Proceedings of the IEEE Interna-
tional Symposium on a World of Wireless, Mobile and Multimedia Networks
(WoWMoM’2005), pages 318–323.



Bibliography 185

[Leung and Kwok, 2008] Leung, A. K.-H. and Kwok, Y.-K. (2008). On Lo-
calized Application-Driven Topology Control for Energy-Efficient Wire-
less Peer-to-Peer File Sharing. IEEE Transactions on Mobile Computing,
(1):66–80.

[Li et al., 2007] Li, B., Xie, S., Keung, G. Y., Liu, J., Stoica, I., Zhang, H.,
and Zhang, X. (2007). An Empirical Study of the CoolStreaming+ System.
IEEE Journal on Selected Areas in Communications, (9):1627–1639.

[Li et al., 2009] Li, D., Wu, J., and Cui, Y. (2009). Defending Against Buffer
Map Cheating in DONet-Like P2P Streaming. IEEE Transactions on Mul-
timedia, (3):535–542.

[Li and Singhal, 2007] Li, H. and Singhal, M. (2007). Trust Management in
Distributed Systems. IEEE Computer, pages 45–53.

[Li et al., 2008] Li, Z., Yu, Y., Hei, X., and Tsang, D. H. K. (2008). Towards
Low-Redundany Push-Pull P2P Live Streaming. In Proceedings of QShine
2008.

[Liang et al., 2005] Liang, J., Kumar, R., and Ross, K. W. (2005). The KaZaA
Overlay: A Measurement Study. Computer Networks.

[Lin et al., 2007] Lin, Z., Feng, X., Yuan, W., and Jian, L. (2007). A Seman-
tic and Time Related Recommendation-Feedback Trust Model. In Pro-
ceedings 2nd International Conference Availability, Reliability, and Security
(ARES).

[Liu and Ning, 2003] Liu, D. and Ning, P. (2003). Location-Based Pairwise
Key Establishments for Static Sensor Networks. In The 1st ACM Workshop
on Security of Ad Hoc and Sensor Networks, pages 72–82.

[Liu et al., 2005a] Liu, D., Ning, P., and Li, R. (2005a). Establishing Pairwise
Keys in Distributed Sensor Networks. ACM Transactions on Information
and System Security, 8(1):41–77.

[Liu et al., 2005b] Liu, Y., Xiao, L., Liu, X., Ni, L. M., and Zhang, X. (2005b).
Location Awareness in Unstructured Peer-to-Peer Systems. IEEE Trans-
actions on Parallel and Distributed Systems, (2):163–174.

[Lorincz et al., 2004] Lorincz, K., Malan, D. J., Fulford-Jones, T. R., Nawoj,
A., Clavel, A., Shnayder, V., Mainland, G., Welsh, M., and Moulton, S.
(2004). Sensor Networks for Emergency Response: Challenges and Oppor-
tunities. IEEE Pervasive Computing, 3(4):16–23.

[Lou and Hwang, 2009] Lou, X. and Hwang, K. (2009). Collusive Piracy Pre-
vention in P2P Content Deliver Networks. IEEE Transactions on Comput-
ers, (7):970–983.



186 Bibliography

[Lu et al., 2007a] Lu, L., Han, J., Hu, L., Huai, J., Liu, Y., and Ni, L. M.
(2007a). Pseudo Trust: Zero-Knowledge Based Authentication in Anony-
mous Peer-to-Peer Protocols. In Proceedings 22nd International Parallel
and Distributed Symposium (IPDPS).

[Lu et al., 2007b] Lu, M.-T., Wu, J.-C., Peng, K.-J., Huang, P., Yao, J. J.,
and Chen, H. H. (2007b). Design and Evaluation of a P2P IPTV System
for Heterogeneous Networks. IEEE Transactions on Multimedia, (8):1568–
1579.

[Lv et al., 2002] Lv, Q., Cao, P., Cohen, E., Li, K., and Shenker, S. (2002).
Search and Replication in Unstructured Peer-to-Peer Networks. In Pro-
ceedings of the 16th ACM International Conference on Supercomputing
(ICS’02), pages 84–95.

[Ma and Zhu, 2008] Ma, L. and Zhu, W. (2008). A Carrier Grade Peer-to-
Peer Network Architecture. In Proceedings of the 1st ITU-T Kaleidoscope
Academic Conference.

[Ma et al., 2004a] Ma, R. T. B., Lee, S. C. M., Lui, J. C. S., and Yau, D.
K. Y. (2004). A Game Theoretic Approach to Provide Incentive and Service
Differentiation in P2P Networks Richard T. B. Ma and Sam C. M. Lee and
John C. S. Lui and David K. Y. Yau. In Proceedings of SIGMETRICS,
pages 189–198.

[Ma et al., 2004b] Ma, R. T. B., Lee, S. C. M., Lui, J. C. S., and Yau, D.
K. Y. (2004). An Incentive Mechanism for P2P Networks. In Proceedings
of the 24th International Conference on Distributed Computing Systems.

[Malan et al., 2004] Malan, D. J., Welsh, M., and Smith, M. D. (2004). A
Public-Key Infrastructure for Key Distribution in Tinyos Based on Elliptic
Curve Cryptography. In The 1st Annual IEEE Communications Society
Conference on Sensor and Ad Hoc Communications and Networks, pages
71–80.

[Marbach and Qiu, 2005] Marbach, P. and Qiu, Y. (2005). Cooperation in
Wireless Ad Hoc Networks: A Market Based Approach. IEEE/ACM Trans-
actions on Networking, 13(6):1325–1338.

[Marsh and Dibben, 2005] Marsh, S. and Dibben, M. R. (2005). Trust, Un-
trust, Distrust, and Mistrust—An Exploration of the Dark(er) Side. In
Proceedings International Conference Trust Management, pages 17–33.

[Maze, 2006] Maze (2006). http://maze.pku.edu.cn.

[Metropolis et al., 1953] Metropolis, N., Rosenbluth, A., Rosenbluth, M.,
Teller, A., and Teller, E. (1953). Equation of State Calculations by Fast
Computing Machines. The Journal of Chemical Physics, (6):1087–1092.



Bibliography 187

[Milgram, 1967] Milgram, S. (1967). The Small World Problem. Psychology
Today, (1):60–67.

[Miller, 1985] Miller, V. S. (1985). Use of Elliptic Curves in Cryptography.
Lecture Notes in Computer Science: Advances in Cryptology, 218:417–426.

[Milojicic et al., 2002] Milojicic, D. S., Kalogeraki, V., Lukose, R., Nagaraja,
K., Pruyne, J., Richard, B., Rollins, S., and Xu, Z. (2002). Peer-to-Peer
Computing. http://www.hpl.hp.com/techreports/2002/.

[Minar and Hedlund, 2001] Minar, N. and Hedlund, M. (2001). A Network of
Peers: Peer-to-Peer Models Through the History of the Internet. In Peer-
to-Peer: Harnessing the Benefits of a Disruptive Technology, pages 9–20.

[Mondal and Kitsuregawa, 2006] Mondal, A. and Kitsuregawa, M. (2006).
Privacy, Security and Trust in P2P Environments: A Perspective. In Pro-
ceedings 17th International Conference Database and Expert Systems Ap-
plications (DEXA 2006).

[µAmps Project, 2008] µAmps Project (2008). http://www-
mtl.mit.edu/researchgroups/icsystems/uamps/.

[Nakajima et al., 2007] Nakajima, Y., Watanabe, K., and Nemati, A. G.
(2007). Trustworthiness of Acquaintance Peers on Access Control Mod-
els. In Proceedings 18th International Workshop on Database and Expert
Systems Applications (DEXA).

[Naoumov and Ross, 2006] Naoumov, N. and Ross, K. (2006). Exploiting P2P
Systems for DDoS Attacks. In Proceedings of the First International Con-
ference on Scalable Information Systems.

[Napster, 2009] Napster (2009). http://free.napster.com.

[Newsome et al., 2004] Newsome, J., Shi, E., Song, D., and Perrig, A. (2004).
The Sybil Attack in Sensor Networks: Analysis & Defenses. In The 3rd
International Symposium on Information Processing in Sensor Networks,
pages 259–268.

[Ohnishi et al., 2007] Ohnishi, K., Nagamatsu, S., Okamura, T., and Oie, Y.
(2007). Autonomously Reconstructable Semi-Structured P2P Networks for
File Sharing. In Proceedings of the Third International Conference on Au-
tonomic and Autonomous Systems (ICAS 2007).

[Oram, 2001] Oram, A. (2001). Peer-to-Peer: Harnessing the Benefits of a
Disruptive Technology. Sebastopol.

[Osborne, 2004] Osborne, M. J. (2004). An Introduction to Game Theory.
Oxford University Press.



188 Bibliography

[Paillier, 1999] Paillier, P. (1999). Public-Key Cryptosystems Based on Dis-
crete Logarithm Residues. In Proceedings Eurocrypt 1999.

[Parno et al., 2005] Parno, B., Perrig, A., and Gligor, V. (2005). Distributed
Detection of Node Replication Attacks in Sensor Networks. In IEEE Sym-
posium on Security and Privacy, pages 49–63.

[Parvez et al., 2008] Parvez, K. N., Williamson, C., Mahanti, A., and Carls-
son, N. (2008). Analysis of BitTorrent-Like Protocols for On-Demand
Stored Media Streaming. In Proceedings of ACM SIGNMETRICS 2008,
pages 301–312.

[Perrig et al., 2002] Perrig, A., Szewczyk, R., Tygar, J. D., Wen, V., and
Culler, D. E. (2002). SPINS: Security Protocols for Sensor Networks. Wire-
less Networks, 8(5):521–534.

[Piatek et al., 2010] Piatek, M., Krishnamurthy, A., Venkataramani, A.,
Yang, R., Alex, D. Z., and Abstract, E. J. (2010). Contracts: Practical
Contribution Incentives for P2P Live Streaming. In Proceedings of NSDI
2010.

[PlanetLab, 2006] PlanetLab (2006). http://www.planet-lab.org.

[PPLive, 2009] PPLive (2009). http://www.pplive.com.

[PPStream, 2009] PPStream (2009). http://www.ppstream.com.

[Qiu and Srikant, 2004] Qiu, D. and Srikant, R. (2004). Modeling and Perfor-
mance Analysis of BitTorrent-Like Peer-to-Peer Networks. In Proceedings
of SIGCOMM, pages 367–377.

[Qu et al., 2009] Qu, Z., Zhou, J., Harjula, E., and Ylianttila, M. (2009).
Truncated Pyramid Peer-to-Peer Architecture with Vertical Tunneling
Model. In Proceedings of CCNC 2009.

[Raghunathan et al., 2006] Raghunathan, V., Ganeriwal, S., and Srivastava,
M. (2006). Emerging Techniques for Long Lived Wireless Sensor Networks.
IEEE Communications Magazine, 44(4):108–114.

[Rajaraman, 2002] Rajaraman, R. (2002). Topology Control and Routing in
Ad Hoc Networks: A Survey. In ACM SIGACT News 2002, pages 60–73.

[Ramaswamy and Liu, 2003] Ramaswamy, L. and Liu, L. (2003). Free Riding:
A New Challenge to Peer-to-Peer File Sharing Systems. In Proceedings of
the 36th Hawaii International Conference on System Sciences.

[Ranganathan et al., 2003] Ranganathan, K., Ripeanu, M., Sarin, A., and
Foster, I. (2003). To Share or Not to Share: An Analysis of Incentives
to Contribute in Collaborative File-Sharing Environments. In Proceedings
of the Workshop on Economics of Peer-to-Peer systems.



Bibliography 189

[Ratnasamy et al., 2001] Ratnasamy, S., Francis, P., Handley, M., Karp, R.,
and Shenker, S. (2001). A Scalable Content-Addressable Network. In Pro-
ceedings of ACM SIGCOMM 2001.

[Ripenau, 2001] Ripenau, M. (2001). Peer-to-Peer Architecture Case Study:
Gnutella Network. In Proceedings of IEEE 1st International Conference on
Peer-to-Peer Computing (P2P2001).

[Rivest et al., 1978] Rivest, R. L., Shamir, A., and Adleman, L. (1978). A
Method for Obtaining Digital Signatures and Public-Key Cryptosystems.
Communications of the ACM, 21:pp. 120–126.

[Rosenthal, 1964] Rosenthal, A. M. (1964). Thirty-Eight Witnesses. McGraw-
Hill.

[Roussopoulos et al., 2004] Roussopoulos, M., Baker, M., Rosenthal, D.,
Giuli, T., Maniatis, P., and Mogul, J. (2004). 2 P2P or Not 2 P2P? In
Proceedings of the Third International Workshop on Peer-to-Peer Systems
(IPTPS ’04).

[Rowaihy et al., 2007] Rowaihy, H., Enck, W., McDaniel, P., and Porta, T. L.
(2007). Limiting Sybil Attacks in Structured P2P Networks. In Proceedings
of the 2007 INFOCOM, pages 2596–2600.

[Rowstron and Druschel, 2001a] Rowstron, A. and Druschel, P. (2001a). Pas-
try: Scalable, Decentralized Object Location and Routing for Large-Scale
Peer-to-Peer Systems. In Proceedings of the 18th IFIP/ACM International
Conference on Distributed Systems Platforms (Middleware 2001).

[Rowstron and Druschel, 2001b] Rowstron, A. and Druschel, P. (2001b). Pas-
try: Scalable, Distributed Object Address and Routing for Large-Scale Peer-
to-Peer Systems. In Proceedings of the IFIP/ACM International Conference
on Distributed Systems Platforms.

[Saito, 2003] Saito, K. (2003). Peer-to-Peer Money: Free Currency over the
Internet. In Proceedings of the 2nd International Conference on Hu-
man.Society@Internet.

[Saito et al., 2005] Saito, K., Morino, E., and Murai, J. (2005). Multiplication
Over Time to Facilitate Peer-to-Peer Barter Relationship. In Proceedings
of the 16th International Workshop on Database and Expert Systems Ap-
plications.

[Salem et al., 2006] Salem, N. B., Buttyan, L., Hubaux, J.-P., and Jakobsson,
M. (2006). Node Cooperation in Hybrid Ad Hoc Networks. IEEE Trans-
actions on Mobile Computing, 5(4):365–376.

[Sanghavi and Hajek, 2005] Sanghavi, S. and Hajek, B. (2005). A New Mech-
anism for the Free-Rider Problem. In Proceedings of the SIGCOMM 2005
Workshop.



190 Bibliography

[Schelling, 1971] Schelling, T. C. (1971). Dynamic Models of Segregation.
Journal of Mathematical Sociology, (2).

[Schelling, 1978] Schelling, T. C. (1978). Micromotives and Macrobehavior.
W. W. Norton & Company.

[Schmidt et al., 2007] Schmidt, S., Steele, R., and Dillon, T. (2007). DEco
Arch: Trust and Reputation Aware Service Brokering Architecture in Dig-
ital Ecosystems. In Proceedings Inaugural IEEE International Conference
Digital Ecosystems and Technologies (DEST).

[Schoder and Fischbach, 2003] Schoder, D. and Fischbach, K. (2003). Peer-
to-Peer Prospects. Communications of the ACM, (2):27–29.

[Schollmeier, 2002] Schollmeier, R. (2002). A Definition of Peer-to-Peer Net-
working for the Classification of Peer-to-Peer Architectures and Applica-
tions. In Proceedings of the First International Conference on Peer-to-Peer
Computing (P2P’01), pages 27–29.

[Seedorf, 2006] Seedorf, J. (2006). Security Challenges for Peer-to-Peer SIP.
IEEE Network, pages 38–45.

[Sentinelli et al., 2007] Sentinelli, A., Marfia, G., Gerla, M., and Kleinrock, L.
(2007). Will IPTV Ride the Peer-to-Peer Stream? IEEE Communications
Magazine, pages 86–92.

[SETI@Home, 2009] SETI@Home (2009). http://setiathome.berkeley.

edu.

[Shakkottai and Srikant, 2007] Shakkottai, S. and Srikant, R. (2007). Peer
to Peer Networks for Defense Against Internet Worms. IEEE Journal on
Selected Areas in Communications, (9):1745–1752.

[Singh and Haahr, 2006] Singh, A. and Haahr, M. (2006). Creating an Adap-
tive Network of Hubs Using Schelling’s Model. Communications of the
ACM, (3):69–73.

[Singh and Raghavendra, 1998] Singh, S. and Raghavendra, C. S. (1998).
PAMAS—Power Aware Multi-Access Protocol with Signalling for Ad Hoc
Networks. In ACM SIGCOMM Computer Communication Review, pages
5–26.

[Singh et al., 2003] Singh, S., Ramabhadran, S., Baboescu, F., and Snoeren,
A. C. (2003). The Case for Service Provider Deployment of Super-Peers in
Peer-to-Peer Networks. In Proceedings of the Workshop on Economics of
Peer-to-Peer Systems.

[Singh et al., 1998] Singh, S., Woo, M., and Raghavendra, C. S. (1998).
Power-Aware Routing in Mobile Ad Hoc Networks. In Proceedings ACM
MOBICOM 1998, pages 181–190.



Bibliography 191

[Skype, 2009] Skype (2009). http://www.skype.com.

[Smart Dust Project, 2008] Smart Dust Project (2008).
http://robotics.eecs.berkeley.edu/∼pister/smartdust/.

[Smith et al., 2003] Smith, H., Clippinger, J., and Konsynski, B. (2003). Rid-
ing the Wave: Discovering the Value of P2P Technologies. Communications
of the Association for Information Systems, pages 94–107.

[Song et al., 2005] Song, S., Hwang, K., Zhou, R., and Kwok, Y.-K. (2005).
Trusted P2P Transactions with Fuzzy Reputation Aggregation. IEEE In-
ternet Computing, pages 24–34.

[Staniford et al., 2002] Staniford, S., Paxon, V., and Weaver, N. (2002). How
to Own the Internet in Your Spare Time. In Proceedings of the 11th USENIX
Security Symposium.

[Steinmetz and Wehrle, 2005] Steinmetz, R. and Wehrle, K. (2005). Peer-to-
Peer Systems and Applications. Springer.

[Stoica et al., 2001a] Stoica, I., Morris, R., Karger, D., Kaashoek, M. F., and
Balakrishnan, H. (2001a). Chord: A Scalable Peer-to-Peer Lookup Service
for Internet Applications. In Proceedings of ACM SIGCOMM 2001, pages
1–12.

[Stoica et al., 2001b] Stoica, I., Morris, R., Karger, D., Kaashoek, M. F., and
Balakrishnan, H. (2001b). Chord: A Scalable Peer-to-Peer Lookup Service
for Internet Applications. In Proceedings of the ACM SIGCOMM 2001,
pages 149–160.

[Sun and Garcia-Molina, 2004] Sun, Q. and Garcia-Molina, H. (2004). SLIC:
A Selfish Link-Based Incentive Mechanism for Unstructured Peer-to-Peer
Networks. In Proceedings of the 24th International Conference on Dis-
tributed Computing Systems.

[Sung et al., 2008] Sung, W.-L., Hu, S.-Y., and Jiang, J.-R. (2008). Selection
Strategies for Peer-to-Peer 3D Streaming. In Proceedings of ACM NOSS-
DAV 2008, pages 15–20.

[Suryanarayana et al., 2005] Suryanarayana, G., Erenkrantz, J. R., and Tay-
lor, R. N. (2005). An Architectural Approach for Decentralized Trust Man-
agement. IEEE Internet Computing, pages 16–23.

[Tang et al., 2007] Tang, Y., Luo, J.-G., Zhang, Q., Zhang, M., and Yang,
S. (2007). Deploying P2P Networks for Large-Scale Live Video-Streaming
Service. IEEE Communications Magazine, pages 100–106.

[Tribler, 2009] Tribler (2009). http://www.tribler.org.



192 Bibliography

[Tuan, 2006] Tuan, T. A. (2006). A Game-Theoretic Analysis of Trust Man-
agement in P2P Systems. In Proceedings CCE 2006.

[Varian, 2003] Varian, H. R. (2003). The Social Cost of Sharing. In Proceed-
ings of the Workshop on Economics of Peer-to-Peer Systems.

[Venot and Yan, 2007] Venot, S. and Yan, L. (2007). Peer-to-Peer Media
Streaming Application Survey. In Proceedings of the International Confer-
ence on Mobile Ubiquitous Computing, Systems, Services and Technologies,
pages 139–148.

[vivek Shrivastava and Banerjee, 2005] vivek Shrivastava and Banerjee, S.
(2005). Natural Selection in Peer-to-Peer Streaming: From the Cathedral
to the Bazaar. In Proceedings of NOSSDAV’05.

[Vu et al., 2010] Vu, L., Gupta, I., Nahrstedt, K., and Liang, J. (2010). Un-
derstanding Overlay Characteristics of a Large-Scale Peer-to-Peer IPTV
System. ACM Transactons on Multimedia Computing, Communications,
and Applications, (4).

[Wang and Bhargava, 2004] Wang, W. and Bhargava, B. (2004). Visualiza-
tion of Wormholes in Sensor Networks. In ACM Workshop on Wireless
Security, pages 51–60.

[Wang and Li, 2005] Wang, W. and Li, B. (2005). Market-Driven Bandwidth
Allocation in Selfish Overlay Networks. In Proceedings of the IEEE INFO-
COM 2005.

[Wang et al., 2005] Wang, Y., Reibman, A. R., and Lin, S. (2005). Multiple
Description Coding for Video Delivery. Proceedings of the IEEE, pages
57–70.

[Watro et al., 2004] Watro, R., Kong, D., Cuti, S., Gardiner, C., Lynn, C.,
and Kruus, P. (2004). TinyPK: Securing Sensor Networks with Public Key
Technology. In The 2nd ACM Workshop on Security of Ad Hoc and Sensor
Networks, pages 59–64.

[Watts and Strogatz, 1998] Watts, D. and Strogatz, S. (1998). Collective Dy-
namics of Small-World Networks. Nature, (6684):409–410.

[Wei and Chen, 2008] Wei, T. and Chen, C. (2008). Study of PPStream Based
on Measurement. In Proceedings of the Second International Symposium on
Intelligent Information Technology Application, pages 900–905.

[Wikipedia, 2011] Wikipedia (2011). http://www.wikipedia.org/.

[WinMX World, 2009] WinMX World (2009). http://winmxworld.com.

[WINS Project, 2008] WINS Project (2008). http://www.janet.ucla.edu/
wins/.



Bibliography 193

[Wolfson et al., 2004] Wolfson, O., Xu, B., and Sistla, A. P. (2004). An Eco-
nomic Model for Resource Exchange in Mobile Peer to Peer Networks. In
Proceedings of the 16th International Conference on Scientific and Statisti-
cal Databased Management.

[Wongrujira and Seneviratne, 2005] Wongrujira, K. and Seneviratne, A.
(2005). Monetary Incentive with Reputation for Virtual Market-Place
Based P2P. In Proceedings of CoNEXT’05.

[Wood and Stankovic, 2002] Wood, A. D. and Stankovic, J. A. (2002). Denial
of Service in Sensor Networks. IEEE Computer Magazine, 35(10):54–62.

[Xie and Zhu, 2007] Xie, L. and Zhu, S. (2007). A Feasibility Study on De-
fending Against Ultra-Fast Topological Worms. In Proceedings of the Sev-
enth IEEE International Conference on Peer-to-Peer Computing, pages 61–
68.

[Xie et al., 2007] Xie, S., Li, B., Keung, G. Y., and Zhang, X. (2007). Cool-
Streaming: Desing, Theory, and Practice. IEEE Transactions on Multime-
dia, (8):1661–1671.

[Xiong and Liu, 2004] Xiong, L. and Liu, L. (2004). PeerTrust: Supporting
Reputation-Based Trust for Peer-to-Peer Electronic Communities. IEEE
Transactions on Knowledge and Data Engineering, (7):843–857.

[Xu et al., 2002] Xu, D., Hefeeda, M., Hambrusch, S., and Bhargava, B.
(2002). On Peer-to-Peer Media Streaming. In Proceedings of the 22nd
International Conference on Distributed Computing Systems.

[Xu et al., 2007] Xu, Z., He, Y., and Deng, L. (2007). A Multilevel Reputa-
tion System for Peer-to-Peer Networks. In Proceedings 6th International
Conference Grid and Cooperative Computing (GCC).

[Xue et al., 2004] Xue, G.-T., Li, M.-L., Deng, Q.-N., and You, J.-Y. (2004).
Stable Group Model in Mobile Peer-to-Peer Media Streaming System. In
Proceedings of the IEEE International Conference on Mobile Ad Hoc and
Sensor Systems, pages 334–339.

[Yang and Garcia-Molina, 2003] Yang, B. and Garcia-Molina, H. (2003).
PPay: Micropayments for Peer-to-Peer Systems. In Proceedings of the 10th
ACM Conference on Computer and Communication Security, pages 300–
310.

[Yang et al., 2005] Yang, M., Zhang, Z., Li, X., and Dai, Y. (2005). An Empir-
ical Study of Free-Riding Behavior in the Maze P2P File-Sharing System.
In Proceedings of IPTPS’05.

[Yang et al., 2008] Yang, S., Jin, H., Li, B., Liao, X., Yao, H., and Tu, X.
(2008). The Content Pollution in Peer-to-Peer Live Streaming Systems:



194 Bibliography

Analysis and Implications. In Proceedings of the 37th International Con-
ference on Parallel Processing, pages 652–659.

[Ye and Makedon, 2004] Ye, S. and Makedon, F. (2004). Collaboration-Aware
Peer-to-Peer Media Streaming. In Proceedings of MM’04, pages 412–415.

[Yeung and Kwok, 2006a] Yeung, M. K. H. and Kwok, Y.-K. (2006a). A
Game Theoretic Approach to Power Aware Wireless Data Access. IEEE
Transactions on Mobile Computing, 5(8).

[Yeung and Kwok, 2006b] Yeung, M. K. H. and Kwok, Y.-K. (2006b). On
Maximizing Revenue for Client-Server Based Wireless Data Access in the
Presence of Peer-to-Peer Sharing. In Proceedings of the 17th Annual IEEE
International Symposium on Personal, Indoor, and Mobile Radio Commu-
nications (PIMRC’2006).

[Yeung and Kwok, 2008] Yeung, M. K. H. and Kwok, Y.-K. (2008). Energy
Efficient Media Streaming in Wireless Hybrid Peer-to-Peer Systems. In Pro-
ceedings of the 22nd IEEE International Parallel and Distributed Processing
Symposium (IPDPS 2008).

[Yeung and Kwok, 2009] Yeung, M. K. H. and Kwok, Y.-K. (2009). On Game
Theoretic Peer Selection for Resilient Peer-to-Peer Media Streaming. IEEE
Transactions on Parallel and Distributed Systems, (10):1512–1525.

[Yeung, 2008] Yeung, R. (2008). Information Theory and Network Coding.
Springer.

[Yiu et al., 2007] Yiu, W.-P. K., Jin, X., and Chan, S.-H. G. (2007). Chal-
lenges and Approaches in Large-Scale P2P Media Streaming. IEEE Multi-
media, pages 50–59.

[YouTube, 2009] YouTube (2009). http://www.youtube.com.

[Yu and Singh, 2003] Yu, B. and Singh, M. P. (2003). Incentive Mechanisms
for Peer-to-Peer Systems. In Proceedings of the 2nd International Workshop
on Agents and Peer-to-Peer Computing.

[Yu et al., 2008] Yu, H., Kaminsky, M., Gibbons, P. B., and Flaxman, A. D.
(2008). SybilGuard: Defending Against Sybil Attacks via Social Networks.
IEEE/ACM Transactions on Networking, (3):576–589.

[Zhang et al., 2005a] Zhang, J., Liu, L., and Pu, C. (2005a). Constructing a
Proximity-Aware Power Law Overlay Network. In Proceedings of the IEEE
GLOBECOM 2005, pages 636–640.

[Zhang et al., 2007] Zhang, M., Zhang, Q., Sun, L., and Yang, S. (2007). Un-
derstanding the Power of Pull-Based Streaming Protocol: Can We Do Bet-
ter? IEEE Journal on Selected Areas in Communications, (9):1678–1694.



Bibliography 195

[Zhang et al., 2005b] Zhang, X., Liu, J., Li, B., and Yum, T.-S. P. (2005b).
CoolStreaming/DONet: A Data-Driven Overlay Network for Peer-to-Peer
Live Media Streaming. In Proceedings of INFOCOM 2005, pages 2102–2111.

[Zhang and Fang, 2007] Zhang, Y. and Fang, Y. (2007). A Fine-Grained Rep-
utation System for Reliable Service Selection in Peer-to-Peer Networks.
IEEE Transactions on Parallel and Distributed Systems, (8):1134–1145.

[Zhao et al., 2004] Zhao, B. Y., Huang, L., Stribling, J., Rhea, S. C., Joseph,
A. D., and Kubiatowicz, J. D. (2004). Tapestry: A Resilient Global-Scale
Overlay for Service Deployment. IEEE Journal on Selected Areas in Com-
munications, (1):41–53.

[Zhou and Hwang, 2007a] Zhou, R. and Hwang, K. (2007a). Gossip-Based
Reputation Aggregation for Unstructured Peer-to-Peer Networks. In Pro-
ceedings 22nd International Parallel and Distributed Symposium (IPDPS).

[Zhou and Hwang, 2007b] Zhou, R. and Hwang, K. (2007b). PowerTrust: A
Robust and Scalable Reputation System for Trusted Peer-to-Peer Comput-
ing. IEEE Transactions on Parallel and Distributed Systems, (4):460–473.



This page intentionally left blankThis page intentionally left blank



While people are now using peer-to-peer (P2P) applications for various 
processes, such as file sharing and video streaming, many research and 
engineering issues still need to be tackled in order to further advance P2P 
technologies. Peer-to-Peer Computing: Applications, Architecture, 
Protocols, and Challenges provides comprehensive theoretical and 
practical coverage of the major features of contemporary P2P systems and 
examines the obstacles to further success.

Setting the stage for understanding important research issues in P2P systems, 
the book first introduces various P2P network architectures. It then details 
the topology control research problem as well as existing technologies for 
handling topology control issues. The author describes novel and interesting 
incentive schemes for enticing peers to cooperate and explores recent 
innovations on trust issues. He also examines security problems in a P2P 
network. The final chapter addresses the future state of the field. Throughout 
the text, the highly popular P2P IPTV application, PPLive, is used as a case 
study to illustrate the practical aspects of the concepts covered.

Features 
•	 Discusses problems arising from the different aspects of P2P 

computing and offers potential solutions
•	 Emphasizes incentives as the most fundamental component in 

a P2P system
•	 Covers theoretical and practical aspects of key P2P components,  

such as architecture, peer selection, and topology control 
•	 Proposes important research and development directions for  

even more successful P2P applications

Addressing the unique challenges of P2P systems, this book presents 
practical applications of recent theoretical results in P2P computing. It also 
stimulates further research on critical issues, including performance and 
security problems. 

Computer Science

ISBN: 978-1-4398-0934-1

9 781439 809341

90000

Peer-to-Peer C
om

puting
Kw

ok

w w w . c r c p r e s s . c o m

K10464

www.crcpress.com

K10464 cvr mech.indd   1 7/7/11   10:51 PM


	Front Cover
	Contents
	List of Figures
	List of Tables
	Preface
	1. Introduction
	2. P2P Applications
	3. P2P Network Architectures
	4. Topology Control
	5. Incentives
	6. Trust
	7. Security Issues
	8. Conclusions
	Bibliography

