
Morgan Claypool Publishers&
w w w . m o r g a n c l a y p o o l . c o m

Series Editor: M. Tamer Özsu, University of Waterloo

CM& Morgan Claypool Publishers&SYNTHESIS LECTURES ON DATA MANAGEMENT

SYNTHESIS LECTURES ON DATA MANAGEMENT

About SYNTHESIs
This volume is a printed version of a work that appears in the Synthesis

Digital Library of Engineering and Computer Science. Synthesis Lectures

provide concise, original presentations of important research and development

topics, published quickly, in digital and print formats. For more information

visit www.morganclaypool.com

M. Tamer Özsu, Series Editor

ISBN: 978-1-60845-822-6

9 781608 458226

90000

Series ISSN: 2153-5418 P
A

C
IT

T
I • A

K
B

A
R

IN
IA

 • E
L

-D
IC

K
P

2P
 T

E
C

H
N

IQ
U

E
S

 F
O

R
 D

E
C

E
N

T
R

A
L

IZ
E

D
 A

P
P

L
IC

A
T

IO
N

S
M

O
R

G
A

N
&

C
L

A
Y

P
O

O
l

P2P Techniques for Decentralized Applications
Esther Pacitti, INRIA and Lirmm, University of Montpellier 2, France

Reza Akbarinia, INRIA and Lirmm, Montpellier, France

Manal El-Dick, Lebanese University

As an alternative to traditional client-server systems, Peer-to-Peer (P2P) systems provide major advantages

in terms of scalability, autonomy and dynamic behavior of peers, and decentralization of control. Thus, they

are well suited for large-scale data sharing in distributed environments. Most of the existing P2P approaches

for data sharing rely on either structured networks (e.g., DHTs) for efficient indexing, or unstructured networks

for ease of deployment, or some combination. However, these approaches have some limitations, such as lack

of freedom for data placement in DHTs, and high latency and high network traffic in unstructured networks.

To address these limitations, gossip protocols which are easy to deploy and scale well, can be exploited. In this

book, we will give a overview of these different P2P techniques and architectures, discuss their trade-offs and

illustrate their use for decentralizing several large-scale data sharing applications.

P2P Techniques
for Decentralized
Applications

Esther Pacitti

Reza Akbarinia

Manal El-Dick

P2P Techniques
for Decentralized Applications

Synthesis Lectures on Data
Management

Editor
M. Tamer Özsu, University of Waterloo

Synthesis Lectures on Data Management is edited by Tamer Özsu of the University of Waterloo.
The series will publish 50- to 125 page publications on topics pertaining to data management. The
scope will largely follow the purview of premier information and computer science conferences,
such as ACM SIGMOD, VLDB-ICDE, PODS, ICDT, and ACM KDD. Potential topics
include, but not are limited to: query languages, database system architectures, transaction
management, data warehousing, XML and databases, data stream systems, wide scale data
distribution, multimedia data management, data mining, and related subjects.

P2P Techniques for Decentralized Applications
Esther Pacitti, Reza Akbarinia, and Manal El-Dick
2012

Query Answer Authentication
HweeHwa Pang and Kian-Lee Tan
2012

Declarative Networking
Boon Thau Loo and Wenchao Zhou
2012

Full-Text (Substring) Indexes in External Memory
Marina Barsky, Ulrike Stege, and Alex Thomo
2011

Spatial Data Management
Nikos Mamoulis
2011

Database Repairing and Consistent Query Answering
Leopoldo Bertossi
2011

iv

Managing Event Information: Modeling, Retrieval, and Applications
Amarnath Gupta and Ramesh Jain
2011

Fundamentals of Physical Design and Query Compilation
David Toman and Grant Weddell
2011

Methods for Mining and Summarizing Text Conversations
Giuseppe Carenini, Gabriel Murray, and Raymond Ng
2011

Probabilistic Databases
Dan Suciu, Dan Olteanu, Christopher Ré, and Christoph Koch
2011

Peer-to-Peer Data Management
Karl Aberer
2011

Probabilistic Ranking Techniques in Relational Databases
Ihab F. Ilyas and Mohamed A. Soliman
2011

Uncertain Schema Matching
Avigdor Gal
2011

Fundamentals of Object Databases: Object-Oriented and Object-Relational Design
Suzanne W. Dietrich and Susan D. Urban
2010

Advanced Metasearch Engine Technology
Weiyi Meng and Clement T. Yu
2010

Web Page Recommendation Models: Theory and Algorithms
Sule Gündüz-Ögüdücü
2010

Multidimensional Databases and Data Warehousing
Christian S. Jensen, Torben Bach Pedersen, and Christian Thomsen
2010

v

Database Replication
Bettina Kemme, Ricardo Jimenez Peris, and Marta Patino-Martinez
2010

Relational and XML Data Exchange
Marcelo Arenas, Pablo Barcelo, Leonid Libkin, and Filip Murlak
2010

User-Centered Data Management
Tiziana Catarci, Alan Dix, Stephen Kimani, and Giuseppe Santucci
2010

Data Stream Management
Lukasz Golab and M. Tamer Özsu
2010

Access Control in Data Management Systems
Elena Ferrari
2010

An Introduction to Duplicate Detection
Felix Naumann and Melanie Herschel
2010

Privacy-Preserving Data Publishing: An Overview
Raymond Chi-Wing Wong and Ada Wai-Chee Fu
2010

Keyword Search in Databases
Jeffrey Xu Yu, Lu Qin, and Lijun Chang
2009

Copyright © 2012 by Morgan & Claypool

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means—electronic, mechanical, photocopy, recording, or any other except for brief quotations in
printed reviews, without the prior permission of the publisher.

P2P Techniques for Decentralized Applications

Esther Pacitti, Reza Akbarinia, and Manal El-Dick

www.morganclaypool.com

ISBN: 9781608458226 paperback
ISBN: 9781608458233 ebook

DOI 10.2200/S00414ED1V01Y201204DTM025

A Publication in the Morgan & Claypool Publishers series
SYNTHESIS LECTURES ON DATA MANAGEMENT

Lecture #25
Series Editor: M. Tamer Özsu, University of Waterloo

Series ISSN
Synthesis Lectures on Data Management
Print 2153-5418 Electronic 2153-5426

www.morganclaypool.com

P2P Techniques
for Decentralized Applications

Esther Pacitti
INRIA and Lirmm, University of Montpellier 2, France

Reza Akbarinia
INRIA and Lirmm, Montpellier

Manal El-Dick
Lebanese University

SYNTHESIS LECTURES ON DATA MANAGEMENT #25

CM& cLaypoolMorgan publishers&

ABSTRACT
As an alternative to traditional client-server systems, Peer-to-Peer (P2P) systems provide major
advantages in terms of scalability, autonomy and dynamic behavior of peers, and decentralization
of control. Thus, they are well suited for large-scale data sharing in distributed environments. Most
of the existing P2P approaches for data sharing rely on either structured networks (e.g., DHTs) for
efficient indexing, or unstructured networks for ease of deployment, or some combination. However,
these approaches have some limitations, such as lack of freedom for data placement in DHTs, and
high latency and high network traffic in unstructured networks. To address these limitations, gossip
protocols which are easy to deploy and scale well, can be exploited. In this book, we will give a
overview of these different P2P techniques and architectures, discuss their trade-offs and illustrate
their use for decentralizing several large-scale data sharing applications.

KEYWORDS
large scale data sharing, peer-to-peer systems, DHT, unstructuted overlays, gossip pro-
tocols, top-k queries, recommendation, content sharing, caching, CDN, on-line com-
munities, social-networks, information retrieval

ix

Contents

Preface . xi

Acknowledgments . xiii

1 P2P Overlays, Query Routing, and Gossiping .1

1.1 P2P Overlays . 1
1.1.1 Unstructured . 2
1.1.2 Structured . 2
1.1.3 Super-peer . 3
1.1.4 Comparing P2P Overlays . 3

1.2 Query Routing . 4
1.2.1 Query Routing in Unstructured Overlays . 5
1.2.2 Query routing in DHTs . 8
1.2.3 Query Routing in Super-Peers . 12

1.3 Gossip Protocols . 14
1.4 Replication . 17
1.5 Advanced Features on P2P Overlays . 18

1.5.1 Locality-Aware Overlays . 18
1.5.2 Interest-Based Overlays . 20
1.5.3 P2P Overlay Combination . 21

1.6 Conclusion . 22

2 Content Distribution in P2P Systems . 25

2.1 Introduction . 25
2.2 Insights on Traditional Content Distribution . 26

2.2.1 Background on Web Caching . 26
2.2.2 Overview of CDN . 27
2.2.3 Requirements and Open Issues of CDN . 27

2.3 P2P Content Distribution . 29
2.3.1 Advanced Features Used by Large-Scale P2P CDN 29
2.3.2 P2P CDN Solutions . 31

2.4 Conclusion . 39

x

3 Recommendation Systems . 41

3.1 Overview of Recommendation . 42
3.1.1 Collaborative Filtering . 43
3.1.2 Content-based Filtering . 44
3.1.3 Social Networks . 45

3.2 P2P Content Management . 46
3.2.1 Clustering Overlays . 47
3.2.2 Short link overlay . 48

3.3 P2P Recommendation . 49
3.3.1 Basic P2P prediction . 49
3.3.2 Social P2P Prediction Systems . 51

3.4 Conclusion . 54

4 Top-k Query Processing in P2P Systems . 57

4.1 General Model for Top-k Queries . 58
4.2 Top-k Queries In Distributed Systems . 61
4.3 Top-k Queries In P2P Systems . 64

4.3.1 Top-k Queries in Unstructured Overlays . 64
4.3.2 Top-k Queries in Super-peer Overlays . 69
4.3.3 Top-k Queries in DHTs . 70

4.4 Conclusion . 72

Bibliography . 75

Authors’ Biographies . 89

xi

Preface
The Web 2.0 has brought a paradigm shift in how people use the Web. Before this Web evolution,
users were merely passive consumers of content that is provided to them by a set of websites. In a
nutshell,Web 2.0 offers an architecture of participation where individuals can participate, collaborate,
share and create content. Web 2.0 applications deliver services that get better the more people use
it, while providing their own content and remixing it with others content. Today, there are many
emerging websites that have helped to pioneer the concept of participation in Web 2.0. Popular
examples include the online encyclopedia Wikipedia that enables individuals to create and edit
content (articles), social networking sites like Facebook, photo and video sharing sites like YouTube
and Flickr, as well as wikis and blogs. Social networking is even allowing scientific groups to expand
their knowledge base and share their theories which might otherwise become isolated and irrelevant.

With the Internet reaching a critical mass of users, Web 2.0 has encouraged the emergence
of peer-to-peer (P2P) technology as a new communication model. The P2P model stands in direct
contrast to the traditional client-server model, as it introduces symmetry in roles, where each peer is
both a client and a server. Whereas a client-server network requires more investment to serve more
clients, a P2P network pools the resources of each peer for the common good. In other terms, it
exhibits the network effect as defined by economists: the value of a network to an individual user
scales with the total number of participants. In theory, as the number of peers increases, the aggre-
gate storage space and content availability grow linearly, the user-perceived response time remains
constant, whereas the search throughput remains high or even grows. Therefore, it is commonly
believed that P2P networks are naturally suited for handling large-scale applications, due to their
inherent self-scalability. Since the late 1990s, P2P technology has gained popularity, mainly in the
form of file sharing applications where peers exchange multimedia files. Chapter 1 covers the most
relevant P2P concepts and overlays.

Under the Web 1.0 context, the content of web-servers is distributed to large audiences via
Content Distribution Networks (CDN). The main mechanism is to replicate popular content at
strategically placed and dedicated servers. As it intercepts and serves the clients queries, a CDN
decreases the workload on the original web-servers, reduces bandwidth costs, and keeps the user-
perceived latency low. Given that the Web is witnessing an explosive growth in the amount of
web content and users, P2P networks seem to be the perfect match to build low cost infrastruc-
tures for content distribution. This is because they can offer several advantages like decentralization,
self-organization, fault-tolerance and scalability. In a P2P system, users serve each other’s queries by
sharing their previously requested content, thus distributing the content without the need for power-
ful and dedicated servers. Chapter 2 presents an overview of P2P solutions for CDN decentralization
over different P2P overlays.

xii PREFACE

More recently, P2P technologies have also been exploited for on-line communities, where
participants are willing to post contents in order to share them. Interestingly, some on-line com-
munities’ participants prefer to keep and share their contents in their own workspace. For instance,
in modern e-science, such as bio-informatics, physics and environmental science, scientists must
deal with overwhelming amount of content (experimental data, documents, images, etc.) wishing to
keep their contents in their own PC’s instead of storing it in untrusted servers. Again, this seems
a perfect match to P2P networks. P2P File-sharing systems have proven very efficient at locating
content given specific queries. However, few solutions exist that are able to recommend the most
relevant documents given a keyword-based query.This requires the use if recommendation methods.
Chapter 3 presents some interesting P2P solutions for decentralized recommendation.

In very large-scale P2P systems, for each user’s query there may be a huge number of answers
most of which may be uninteresting for the user.Top-k queries have proved to be very useful to avoid
overwhelming the user with large numbers of uninteresting answers. In addition, by filtering useless
results they can significantly reduce the network traffic in P2P systems. By definition, a top-k query
returns only the k data the most relevant to the users query. The relevance of data can be measured
by a scoring function that the user specifies. In Chapter 4, we present some interesting approaches
for top-k query processing in P2P networks.

A very interesting lecture on P2P Data Management can be found in Aberer [2010]. The
authors focus on P2P management for data management, data integration and documents retrieval
systems. Different from Aberer [2010], our goal is to show how different P2P technologies can be
used generically for application decentralization focusing on Top-k, CDN and Recommendations
systems.

Esther Pacitti, Reza Akbarinia, and Manal El-Dick
April 2012

xiii

Acknowledgments
We would like to acknowledge Fady Draidi for his very useful inputs for recommendation systems.

1

C H A P T E R 1

P2P Overlays, Query Routing,
and Gossiping

A P2P system is a distributed system in which the peers (nodes) are relatively autonomous and
can join or leave the system anytime. By distributing data storage, processing and bandwidth
across autonomous peers, P2P systems can usually scale up to a very large number of peers. They
have been successfully used for sharing computation, e.g., Seti@home [Anderson et al., 2002] and
Genome@home [Larson et al., 2003a], [Larson et al., 2003b], internet services, e.g., P2P multicast
systems [Bhargava et al., 2004], or data, e.g., Gnutella1.

There are several features that distinguish data management in P2P systems from traditional
distributed database systems (DDBS), some of which are the following [Ng et al., 2003].

• Peers in P2P systems are very dynamic and can join and leave the system anytime. But, in a
DDBS, nodes are added to and removed from the system in a controlled manner.

• Usually there is no predefined global schema for describing the data shared by the peers.

• In P2P systems, the answers to queries are typically incomplete. The reason is that some peers
may be absent at query execution time. In addition, due to the very large scale of the network,
forwarding a query to all peers can be very inefficient.

• In P2P systems, there is no centralized catalog that can be used to determine the peers that
hold relevant data to a query. However, such a catalog is an essential component of DDBS.

In this chapter, we first give an overview of the existing P2P architectures, and compare their
properties from the perspective of data management.Then, in Section 1.2, we present the algorithms
that have been proposed for routing queries to relevant peers. In Section 1.3, we introduce the
utilization of gossip protocols for data propagation in P2P systems. In Section 1.4, we introduce
data replication in P2P systems. In Section 1.5,we discuss some advanced issues for data management
in P2P systems, and in Section 1.6 we conclude.

1.1 P2P OVERLAYS
P2P systems are built on a P2P overlay, and the overlay is built on top of the physical network
(typically the Internet). The topology of the P2P overlay strongly impacts the properties of the P2P
1http://www.gnutellaforums.com/. Accessed on October 2011

http://www.gnutellaforums.com/

2 1. P2P OVERLAYS, QUERY ROUTING, AND GOSSIPING

system, such as fault-tolerance, self-maintainability, performance and scalability. We consider three
main P2P overlay architectures: unstructured, structured, and super-peer.

1.1.1 UNSTRUCTURED
In unstructured P2P overlays, the topology is managed in a random manner. Each peer knows some
peers chosen usually randomly, and query routing is typically done by forwarding the query to the
peers that are in limited hop distance from the query originator (see Section 1.2 for more details).

Usually, there is no restriction on the manner the queries are described, for example keyword
search, SQL-like query, and other approaches can be used. Fault-tolerance is very high since all peers
provide equal functionality and are able to replicate data. In addition, each peer is autonomous to
decide which data to store.

The main problems of unstructured overlays are inefficient query routing and incompleteness
of query results. Query routing mechanisms in unstructured overlays usually do not scale up to a
large number of peers because of the huge amount of load they incur on the network. Also, the
incompleteness of the results can be high since some peers containing relevant data may not be
reached because they are too far away from the query originator.

Examples of P2P systems supported by unstructured overlay include Freenet [Clarke et al.,
2002] and Gnutella (before v0.4).

1.1.2 STRUCTURED
Structured overlays try to be efficient in query routing by tightly controlling the overlay topology
and data placement. Data (or pointers to them) are placed at precisely specified locations, and the
routing of queries to the data is done efficiently.

Distributed hash table (DHT) is the main representative of structured overlays. While there
are significant implementation differences between DHTs, they all map each given key into a peer
p, called responsible for the key, using a hash function and can lookup p efficiently, usually in
O(log n) routing hops where n is the number of peers [Harren et al., 2002]. DHTs typically provide
an operation put(key, data) that stores the data at the peer that is responsible for key. For requesting
a data, there is an operation get(key) that routes the key to the peer that is responsible for it, and
retrieves the requested data.

Because a peer is responsible for storing the values corresponding to its range of keys, au-
tonomy is limited. Furthermore, DHT queries are typically limited to exact match keyword search.
Much research has been done to extend the DHT capabilities to deal with more complex queries
such as range queries [Gao and Steenkiste, 2004], join queries [Huebsch et al., 2003], and top-k
queries [Akbarinia et al., 2007].

Examples of P2P systems supported by structured overlays include Chord [Stoica et al.,
2001], CAN [Ratnasamy et al., 2001],Tapestry [Zhao et al., 2004], Pastry [Rowstron and Druschel,
2001b], Freenet [Clarke et al., 2002], PIER [Huebsch et al., 2003], OceanStore [Kubiatowicz et al.,
2000], Past [Rowstron and Druschel, 2001c], and P-Grid [Aberer et al., 2003].

1.1. P2P OVERLAYS 3

1.1.3 SUPER-PEER
Unstructured and structured architectures are considered as "pure" P2P overlays because all their
peers provide the same functionality. In contrast, super-peer overlays are hybrid between client-
server systems and pure P2P overlays. Like client-server systems, some peers, called super-peers,
act as dedicated servers for some other peers and can perform complex functions such as indexing,
query processing, access control, and meta-data management. Using only one super-peer reduces to
client-server with all the problems associated with a single server. Like pure overlays, super-peers
can be organized in a P2P fashion and communicate with one another in sophisticated ways, thereby
allowing the partitioning or replication of global information across all super-peers. Super-peers can
be dynamically elected (e.g., based on their bandwidth and processing power) and replaced in the
presence of failures.

In a super-peer overlay, a requesting peer simply sends the request, which can be expressed in
a high-level language, to its responsible super-peer. The super-peer can then find the relevant peers
either directly through its index or indirectly using its neighbor super-peers.

The main advantages of super-peer overlays are efficiency and quality of service. The time
needed to find data by directly accessing indices in a super-peer is very small compared with query
routing in unstructured overlays. In addition, super-peer overlays exploit and take advantage of
different peers’ capabilities in terms of CPU power, bandwidth, or storage capacity as super-peers
take on a large portion of the entire network load. In contrast, in pure overlays, all nodes are equally
loaded regardless of their capabilities. Access control can also be better enforced since directory and
security information can be maintained at the super-peers. However, autonomy is restricted since
peers cannot log in freely to any super-peer. Fault-tolerance is typically low since super-peers are
single points of failure for their sub-peers (dynamic replacement of super-peers can alleviate this
problem).

Examples of super-peer systems include Edutella [Nejdl et al., 2003], Publius
[Waldman et al., 2000], and JXTA2. A more recent version of Gnutella also relies on super-
peers [Androutsellis-Theotokis and Spinellis, 2004a].

1.1.4 COMPARING P2P OVERLAYS
From the perspective of data management, the main requirements of a P2P system
are [Daswani et al., 2003]: autonomy, query expressiveness, efficiency, quality of service, fault-
tolerance, and security. Below, we describe these requirements, and then compare P2P overlays
based on these requirements.

• Autonomy. An autonomous peer should be able to join or leave the system at any time, and
to be connected to any peer it wants.

• Query expressiveness. The query language should allow the user to describe the desired data
at the appropriate level of detail. The simplest form of query is keyword search that is only

2http://jxta.kenai.com/. Accessed on November 2011

http://jxta.kenai.com/

4 1. P2P OVERLAYS, QUERY ROUTING, AND GOSSIPING

appropriate for finding files. But for more structured data, an SQL-like query language is
necessary.

• Efficient query processing. The efficient use of the P2P overlay resources (bandwidth, com-
puting power, storage) should result in low response time of queries.

• Quality of service. Refers to the user-perceived efficiency of the P2P system, e.g., complete-
ness of query results, query response time, etc.

• Fault-tolerance. Services should be guaranteed under some conditions, despite the occurrence
of peer failures.

Table 1.1 summarizes how the requirements for data management are possibly attained by the three
main classes of P2P overlays.This is a rough comparison to understand the respective merits of each
class. For instance, high means it can be high. Obviously, there is room for improvement in each
class of P2P overlays. For instance, fault-tolerance can be made higher in super-peers by relying on
replication and fail-over techniques.

Table 1.1: Comparison of P2P overlays
Requirements Unstructured Structured Super-peer

Autonomy high low moderate

Query expressiveness high low high

Efficient query processing low high high

QoS low high high

Fault tolerance high high low

1.2 QUERY ROUTING

One of the main questions for query processing in P2P systems is how to route the query to relevant
peers, i.e., those that hold some data related to the query [Li and Wu, 2006]. Once the query is
routed to relevant peers, it is executed at those peers and the answers are returned to the query
originator.

In this section, we describe the approaches for query routing in unstructured, DHT, and
super-peer overlays.

1.2. QUERY ROUTING 5

1.2.1 QUERY ROUTING IN UNSTRUCTURED OVERLAYS
The approaches used in unstructured overlays for query routing can be classified
as [Tsoumakos and Roussopoulos, 2003b]: Breath-First Search (BFS), iterative deepening, random
walks, adaptive probabilistic search, local indices, bloom filter based indices, and distributed resource
location protocol.

BFS
This approach floods the query to all accessible peers within a TTL (Time To Live) hop distance as
follows. Whenever a query with a TTL is issued at a peer, called query originator, it is forwarded to
all its neighbors. Each peer, which receives the query, decreases the TTL by one and if it is greater
than one sends the query and TTL to its neighbors. By continuing this procedure, all accessible
peers whose hop distance from the query originator is less than or equal to TTL receive the query.
Each peer that receives the query executes it locally and returns the answers directly to the query
originator (see Figure 1.1).

Modified BFS [Kalogeraki et al., 2002] is a variation of the BFS approach in which the peers
randomly choose only a subset of their neighbors and forward the query only to these neighbors.
Although this approach reduces the number of messages needed for query routing, it may loose
many of the good answers that could be found by BFS.

Intelligent BFS [Kalogeraki et al., 2002] is another variation. For each recently answered
query, peers maintain statistics about the query and the number of answers that are found via each of
their neighbors. When a peer receives a query, it identifies all queries similar to the received query,
e.g., using a query similarity metric, and sends the query to a set of its neighbors that have returned
most of the answers for similar queries. If an answer is found for the query at a peer, a message is sent
to the peers over the reverse path in order to update their statistics. Like standard BFS, each peer
that receives the query decreases the TTL by one, and if it is equal to zero, the query is discarded.
Compared to modified BFS, intelligent BFS can find better answers. However, it produces more
routing messages, because of messages sent to update statistics. In addition, it can not be easily
adapted to the peer departures and data deletions.

Iterative Deepening
Iterative deepening [Yang and Garcia-Molina, 2002] is used when the user is satisfied by only one
answer or a small number answer. In this algorithm, the query originator performs consecutive BFS
searches such that the first BFS has a low TTL, e.g., 1, and each new BFS uses a TTL greater
than the previous one. The algorithm ends when the required number of answers is found or a BFS
with the predefined maximum TTL is done. For the cases where a sufficient number of answers are
available at the peers that are close to the query originator, this algorithm achieves good performance
gains compared to the standard BFS. In other cases, its overhead and response time may be much
higher than the standard BFS.

6 1. P2P OVERLAYS, QUERY ROUTING, AND GOSSIPING

Figure 1.1: Example of BFS. The received query is forwarded to all neighbors.

Random Walks
In Random Walks [Lv et al., 2002], for each query, the query originator forwards k query messages to
k of its randomly chosen neighbors. Each of these messages follows its own path, having intermediate
peers forward it to a randomly chosen neighbor at each step (see Figure 1.2). These messages are
known as walkers. When the TTL of a walker reaches zero, it is discarded.

Let k be the number of walkers. The main advantage of the Random Walks algorithm is that
it produces k × T T L routing messages in the worst case, a number that does not depend on the
underlying network. Performance evaluation results in [Lv et al., 2002] show that routing messages
can be reduced significantly compared to the standard BFS.The main disadvantage of this algorithm
is its highly variable performance, because the number of successfully answered queries vary greatly
depending on overlay topology and the random choices. Another drawback of this method is that
it cannot learn anything from its previous successes or failures.

Adaptive Probabilistic Search
In Adaptive Probabilistic Search (APS) [Tsoumakos and Roussopoulos, 2003a], for each recently
requested data, the peers maintain the data identifier and probability of returning the data by each
of their neighbors. Given a query, the query originator establishes k independent walkers and sends
them to its neighbors. Each intermediate peer, which receives a walker, sends it to the neighbor
that has the highest probability to return the requested data. Initially equal for all neighbors, the
probability values are updated using either an optimistic or a pessimistic approach. In the optimistic
approach, when a peer sends a walker to a neighbor, it increases in advance the corresponding
probability value. However, if the walker terminates without the requested data, a message is sent
over the walker path to decrease the corresponding probability values. The pessimistic approach
makes the assumption that the data cannot be found, so it decreases the corresponding probability

http://www.morganclaypool.com/action/showImage?doi=10.2200/S00414ED1V01Y201204DTM025&iName=master.img-002.jpg&w=237&h=150

1.2. QUERY ROUTING 7

Figure 1.2: Example of Random Walks: each received walk is forwarded to only one neighbor.

value after sending the walker to a neighbor. If the walker finds the data, all peers over the walker
path update their probability values by increasing them.

To remember a walker’s path, each peer appends its ID in the query message during query
forwarding. If a walker w2 passes by a peer where another walker w1 stopped before, the walker w2

terminates unsuccessfully. APS has very good performance as it is bandwidth-efficient: the number
of routing messages produced by it is very close to that of Random Walks. In spite of this, the
probability of finding the requested data by APS is much higher than that of Random Walks.
However, if the topology of the P2P system changes quickly, the ability of APS to answer queries
reduces significantly.

Local Indices
In this approach [Crespo and Garcia-Molina, 2002, Yang and Garcia-Molina, 2002], each peer p

indexes the data shared by all peers that are within a radius r , i.e., the peers whose hop-distance from
p is less than or equal to r . The query routing is done in a BFS-like way, except that the query is
processed only at the peers that are at certain hop distances from the query originator. To minimize
the query processing overhead, the hop distance between two consecutive peers that process the
query must be 2 × r + 1. In other words, the query must be processed at peers whose distance from
the query originator is m × (2 × r + 1) for m = 1, 2, This allows querying all data without
any overlap. The query processing cost of this approach is less than that of standard BFS because
only some peers process the query. However, the number of routing messages is comparable to that
of standard BFS. In addition, whenever a peer joins/leaves the system or updates its shared data,
a flooding with T T L = r is needed in order to update the peers indices, so the overhead becomes
very significant for highly dynamic environments.

http://www.morganclaypool.com/action/showImage?doi=10.2200/S00414ED1V01Y201204DTM025&iName=master.img-003.jpg&w=238&h=142

8 1. P2P OVERLAYS, QUERY ROUTING, AND GOSSIPING

Bloom Filter based Indices
In [Rhea and Kubiatowicz, 2002], the indexing of data is done using Bloom filters [Bloom, 1970].
Each peer holds d Bloom filters for each neighbor, such that the ith filter summarizes the data that
can be found i hops away through that specific neighbor. When a peer receives a query, it checks
its local data and returns the answers to the query originator. Then, it forwards the query to the
neighbor who has the minimum numbered filter involving the data.

The advantage of representing the indexed data by Bloom filters is that they are space efficient,
i.e., with a small space, one can index a large number of data. However, it is possible that a Bloom
filter gives a false positive answer, i.e., the Bloom filter wrongly returns a positive answer in response
to a question asking the membership of a data item.

Distributed Resource Location Protocol
In Distributed Resource Location Protocol (DRLP) [Menascé and Kanchanapalli, 2002], the peers
index the location of all data that are answer for recently issued queries. The indexing is done
gradually as follows. Peers with no information about the location of a requested data forward the
query to a set of randomly chosen neighbors. If the data is found at some peer, a message is sent
over the reverse path to the query originator, in order to inform the peers on the path about the data
location. In subsequent requests, peers with indexed location information forward the query directly
to the relevant peers. This algorithm initially sends many messages for query routing. In subsequent
requests, it might take only one message to discover the data. Thus, if a query is issued frequently,
this approach is very efficient.

1.2.2 QUERY ROUTING IN DHTS
The way by which a DHT routes the keys to their responsible peers depends on the DHT’s routing
geometry, i.e., the topology that is used by the DHT for arranging peers and routing queries over them.
The routing geometries in DHTs include the following [Gummadi et al.,2003]: tree,hypercube, ring,
butterfly, and hybrid. Let us describe these geometries and discuss their query routing approaches.

Tree
Tree is one of the first geometries used for organizing the peers of a DHT and routing queries among
them. In this geometry, the identifiers of peers constitute the leaves of a binary tree with n nodes.
The responsible for a given key is the peer whose identifier has the highest number of common
prefix bits with the key. Let h(p, q) be the number of common prefix bits between the identifiers of
two peers p and q. For each i (with 0 ≤ i ≤ log n), each peer p knows the address of a peer q such
that h(p, q) = i.The routing of a key proceeds by doing a longest prefix match at each intermediate
peer until reaching to the peer that has the most common prefix bit with the key. Let us illustrate
the tree geometry by using an example.

Example 1.1 Consider the tree geometry in Figure 1.3, and assume the identifiers of peers
p0, p1, . . . , p7 are 000, 001, . . . , 111, respectively. The routing table of each peer is shown be-

1.2. QUERY ROUTING 9

low it. In the routing table of each peer p there should be at least one peer that has i common prefix
bits with p, where i = 0, . . . , log n. For example, in the routing table of p0 there is one peer with
0 common prefix bit (it can be one of peers p4, p5, p6 or p7), one peer with 1 common prefix bit
(it can be p2 or p3), and one peer with two common prefix bits (i.e., p1). Let us now consider the
routing of a key k = 1001 from p0. The peer that is responsible for maintaining k is p4, because its
identifier has the highest number of common prefix bits with k. To route k, p0 looks at its routing
table and sends k and its associated data to the peer that has the largest common prefixes with k. In
its routing table, the only peer whose identifier has a common prefix with k is p7. Thus, k is sent to
p7 who sends it to p5 (there is two common prefix bits between k and id of p5). Then p5 sends the
key and its associated data to p4.

Figure 1.3: Example of tree routing geometry: the identifier and routing table of each peer is shown
below it.

The basic routing algorithms in Tapestry [Zhao et al., 2004] is rather similar to this algorithm.
In Tapestry, each identifier is associated with a node that is the root of a spanning tree used to route
messages for the given identifier.

Hypercube
The hypercube geometry is based on partitioning a d-dimensional space into a set of separate zones
and attributing each zone to one peer. Peers have unique identifiers with log n bits, where n is the
total number of peers of the hypercube. The distance between two peers is the number of bits on
which their identifiers differ. The neighbors of each peer p are the peers whose distance from it
is one. In other words, there is only one different bit between the identifier of p and each of its
neighbors. For example, in Figure 1.4, the neighbors of the peer with id = 000 are those whose ids
are 001, 010, and 100.

http://www.morganclaypool.com/action/showImage?doi=10.2200/S00414ED1V01Y201204DTM025&iName=master.img-004.jpg&w=251&h=170

10 1. P2P OVERLAYS, QUERY ROUTING, AND GOSSIPING

Query routing in hypercube geometry proceeds by greedily forwarding the given key via
intermediate peers to the peer that has minimum bit difference with the key. Thus, it is somehow
similar to routing on the tree geometry.The difference is that the hypercube allows bit differences to
be reduced in any order while with the tree, bit differences have to be reduced in strictly left-to-right
order.

Example 1.2 Consider the hypercube shown in Figure 1.4, and assume we want to route a key
k = 110 from the peer whose id is 000. The responsible for k is the peer whose id is 110. To route
the key, peer 000 sends it to one of its neighbors that have minimum distance with the key (it can
be one of the peers 100 or 010). Assume its selects the peer 010, and sends k to it. Then, the peer
010 sends the key to the peer 110 that is one of its neighbors.

Figure 1.4: Example of hypercube routing geometry.

The routing geometry used in CAN [Ratnasamy et al., 2001] resembles a hypercube geometry.
CAN uses a d-dimensional coordinate space that is partitioned into n zones and each zone is occupied
by one peer. When d = log n, the neighbor sets in CAN are similar to those of a log n dimensional
hypercube.

Ring
In Ring geometry, the peers are ordered on the circle clockwise with respect to their identifiers.
Chord [Stoica et al., 2001] is a DHT protocol that relies on this geometry for query routing. In
Chord, each peer has an m-bit identifier, and the responsible for a key k is the first peer whose
identifier is equal or follows k. Each peer p knows the address of the peers whose distance from p

clockwise in the circle is 2i , for 0 ≤ i < log n. Using this topology, any peer can route its messages
to any other peer in at most log n hops because each hop cuts the distance to the destination at least
by half.

Example 1.3 Figure 1.5 shows an example of Chord with 8 peers. Each peer knows the peers
whose clockwise distance from it is 2i , for i=0, 1,2. For example, peer 1 knows peers 2, 3, and 5. Let

http://www.morganclaypool.com/action/showImage?doi=10.2200/S00414ED1V01Y201204DTM025&iName=master.img-005.jpg&w=144&h=117

1.2. QUERY ROUTING 11

us now consider the routing of a message from peers 1–7. To do so, peer 1 sends the message to the
neighbor that is the nearest to the destination, that is peer 5. Then, peer 5 sends the message to peer
7 directly. Notice that peer 5 knows the address of peer 7, because their clockwise distance is 21.

Figure 1.5: Example of ring routing geometry: the fleshes show the path for sending a message from
peers 1–7.

Butterfly
The Butterfly geometry is an extension of the traditional butterfly network that supports the scal-
ability requirements of DHTs. Viceroy [Malkhi et al., 2002] is a DHT that uses this geometry for
efficient data location.The peers of a butterfly with size n are portioned into log n levels and n/log n

rows (see Figure 1.6). The peers of each row are subsequently connected to each other using succes-
sor/predecessor links. The number of peers in each row is log n, thus a sequential lookup in each
row is done in O(log n). In addition to successor/predecessor links, each peer has some links to the
peers of other rows. The inter-row links are arranged in such a way that the distance between a peer
in Level 1 of any row to any other row is log n. Routing a query in the Butterfly is done in three
steps as follows.

• Step 1. the query is sequentially forwarded to the peer that is at Level 1 of the row that contains
query originator. This is done in O(log n) routing hops.

• Step 2. from Level 1, the query is routed in O(log n) routing hops to the row to which the
destination peer belongs.

• Step 3. at the destination row, the query is forwarded sequentially to the destination peer.

Each of these steps is done in O(log n) routing hops, thus the total time of query routing is O(log n).
The advantages of the Butterfly geometry is that the size of the routing table per peer, i.e., the number
of neighbors of each peer, is a small constant number, whereas in most of other geometries this size
is O(log n). However, in Butterfly there is only one choice for selecting the neighbors or the route.

http://www.morganclaypool.com/action/showImage?doi=10.2200/S00414ED1V01Y201204DTM025&iName=master.img-006.jpg&w=130&h=127

12 1. P2P OVERLAYS, QUERY ROUTING, AND GOSSIPING

Figure 1.6: Butterfly routing geometry.

Hybrid
Hybrid geometries use a combination of the basic geometries. Pastry [Rowstron and Druschel,
2001b] combines the tree and ring geometries in order to achieve more efficiency and flexibility.
Peer identifiers are maintained as both the leaves of a binary tree and as points on a one-dimensional
circle. In Pastry, the distance between a given pair of nodes is computed in two different ways: the
tree distance and the ring distance. Peers have great flexibility of neighbor selection. For selecting
their neighbors, peers take into account the proximity properties, i.e., they select the neighbors that
are close to them in the underlying physical network.The route selection is also very flexible, because
to route a message peers have the possibility to choose one of the hops that do make progress on the
tree or on the ring.

1.2.3 QUERY ROUTING IN SUPER-PEERS
Super-peer overlays typically rely on some powerful and highly available peers, called super-peers, to
index the data shared by peers. Edutella is one of the most known super-peer overlays. In Edutella,
super-peers are arranged in the hypercube topology [Schlosser et al., 2002] (see Figure 1.7), so
messages can be communicated between any two super-peers in O(log m) routing hops, where m is
the number of super-peers. The process of joining a super-peer to the system consists of two parts:
taking the appropriate position in the hypercube topology and announcing itself to its neighbors.
Each ordinary peer joins the system by connecting to a super-peer.

http://www.morganclaypool.com/action/showImage?doi=10.2200/S00414ED1V01Y201204DTM025&iName=master.img-007.jpg&w=304&h=195

1.2. QUERY ROUTING 13

To support efficient query routing, at each super-peer two kinds of routing indices are main-
tained: super-peer/peer (SP/P) indices and super-peer/super-peer (SP/SP) indices. Queries are routed
over super-peers by using the SP/SP indices, and to ordinary peers based on the SP/P indices.

In the SP/P indices, each super-peer stores information about the characteristics of the data
shared by the peers that are connected to it. These indices are used to route a query from the super-
peer to its connected peers. At join time, peers provide their metadata information to their super-peer
by publishing an advertisement. To index the provided metadata, Edutella uses the schema-based
approaches that have successfully been used in the context of mediator-based information systems
(e.g., [Wiederhold, 1992]).To ensure that the indices are always up-to-date, peers notify super-peers
when their data change. When a peer leaves the system, all references to this peer are removed from
the indices. If a super-peer fails, its formerly connected peers must connect to another super-peer
chosen at random, and provide their metadata to it.

SP/SP indices are essentially summaries (possibly also approximations) of SP/P indices. Up-
date of SP/SP indices is triggered after any modification to SP/P indices as follows. When a super-
peer changes its SP/P index, e.g., due to a peer’s join/leave, it broadcasts an announcement of update
to the super-peer overlay by using the hypercube topology.The other super-peers update their SP/SP
indices accordingly. Although such a broadcast is not optimal, it is not too costly either because the
number of super-peers is much less than the number of all peers. Furthermore, if peers join/leave
frequently, the super-peer can send a summary announcement periodically instead of sending a
separate announcement for each join/leave.

The query routing in Edutella is done as follows. When a peer receives a query issued by
the user, it sends the query to its super-peer. At the super-peer, the metadata used in the query are
matched against the SP/P indices in order to determine local peers that are able to answer the query.
If the query cannot be satisfied by local peers, it is forwarded to other super-peers using SP/SP
indices.

Figure 1.7: Edutella architecture.

http://www.morganclaypool.com/action/showImage?doi=10.2200/S00414ED1V01Y201204DTM025&iName=master.img-008.jpg&w=158&h=137

14 1. P2P OVERLAYS, QUERY ROUTING, AND GOSSIPING

1.3 GOSSIP PROTOCOLS

Gossip protocols are widely used for information dissemination in P2P systems. They can serve
as efficient tools to achieve new P2P trends in a scalable and robust manner. Gossip pro-
tocols have recently received considerable attention from researchers in the field of P2P sys-
tems [Kermarrec and van Steen, 2007]. In addition to their inherent scalability, they are simple
to implement, robust and resilient to failures. They are designed to deal with continuous changes
in the system, while they exhibit reliability despite peer failures and message loss. This makes them
ideally suited for large-scale and dynamic environments like P2P systems. In this section, we pro-
vide generic definition and description of gossip protocols, then we investigate how P2P systems
can leverage these protocols.

Gossip algorithms mimic rumor mongering in real life. Just as people pass on a rumor by
gossiping to their contacts, each peer in a distributed system relays new information it has received
to selected peers which in their turn, forward the information to other peers, and so on. They are
also known as epidemic protocols in reference to virus spreading [Demers et al., 1987].

The generic gossip behavior of each peer can be modeled by means of two separate threads:
an active thread which takes the initiative of communication and a passive thread which reacts to
incoming initiatives [Kermarrec and van Steen, 2007]. Peers communicate to exchange information
that depends strictly on the application. The information exchange can be performed via two strate-
gies : push and pull. A push occurs in the active thread, i.e., the peer that initiates gossiping shares its
information upon contacting the remote peer. A pull occurs in the passive thread, i.e., the peer shares
its information upon being contacted by the initiating peer. A gossip protocol can either adopt one
of these strategies or the combination of both (i.e., push-pull which implies a mutual exchange of
information during each gossip communication).

Figure 1.8 illustrates in more detail a generic gossip exchange. Each peer A knows a group of
other peers or contacts and stores pointers to them in its view. Also, A locally maintains information
denoted as its state which is defined by the application (e.g., information about the data shared by
A’s contacts or simply information about the contacts). Periodically, A selects a contact B from its
view to initiate a gossip communication. In a pull-push scheme, A selects some of its information
and sends them to B which, in its turn, does the same. Upon receiving the remote information, each
one of A and B merges it with its local information and update their state. At that point, the way a
peer deals with the received information and accordingly update its local state is highly application
dependent.

Gossip protocols may achieve four main purposes [Kermarrec and van Steen, 2007]: dissemi-
nation, resource monitoring, topology construction, and peer sampling. Figure 1.9 illustrates these gossip-
based services and how they interfere in a P2P system that is represented by an overlay layer and a
search layer.

Introduced by Demers et al. [Demers et al., 1987], dissemination has traditionally been the
purpose of gossiping. In short, the aim [Eugster et al., 2004] is to spread some new information
throughout the network by letting peers forward messages to each other. The information gets

1.3. GOSSIP PROTOCOLS 15

(a) Select contact. (b) Exchange state information.

(c) Merge and update local state.

Figure 1.8: Peer A gossiping to peer B.

propagated exponentially through the network. In general, it takes O(log N) rounds to reach all
peers, where N is the number of peers. Figure 1.9 shows that gossip-based dissemination can be
used to feed the search layer with indexing information useful to route queries. Basically, a peer can
maintain and gossip information about the data stored by other peers and decide accordingly to
which peers it should send a query.

Furthermore, gossip protocols have turned out to be a vehicle of resource monitoring in highly
dynamic environments. It can be used to detect peer failures [Renesse et al., 1998], where each peer
is in charge of monitoring its contacts, thus ensuring a fair balance of the monitoring cost. Further,
gossip-based monitoring can guarantee that no node is left unattended, resulting in a robust self-
monitoring system. In Figure 1.9, the monitoring service is used to maintain the overlay under churn
by monitoring a peer’s neighbors. In addition, it interferes in the search layer to monitor indexing
information in face of data updates and peer failures.

Recently, various researches have explored gossip protocols as a means for overlay construc-
tion and maintenance according to certain desirable topologies (e.g., interest-based, locality-based,
random graphs), without requiring any global information or centralized administration. In such
systems, peers self-organize under the target topology, via a selection function that determines which

http://www.morganclaypool.com/action/showImage?doi=10.2200/S00414ED1V01Y201204DTM025&iName=master.img-009.jpg&w=138&h=91
http://www.morganclaypool.com/action/showImage?doi=10.2200/S00414ED1V01Y201204DTM025&iName=master.img-010.jpg&w=138&h=91
http://www.morganclaypool.com/action/showImage?doi=10.2200/S00414ED1V01Y201204DTM025&iName=master.img-011.jpg&w=137&h=91

16 1. P2P OVERLAYS, QUERY ROUTING, AND GOSSIPING

Figure 1.9: How a P2P system can leverage gossiping.

neighbors are optimal for each peer (e.g., semantic or physical proximity). Along these lines, sev-
eral protocols have been proposed such as Vicinity [Voulgaris and van Steen, 2005] which creates
a semantic overlay and T-Man [Jelasity and Babaoglu, 2005] that provides a general framework for
creating topologies according to some ranking function. Figure 1.9 represents the topology con-
struction service providing peers with specific neighbors and thereby connecting the P2P overlay.

Analyses [Jelasity et al., 2004] of gossip protocols reveal a high reliability and efficiency,
under the assumption that the peers to send gossip messages to are selected uniformly at random
from the set of all participant peers. This requires that a peer knows every other peer, i.e., that the
peer has global knowledge of the membership, which is not feasible in a dynamic and large-scale P2P
environment. Peer sampling offers a scalable and efficient alternative that continuously supplies a
node with new and random samples of peers.This is achieved by gossiping membership information
itself which is represented by the set of contacts in a peer’s view. Basically, peers exchange their
view information, thus discovering new contacts and accordingly updating their views. In order to
preferentially select peers as neighbors, gossip-based overlay construction may be layered on top of a
peer sampling service that returns uniformly and randomly selected peers. Well-known protocols of
peer sampling are Lpbcast, Newscast, and Cyclon [Voulgaris et al., 2005]. In Figure 1.9, we can see
the peer sampling service supporting other gossip-based services and supplying them with samples
of peers from the network.

To conclude this section on gossip protocols, we briefly discuss their strengths and weaknesses.

• Strengths. Gossip algorithms have the advantage of being extremely simple to implement and
configure [Birman, 2007]. Furthermore, they perfectly meet the decentralization requirement
of P2P systems since many of them are designed in a way to let peers take local-only decisions.
If properly designed, they can balance and limit the loads over participant peers.

http://www.morganclaypool.com/action/showImage?doi=10.2200/S00414ED1V01Y201204DTM025&iName=master.img-012.jpg&w=248&h=137

1.4. REPLICATION 17

Gossip protocols also provides high robustness which stems from the repeated probabilistic
exchange of information between two peers [Kermarrec and van Steen, 2007]. Probabilistic
choice refers to the choice of peer pairs that communicate while repetition refers to the endless
process of choosing two peers to exchange information.Therefore, gossip protocols are resilient
to failures and frequent changes and they cope well with the dynamic changes in P2P systems.

• Weaknesses. The usage of gossip might introduce serious limitations [Birman, 2007], e.g., the
protocol running times can be slow and potentially costly in terms of background messages.
One should carefully tune gossip parameters (e.g., periodicity) in a way that matches the goals
of the target application.

1.4 REPLICATION

In the context of distributed systems, replication is commonly used to improve data availability
and enhance performance. More particularly, P2P systems can significantly benefit from replication
given the high levels of dynamicity and failures. For instance, if one peer is unavailable, its data can
still be retrieved from the other peers that hold replicas. Data replication in P2P systems can be
categorized as follows [Androutsellis-Theotokis and Spinellis, 2004b].

• Passive Replication. It refers to the replication of data that occurs naturally in P2P systems
as peers request and download data. This technique perfectly complies with the autonomy of
peers.

• Active (or Proactive) Replication. This technique consists in monitoring traffic and requests,
and accordingly creating replicas of data objects to accommodate future demand.

To improve object availability and at the same time avoid hotspots, most DHT-based systems
replicate popular objects and map the replicas to multiple peers. Generally, this can be done via two
techniques. The first one [Ratnasamy et al., 2001] uses several hash functions to map the object to
several keys and thereby store copies at several peers.The second technique consists in replicating the
object in a number of peers whose IDs match most closely the key (or in other terms, in the logical
neighborhood of the peer whose ID is the closest to the key). The latter technique is commonly
used in several systems (e.g. [Dabek et al., 2001, Rowstron and Druschel, 2001d]).

Cohen and Shenker [2002] evaluate three different strategies for replication in an unstruc-
tured overlays. The uniform strategy creates a fixed number of copies when the object first enters the
system. The proportional strategy creates a fixed number of copies every time the object is queried. In
the square-root replication strategy, the number of copies for an object is proportional to the square
root of its query probability. To implement these strategies, the object can be replicated either ran-
domly or at peers along the path from the requester peer (i.e., the peer that submits the query) to the
provider peer (i.e., the peer that stores the queried data). However, it is not clear how the strategies
can be implemented in a decentralized way (e.g., how to monitor query rate under P2P dynamicity).

18 1. P2P OVERLAYS, QUERY ROUTING, AND GOSSIPING

Further, such proactive replication is not feasible in systems that wish to respect peer autonomy
because some peers may not want to store unrequested objects.

1.5 ADVANCED FEATURES ON P2P OVERLAYS

We have, so far, discussed P2P overlays from a classical perspective. However, research has evolved
towards more sophisticated issues that could bring great benefits to data management in P2P appli-
cations.

1.5.1 LOCALITY-AWARE OVERLAYS
As introduced previously, peers are connected via a logical network superposed over the existing
Internet infrastructure. This might cause a mismatch between the P2P overlay and the underlying
Internet, which is clearly illustrated in Figure 1.10. As an example, peer A has peer B as its overlay
neighbor while peer C is its physical neighbor. This can lead to inefficient routing in the overlay
because any application-level path from peer A towards the nearby peer C traverses distant peers.

Figure 1.10: P2P overlay on top of the Internet infrastructure.

More precisely, the scalability of a P2P system is ultimately determined by its efficient use of
underlying resources. The topology mismatch problem imposes substantial load on the underlying
network infrastructure, which can eventually limit the scalability [Ripeanu et al., 2002a]. Further-
more, it can severely deteriorate the performance of search and routing techniques, typically by in-
curring long latencies and excessive traffic. Indeed, many studies [Saroiu et al., 2002] have revealed
that the P2P traffic contributes the largest portion of the Internet traffic and acts as a leading con-
sumer of Internet bandwidth. Thus, a fundamental challenge is to incorporate IP-level topological
information in the construction of the overlay in order to improve routing and search performance.
This optimization is referred to by locality-awareness since it deals with peers close in locality. In
Chapter 2, we focus on locality-awareness as an important requirement of P2P applications such as
P2P content distribution.

Below, we present the main approaches that incorporate locality-awareness in the overlay
construction.

http://www.morganclaypool.com/action/showImage?doi=10.2200/S00414ED1V01Y201204DTM025&iName=master.img-013.jpg&w=201&h=102

1.5. ADVANCED FEATURES ON P2P OVERLAYS 19

Clustering
[Krishnamurthy et al., 2001] consists of grouping physically close peers into clusters. The approach
relies on a centralized engine to identify clusters of close peers under common administrative control.
To achieve this, the central server uses IP-level routing information which is not directly available to
end-user applications.Thus, the main drawbacks of this approach are the centralized topology control
and the topological information itself, which prevents it from being scalable and fault-tolerant.

LTM Technique
[Liu et al., 2005] targets unstructured overlays and dynamically adapts connections between peers
in a completely decentralized way. Each peer issues a detector in a small region so that the peers
receiving the detector can record the relative delay. Accordingly, a receiving peer can detect and cut
most of the inefficient logical links and add closer peers as neighbors. However, this scheme operates
on long-time scales where the overlay is slowly improved over time. Given that participants join and
leave on short time-scales, a solution that operates on long-time scales would be continually reacting
to fluctuating peer membership without stabilizing.

Locality-Aware Structured Overlays
While the original versions of structured overlays did not take locality-awareness into account, almost
all of the current versions make some attempt to deal with this primary issue. [Ratnasamy et al.,
2002b] identifies three main approaches.

• Geographic layout. The peer IDs are assigned in a manner that ensures that peers that are close
in the physical network are close in the peer identifier space.

• Proximity routing. The routing tables are built without locality-awareness but the routing
algorithm aims at selecting, at each hop, the nearest peer among the ones in the routing table.

• Proximity neighbor selection. The construction of routing tables takes locality-awareness into
account. When several candidate peers are available for a routing table entry, a peer prefers the
one that is close in locality.

Pastry [Rowstron and Druschel, 2001a] and Tapestry [Zhao et al., 2004] adopt proximity
neighbor selection. In order to preferentially select peers and fill routing tables, these systems assume
the existence of a function (e.g., Round-Trip-Time RTT) that allows each peer to determine the
physical distance between itself and any another peer. Although this solution leads to much shorter
query routes, it requires expensive maintenance mechanisms as peers arrive and leave.

A design improvement of CAN aims at achieving geographic layout [Ratnasamy et al., 2002a].
It relies on a set of well-known landmarks spread across the network. A peer measures its RTT to the
set of landmarks and orders them by increasing latency (i.e., network distance). The logical address
space of CAN is then divided into bins such that each possible landmark ordering is represented by
a bin. Physically close nodes are likely to have the same ordering and hence will belong to the same

20 1. P2P OVERLAYS, QUERY ROUTING, AND GOSSIPING

bin. This is illustrated in Figure 1.11. We have 3 landmarks (i.e., L1, L2, and L3) and, accordingly,
the CAN coordinate space is divided into 6 bins (3! = 6). Since peers N1, N2, and N3 are physically
close (see Figure 1.11 (a)), such peers produce the same landmark ordering, i.e., L3 < L1 < L2. As
a result, N1, N2, and N3 are placed in the same bin of the overlay (see Figure 1.11 (b)). Notice that
such approach is not perfect. For instance, peer N10 is closer to N3 than N5 in the physical network
whereas the opposite situation is observed in the overlay. Despite its limited accuracy, binning has
the advantage of being simple to implement and scalable since peers independently discover their
bins without communicating with other participants. Furthermore, it does not incur high load on the
landmark machines: they need only echo ping messages and do not actively initiate measurements
nor manage measurement information. To achieve more scalability, multiple close-by nodes can act
as a single logical landmark.

Figure 1.11: Locality-aware construction of CAN.

1.5.2 INTEREST-BASED OVERLAYS
In attempt to improve the efficiency of search mechanisms, some works have addressed the arbitrary
neighborhood of peers from a semantic perspective. Several measurement studies [Fessant et al.,
2004, Handurukande et al., 2004, Sripanidkulchai et al., 2003b] of P2P workloads have demon-
strated the inherent presence of semantic proximity between peers, i.e., similar interests between
peers. They reached the following conclusion: “If a peer has an object that I am interested in, it
is very likely that he will have other objects that I am (or will be) interested in.” Moreover, they
have shown that exploiting the implicit interest-based relationships between peers may lead to im-
provements in the search process. In Chapters 2 and 3, we discuss how P2P applications that are
concerned with content sharing (i.e., P2P content distribution, recommendation) can greatly benefit
from interest-based schemes.

http://www.morganclaypool.com/action/showImage?doi=10.2200/S00414ED1V01Y201204DTM025&iName=master.img-014.jpg&w=218&h=123

1.5. ADVANCED FEATURES ON P2P OVERLAYS 21

1.5.3 P2P OVERLAY COMBINATION
Recently, some have started to justify that unstructured and structured overlays are complementary,
not competing. It is actually easy to demonstrate that depending on the application, one or the other
type of overlay is clearly more appropriate. In order to make use of the desirable features provided
by each topology, there are efforts underway for combining both in the same P2P system. The
combination might involve structured and unstructured overlays as well as interest- and locality-
based overlays. Indeed, we show in Chapter 2 that a P2P content distribution system might need
an interest-based overlay to cope with peer autonomy as well as a locality-aware overlay to achieve
quality of service.

However, the construction and maintenance of the combined overlays might imply additional
overhead which should not compromise the desirable gains. Below, we present and discuss some
exemplary approaches.

Structured & Unstructured
Structella [Castro et al., 2004] improves the unstructured Gnutella system by adding some structural
components. The motivation is that unstructured routing mechanisms can support complex queries
but generate significant message overhead. Structella [Castro et al., 2004] replaces the random graph
of Gnutella with the structured overlay of Pastry, while retaining the flexible data placement of
unstructured P2P overlays. Queries in Structella are propagated using either flooding or random
walks. A peer maintains and uses its structured routing table to flood a query to its neighbors, thus
ensuring that peers are visited only once during a query and avoiding duplicate messages.

Interest & Locality-based
Foreseer [Cai and Wang, 2004] is a P2P system that combines an interest-aware overlay and a
locality-aware overlay. Thus, each peer has two bounded sets of neighbors: proximity-based (called
neighbors) and interest-based (called friends). Finding neighbors relies on a very basic algorithm that
improves locality-awareness slowly with time. Whenever a node discovers new peers, it replaces its
neighbors with the ones that are closer in latency. A similar scheme is used to progressively make and
refine friends from the peers that satisfy queries of the node in question. Friends are preferentially
selected by comparing their data similarity with the target node.

Joint Overlay
[Maniymaran et al., 2007] leverages the idea of cohabiting several P2P overlays on a same network,
so that the best overlay could be chosen depending on the application. The distinctive feature of
this proposal is that, in the joint overlay, the cohabiting overlays share information to reduce their
maintenance cost while keeping the same level of performance. As an example, they describe the
creation of a joint overlay with a structured overlay and an interest-based unstructured overlay using
gossip protocols. Thus, each peer belongs to both overlays and can alternatively use them.

22 1. P2P OVERLAYS, QUERY ROUTING, AND GOSSIPING

Figure 1.12: A two-layer DHT overlay [Ntarmos and Triantafillou, 2004].

DHT Layering or Hierarchy
A structured overlay [Ntarmos and Triantafillou, 2004] is organized into multiple layers in order to
improve performance under high levels of churn. They identify two types of peers: altruistic and
selfish. The idea is to concentrate most routing chores at altruistic peers; these peers are willing to
carry extra load and have the required capabilities to do so. The authors also assume that altruistic
peers stay connected more than others. Thus, a main structured overlay is built over altruistic peers,
and each one in its turn is connected to a smaller structured overlay of less altruistic peers. Figure 1.12
shows an example of a two-layer DHT, where the main DHT represents the altruistic network and
links several DHT-structured clusters. The P2P overlay can be further clustered, resulting into
multiple layers.

A similar work [Shen and Xu,2008] addresses the problem of load balancing in a heterogenous
environment in terms of capacities. Likewise, a main structured overlay is built over high-capacity
peers, and each one acts as a super-peer for a locality-based cluster of regular peers. Each peer has
an identifier obtained by hashing its locality information (using the binning technique of Section
1.5.1). A regular peer is assigned to a super-peer whose identifier is closest to the peer’s identifier,
which results in regular peers being connected to their physically closest super-peer.

1.6 CONCLUSION
In this chapter, we first introduced the three main kinds of P2P overlays: unstructured, structured
and super-peer. We briefly described each of these P2P overlays, and compared them based on
the main requirements for data management: autonomy, query expressiveness, efficiency, quality of
service, fault-tolerance and security. Each kind of P2P overlay provides partial support for these
requirements. For example, structured overlays have low query expressiveness, super-peer overlays
are not fault-tolerant, and unstructured overlays are usually inefficient in query processing.

Then, we presented the techniques for routing queries to relevant peers. We first described
the algorithms of query routing in unstructured overlays. The main concern in these overlays is
how to route the query to obtain high quality answers while minimizing the communication cost.

http://www.morganclaypool.com/action/showImage?doi=10.2200/S00414ED1V01Y201204DTM025&iName=master.img-015.jpg&w=145&h=117

1.6. CONCLUSION 23

Usually, the algorithms where peers maintain some kind of statistics outperform the others. However,
for highly dynamic systems, these algorithms may incur a high communication overhead without
significant gains in answers’ quality. We also discussed the problem of query routing in structured
overlays, particularly in DHTs. We presented the main routing geometries that are used in DHTs.
We analyzed the routing properties of these geometries and compared them from the point of view
of these properties.

Afterwards, we provided generic definition and description of gossip protocols, and investi-
gated the ways P2P systems can leverage these protocols. Then, we focused on the salient strengths
and weaknesses of gossip protocols from the point of the view of P2P data management.

Then, we briefly surveyed P2P replication techniques as they can be used to improve data
availability in a P2P system.

Finally, we discussed advanced features that can be incorporated in the construction of the P2P
overlay and improve the performance of data management techniques. Along these lines, matching
the overlay with a locality- or interest-aware scheme could bring great benefits to the P2P system in
terms of scalability, efficiency and quality of service. Another feature is the combination of different
overlays and schemes, in order to exploit their different advantages.

25

C H A P T E R 2

Content Distribution in P2P
Systems

2.1 INTRODUCTION
Given the explosive growth of the Internet, web-servers suffer congestion and bottleneck, which
substantially decreases their quality of service [Wang, 1999]. In other terms, the web-server can
easily get overwhelmed by the traffic due to a sudden spike in its content popularity. As a result, the
website becomes temporarily unavailable or its clients experience long download times, which leaves
them in frustration. That is why the World Wide Web is often called World Wide Wait [Mohan,
2001].

In order to improve the Internet service quality, a new technology has emerged that efficiently
delivers the web content to large audiences. It is called Content Distribution Network or Content
Delivery Network (CDN) [Buyya et al., 2008]. A commercial CDN like Akamai1 is a network of
dedicated servers that are strategically spread across the Internet and that cooperate to deliver content
to end-users. A content provider like Google or CNN can sign up with a CDN so that its content is
deployed over the servers of the CDN.Then, the requests for the deployed content are transparently
redirected to and handled by the CDN on behalf of the original web-servers. As a result, CDNs
decrease the workload on the web-servers, reduce bandwidth costs, and lower the user-perceived
latency. In short, CDNs strike a balance between the costs incurred on content providers and the QoS
provided to the users [Pallis and Vakali, 2006]. CDNs have become a huge market for generating
large revenues since they provide content providers with the highly required scalabiliy, reliability, and
performance. However, CDN services are quite expensive, often out of reach for small enterprises or
non-profit organizations.

P2P systems that deal with content sharing (e.g., sharing files or web documents) can be seen
as a form of CDN, where peers share content and deliver it on each other’s behalf [Saroiu et al.,
2002]. The more popular the content (e.g., file or web-page), the more available it becomes as more
peers download it and eventually provide it for others. Thus, the P2P model is a low-cost alternative
to traditional CDNs like Akamai when handling increasing amounts of users and demands.Whereas
a CDN must invest more in its infrastructure by adding servers, new users bring their own resources
into a P2P system.This implies that P2P systems are a perfect match for building cheap and scalable
CDN infrastructures. However, making use of P2P self-scalability is not a straightforward endeavor
because designing an efficient P2P system is very challenging.
1http://www.akamai.com. Accessed on December 2011

http://www.akamai.com

26 2. CONTENT DISTRIBUTION IN P2P SYSTEMS

This chapter reviews the state-of-the-art for both traditional and P2P content distribution in
order to identify the shortcomings and highlight the challenges. It is organized as follows. In Section
2.2,we give more insight into traditional CDNs and the requirements which are needed for the design
of novel and cheaper alternatives. Then, in Section 2.3, we deeply explore P2P solutions for content
distribution. We evaluate the existing approaches against the previously identified requirements and
show open issues.

2.2 INSIGHTS ON TRADITIONAL CONTENT
DISTRIBUTION

Content distribution networks are an important web caching application. First, let us briefly review
the different web caching techniques in order to position and understand the CDN technology.
Then, we focus on CDNs, their requirements and their open issues.

2.2.1 BACKGROUND ON WEB CACHING
A web cache is a disk storage of predefined size that is reserved for content requested from the
Internet (such as HTML pages and images)2. After an original request for an object has been
successfully fulfilled, and that object has been stored in the cache, further requests for this object
result in returning it from the cache rather than the web-server. The cache content is temporary as
the objects are dynamically cached and discarded according to predefined policies. When the cache
is full, the LRU policy, for instance, replaces the least recently used object with the new object .

Web caching is widely acknowledged as providing three major advantages. First, it reduces the
bandwidth consumption since fewer requests and responses need to go over the network. Second,
it reduces the load on the web-server which handles fewer requests. Third, it reduces the user-
perceived latency since a cached request is served from the web cache (which is closer to the client)
instead of the original web-server.Together, these advantages make the web less expensive and better
performing.

Web caching can be implemented at various locations using proxy servers [Mohan, 2001,
Wang, 1999]. A proxy server acts as an intermediary for requests from clients to web-servers. It
intercepts each request, and either serves the requested web-page from its cache or redirects the
request to the web-server. A proxy server can be placed in the user’s local computer as part of its web
browser or at various points between the user and the web-servers. Commonly, proxy caching refers
to the latter schemes that involve dedicated servers out on the network while the user’s local proxy
cache is rather known as browser cache.

Depending on their placement and their usage purpose, we distinguish two kinds of proxies:
forward proxies and reverse proxies. They are illustrated in Figure 2.1.

A forward proxy is used as a gateway between an organisation (i.e., a group of clients) and the
Internet. It makes requests on behalf of the clients of the organisation. Then, it caches requested

2Web caching is different from traditional caching in main memory that aims at limiting disk accesses.

2.2. INSIGHTS ON TRADITIONAL CONTENT DISTRIBUTION 27

Figure 2.1: Web caching: different locations for proxy servers.

objects to serve subsequent requests coming from other clients of the organisation.Large corporations
and Internet Service Providers (ISP) often set up forward proxies on their firewalls to reduce their
bandwidth costs by filtering out repeated requests. As illustrated in Figure 2.1, the university of
Nantes has deployed a forward proxy that interacts with the Internet on behalf of the university
users and handles their queries.

A reverse proxy is used in a network in front of web-servers. It is delegated the authority to
operate on behalf of these web-servers, while working in close cooperation with them. Typically,
all requests addressed to one of the web-servers are routed through the proxy server which tries
to serve them via caching. Figure 2.1 shows a reverse proxy that acts on behalf of the web-servers
of wikipedia.com, cnn.com, and youtube.com by handling their received queries. A CDN deploys
reverse proxies throughout the Internet and sells caching to websites that aim for larger audience
and lower workload. The reverse proxies of a CDN are commonly known as surrogate servers.

2.2.2 OVERVIEW OF CDN
A CDN deploys hundreds of surrogate servers around the globe. The servers store the content of
different web-servers and therefore handle related queries on behalf of these web-servers. Each
website selects specific or popular content (e.g., HTML pages, images, audio, and video files) and
pushes it to the CDN. The CDN manages the replication and/or caching of the content among its
surrogate servers. Clients requesting this content are then redirected to their closest surrogate server.
Figure 2.2 gives an overview of a CDN that distributes and delivers the content of a web-server in
the US. The figure shows how queries are treated based on the localities of the clients.

2.2.3 REQUIREMENTS AND OPEN ISSUES OF CDN
As introduced previously, a CDN network has to fulfill important requirements which are mainly
reliability, performance, and scalability [Pallis and Vakali, 2006].

http://www.morganclaypool.com/action/showImage?doi=10.2200/S00414ED1V01Y201204DTM025&iName=master.img-016.jpg&w=217&h=127

28 2. CONTENT DISTRIBUTION IN P2P SYSTEMS

Figure 2.2: Overview of a CDN.

• Reliability guarantees that a client can always find and access its desired content. For this, the
network should be robust and avoid single point of failure (i.e., SOP).

• Performance mainly involves the response time perceived by end-users submitting
queries. Slow response time is the single greatest contributor to clients abandoning web-
sites [Technologies, 2004].

• Scalability refers to the adaptability of the network to handle more amounts of content, users
and requests without significant decline in performance. For this, the network should prevent
bottlenecks due to overload situations.

The reliability and performance of a CDN are highly affected by the mechanisms of content
distribution as well as content location and query routing. Content distribution defines how the
content is distributed over the CDN and made available for clients. It mainly deals with the placement
of content and involves caching and replication techniques in order to make the same content
accessible from several locations. Thus, with these techniques, the content is located near to the
clients yielding low response times and high content availability since many replicas are distributed.
Content location and routing defines how to locate the requested content and route requests towards
the appropriate and relevant servers.

To expand and scale-up, CDNs need to invest significant time and costs in provisioning addi-
tional infrastructures (e.g., more servers) [Technologies, 2004]. Otherwise, they would compromise
the quality of service received by individual clients. Further, they should dynamically adapt their
resource provisioning in order to address unexpected and varying workloads. This inevitably leads
to more expensive services for websites. In the near future, the clients will also have to pay to receive
high-quality content (in some of today’s websites like CNN.com, users have already started to pay
a subscription to view videos). In this context, scalability is to deliver high-quality content while
maintaining low operational costs [Buyya et al., 2008].

http://www.morganclaypool.com/action/showImage?doi=10.2200/S00414ED1V01Y201204DTM025&iName=master.img-017.jpg&w=194&h=130

2.3. P2P CONTENT DISTRIBUTION 29

Most recently, traditional CDNs [Buyya et al., 2008] have turned towards P2P technology to
reduce investments in their own infrastructure, in the context of video streaming. The key idea is to
dynamically couple traditional CDN distribution with P2P distribution. Basically, the CDN serves
a handful of clients which in turn provide the content to other clients. Joost3 and BitTorrent4 are
today’s most representative CDN companies using P2P technology to deliver Internet television
and video streaming, respectively.

To conclude this section, we observe that P2P technology is being progressively accepted and
adopted as a means of content distribution. The existing CDNs still depend—at least partly—on
a dedicated infrastructure, which requires investment and centralized administration. If the CDN
could rely on a cheap P2P infrastructure supported only by end-users, this would provide a cheap
and scalable alternative. In the rest of this chapter, we further investigate the feasibility of pure P2P
content distribution.

2.3 P2P CONTENT DISTRIBUTION
Most of the current P2P applications fall within the category of content distribution, which range
from simple file sharing, to more sophisticated systems that create a distributed overlay for organiz-
ing, indexing, searching and retrieving content [Androutsellis-Theotokis and Spinellis, 2004b]. P2P
content distribution functionality is achieved via collaboration among a large scale of peers, scala-
bility is ensured by resource sharing (content, storage, bandwidth, etc.). Therefore, by distributing
tasks across all participating peers, they can collectively carry out large-scale content distribution
without the need for powerful and dedicated servers.

2.3.1 ADVANCED FEATURES USED BY LARGE-SCALE P2P CDN
In Chapter 1, we identified advanced features that can be used to refine the P2P overlay and hence
improve the performance of the P2P application. These features basically consist in incorporating
locality- or interest-awareness into the P2P overlay, and combining multiple overlays. When ex-
ploiting these features for large-scale content distribution, one should make sure that the overhead
is worth the performance improvement.

One of the major challenges is to capture the information, whether topological or semantically,
in a manner that is both practical and scalable. This should be done without requiring global knowl-
edge or centralized administration or incurring large overheads of messages and/or data transfers on
the P2P CDN.

Another challenge is to avoid grouping peers into a static configuration which does not evolve
well as the interests, localities, or behaviors of peers change. Indeed, this might severely affect the
quality of service of the P2P CDN, with respect to content search and download.

3http://www.joost.com. Accessed on December 2011
4The technology is called BitTorrent DNA (Delivery Network Accelerator). Available at http://www.bittorrent.com/dna/.
Accessed on December 2011.

http://www.joost.com
http://www.bittorrent.com/dna/

30 2. CONTENT DISTRIBUTION IN P2P SYSTEMS

Locality Awareness
The performance requirement of a CDN cannot be achieved unless content location and query
routing mechanisms are locality-aware. Indeed, a CDN has a duty to quickly locate copies of the
requested content that are close to the client in locality. While many P2P systems abstract any
topological information about the underlying network, locality-awareness should be a top priority
in a P2P CDN.

When a peer has close-by contacts, it can first query them or (even better) download content
from them before communicating with randomly located peers. Hence, locality-aware solutions
greatly contribute in reducing communication and data transfer costs, which in turn improves the
user-perceived latency.

However, as laid out previously, these solution should be kept simple, incur acceptable over-
head, operate fast and adapt to dynamicity and high scales.

Interest Awareness
Most P2P approaches tend to sacrifice autonomy to achieve efficiency [Daswani et al., 2003]. This
is because less autonomy allows more control on the content placement and topology such that there
exist a deterministic way to locate content within bounded cost.

Nevertheless, it might be useful to leverage the interests of peers in a P2P CDN to implement
intelligent mechanisms and at the same time respect their autonomy.

Instead of forcing peers to replicate undesired content, an interesting alternative is to elabo-
rate on the natural replication of content whereby peers replicate the content they request as they
download them.

Leveraging interests of peers to organize them can greatly improve the efficiency of content
search. Peer A that shares the same interests as peer B, is likely to have already downloaded content
that might be requested by peer B. Thus, it might be useful to establish a connection between A and
B. However, since a peer’s interests might change with time, the interest-based scheme must be able
to detect changes and accordingly adapt.

P2P Overlay Combination
As mentioned in Chapter 1, structured and unstructured overlays should not be seen as competing
but rather complementing each other. Each category provides specific and unique functionalities.

In unstructured overlays, the freedom in content placement provides maximum flexibility in
selecting policies for replication and caching. Furthermore, content popularity derives a kind of
natural replication among peers, which induces high availability. Indeed, peers replicate the content
they request upon download.

In opposition, structured overlays are the perfect match for a P2P CDN that seeks a scalable
and guaranteed lookup but does not witness highly dynamic populations.

Thus, combining different overlays in a P2P CDN might reveal interesting, yet very challeng-
ing. In particular, the maintenance of several overlays should not overwhelm the P2P CDN or limit

2.3. P2P CONTENT DISTRIBUTION 31

its scalability. An interesting solution is to leverage the combination in the maintenance mechanisms
(e.g., exploiting one overlay to maintain the other).

2.3.2 P2P CDN SOLUTIONS
Several P2P approaches have been proposed to distribute web content over P2P overlays in or-
der to relieve the original web servers. These use the P2P overlays discussed earlier (e.g., hybrid,
unstructured, DHT-based).

To the best of our knowledge, the P2P CDNs that are currently available for public use mainly
comprise CoralCDN [Freedman et al., 2004], CoDeeN [Pai et al., 2004], and CobWeb [Song et al.,
2005]. These systems are deployed over PlanetLab which provides a relatively trusted environment
consisting of nodes donated largely by the research community. Basically, they rely on a network
of cooperative reverse proxy servers that distribute web content and handle related queries. Such
systems cannot be categorized as pure P2P solutions because they are using dedicated servers rather
than exploiting client resources.The only P2P characteristic exhibited by these systems is the absence
of centralized administration. We examine one typical example of these systems, CoralCDN.

CoralCDN [Freedman et al., 2004] relies on a hierarchy of tree-based overlays that cluster
nearby nodes. Each level of the hierarchy consists of several overlays, and each overlay consists of
the set of nodes whose average pair-wise RTTs are below the threshold defined by this level. A node
is member of one overlay at each hierarchy level and retains the same node identifier in all overlays
to which it belongs. Figure 2.3 illustrates a three-level hierarchy with RTT thresholds of ∞, 60 ms,
and 20 ms for level 0, 1, and 2, respectively. It focuses on Node R and only shows the three overlays
to which R belongs at each level. R is physically the closest to C2 among the nodes (C0, C1, C2, C3)
because R and C2 share the highest-level overlay.

Each overlay is structured according to a tree as shown in Figure 2.3. A key is mapped to
several nodes whose IDs are numerically close to the key, in order to avoid hot spots 5. A node stores
pointers related to the object whose key is mapped to its node identifier. In Figure 2.3, Node R has
the same node identifier in all its overlays; we can view a node as projecting its presence to the same
logical location in each of its overlays.

Based on this indexing hierarchy, CoralCDN allows to locate web object copies hosted by
nearby proxies of CoralCDN: the proxies will be represented by the nodes of the hierarchy. Based
on its RTT measurements, a client is redirected via the DNS services to a nearby CoralCDN proxy
which eventually provides her the requested object. If not cached locally, the proxy can perform a
key-based routing throughout its overlays in order to find a pointer to a remote copy of the object; it
starts at the highest-level overlay of the proxy to benefit from network locality then progresses down
the hierarchy. Once the object is fetched and locally cached, the proxy inserts pointers to itself, with
respect to the object, in the different overlays to which belongs this proxy: it stores at each node
responsible for this object its own address information along with the object identifier.

5A node becomes a hot spot when it stores a popular content and gets overloaded by requests for this object.

32 2. CONTENT DISTRIBUTION IN P2P SYSTEMS

Figure 2.3: CoralCDN hierarchy of key-based overlays [Freedman et al., 2004].

Centralized Approaches
The first category of approaches [Padmanabhan and Sripanidkulchai, 2002, Ryu and Yang, 2005]
relies on the web-server that centralizes and manages the directory information. Basically, the server
maintains a directory of peers to which its objects have been transferred in the past and manages
the redirection of queries. When a client queries for an object, the server returns the addresses of
several peers from its redirection directory. The client first tries to retrieve the object from one of
those peers. If this fails, the object is directly served by the server.

To minimize redirection failures in a P2P dynamic environment, OLP [Ryu and Yang, 2005]
tries to predict the object lifetime and accordingly selects the peer to which the query should
be redirected. However, redirection in OLP does not consider locality-awareness when providing
clients with object locations. CoopNet [Padmanabhan and Sripanidkulchai, 2002] tries to incorpo-
rate locality-awareness as the web-server sends to the requester client a list of nearby peers that can
provide the requested object. To limit the server redirection, a client connects to the peers indicated
by the web-server and forms a small network with them. However, there is no well-defined query
routing algorithms within these networks. Moreover, CoopNet does not deal with dynamic aspects
because the web-server cannot detect which peers in its directory have failed or discarded their
cached objects.

Centralized approaches lack robustness, because whenever the web-server fails, its content is
no longer accessible in spite of available peers with cached copies.As with the traditional server/client

http://www.morganclaypool.com/action/showImage?doi=10.2200/S00414ED1V01Y201204DTM025&iName=master.img-018.jpg&w=166&h=231

2.3. P2P CONTENT DISTRIBUTION 33

model, the server is still a single point of failure (i.e., SPOF). Scaling such systems requires replacing
the web server with a more powerful one, to be able to redirect the queries of a large audience.

Unstructured Approaches
The second category of approaches uses unstructured overlays for their flexibility and inherent
robustness. Two representative systems are Proofs and BuddyWeb.

• Proofs [Stavrou et al., 2002]. Uses an unstructured overlay in which peers continuously
exchange neighbors among each other like in gossip protocols. This provides each peer with
a random view of the system for each query routing operation. Peers keep their requested
objects and can then provide them to other participants. To locate one of the object replicas,
a query is flooded to a random subset of neighbors with a fixed TTL, i.e., the max number of
hops. The continuous randomization of the overlay has the benefit of improving the network
fault-tolerance and tends to uniformly distribute the load over peers. However, the blind
searches for not not-so popular objects induce heavy traffic overheads and high latencies.
Moreover, Proofs does not address locality-awareness which is useful to forward queries to
close results.

• BuddyWeb [Wang et al., 2002]. It also uses an unstructured network and flooding for query
routing. Notice that central servers provide each newly joining peer with neighbors that share
interest similarities with the peer. However, these servers can present single points of failures
(i.e., SPOF), which makes BuddyWeb vulnerable and limits its scalability. Similar to Proofs,
BuddyWeb does not take into account locality-awareness.

Structured Approaches
Now, we examine existing approaches that rely on structured overlays in order to benefit from
their efficient lookup. First, we examine Squirrel [Iyer et al., 2002], PoPCache [Rao et al., 2007],
and Backslash [Stading et al., 2002] which propose 2 types of strategies: DHT-Home and DHT-
Directory. Then, we discuss different approaches.

DHT-Home Strategy places objects at peers with the numerically closest identifier with
respect to the hash of the URL of the object without any locality or interest considerations (see
Figure 2.4 (b)). Queries find the peer that has the object by navigating through the DHT. To deal
with highly popular objects, objects may be progressively replicated along neighbors as the number
of requests increases. This is achieved by further forcing peers to store arbitrary content.

DHT-Directory Strategy stores at the peer identified by the hash of the object’s URL a small
directory of pointers to recent downloaders of the object (see Figure 2.4 (a)). A query first navigates
through the DHT and then receives a pointer to a peer that potentially has the object. Approaches
adopting this strategy may be vulnerable since the directory information is abruptly lost in case of
failures.

34 2. CONTENT DISTRIBUTION IN P2P SYSTEMS

(a) Home model. (b) Directory model.

Figure 2.4: DHT strategies in a P2P CDN.

In general, such systems are self-scalable because of the DHT load balancing and replication
mechanisms. However, there are two main drawbacks in the query routing with respect to the
requirement of CDNs on short latencies. First, each query has to navigate through the whole DHT,
which implies several routing hops. This can be acceptable in corporate LAN environments, where
the latency of the network links are a magnitude smaller than the latency of the server. Otherwise,
the server will be much faster. Second, unless using a locality-aware overlay combined with proactive
replication, the query is randomly served by any peer.

Joint-Overlay Approaches
Kache [Linga et al., 2003] relies on a new form of DHT that increases robustness by increasing
memory usage and communication overhead. Using a hash function, peers are organized into

√
N

groups, where N = total number of peers. This is shown in Figure 2.5 with focus on the peer with
identifier 110 from group 0. The peer maintains (a) a view of its own group (i.e., peers 30 and 160),
and (b) for each foreign group, a small (constant-sized) set of contact peers lying in it (i.e., peer
432). Each entry (group view or contact) carries additional fields such as RTT estimates. Peer 110
also stores directory information related to each single object that is cached in the system and whose
URL maps to group 0 by means of hashing. For each such object o, peer 110 has a directory table
that contains the IP addresses of a bounded set of peers holding a copy of o.

When a peer p downloads a copy of the object o, it creates a directory entry < o, p > and
communicates it to each contact c that belongs to o’s group. When the directory table of peer c is
full, c performs RTT measurements to keep the directory entries that refer to the closest peers and
discard the other entries. Each peer gossips within its group to replicate and spread directory entries;
it selects close-by peers from its view to exchange gossip messages. Obviously, peers gossiping and
replicating directory entries are not necessarily interested in this information. Furthermore, since

http://www.morganclaypool.com/action/showImage?doi=10.2200/S00414ED1V01Y201204DTM025&iName=master.img-019.jpg&w=102&h=109
http://www.morganclaypool.com/action/showImage?doi=10.2200/S00414ED1V01Y201204DTM025&iName=master.img-020.jpg&w=148&h=111

2.3. P2P CONTENT DISTRIBUTION 35

Group 0

30

110 432

160

IP address RTT

Group 1 Group 2 Group N - 1
Own group view

Group

Id

30 23ms
79ms360

Peer 110

URL

http://example.com

Directory table

RTT

2

.

. ...
...

...

...

...

432,...

Contacts

Figure 2.5: A Kache system with peers distributed across
√

N groups, and soft state at a typical
peer [Linga et al., 2003].

directory information is highly replicated, vast updates are required when referenced peers discard
their content or leave the network.

Kache is robust against failures, because all peers in the same group store pointers of all
the objects mapped onto the group. Moreover, locality-awareness is incorporated through the
RTT-based routing tables. Lookups are bounded by O(1), thus scaling does not influence lookup
time. However, the resources necessary to maintain routing information increase as the number of
peers increases.

Flower-CDN [Dick et al., 2009] supports several under-provisioned websites with large user-
base, by strictly relying on their user communities rather than dedicated and reliable servers. Fig-
ure 2.6 illustrates the architecture of Flower-CDN. Participant peers belonging to the same lo-

Figure 2.6: Flower-CDN architecture with websites α and β and four localities.

http://www.morganclaypool.com/action/showImage?doi=10.2200/S00414ED1V01Y201204DTM025&iName=master.img-021.jpg&w=137&h=112

36 2. CONTENT DISTRIBUTION IN P2P SYSTEMS

Figure 2.7: Query submitted by F , a new client of β in locality loc = 1.

cality loc and interested in the same website ws build together an unstructured overlay noted
petal(ws, loc), using gossip protocols. These peers, called content peers and noted cws,loc, cache and
provide content of ws, thus considerably relieving the server of ws from its query load. Within a
petal, peers use gossip protocols to exchange information about their content and contacts, allowing
Flower-CDN to maintain accurate information despite dynamic changes in order to support even-
tual queries. Flower-CDN charges one peer of each petal (ws, loc), the role of a directory peer (noted
dws,loc): dws,loc knows all content peers cws,loc and keeps a directory about their stored content. Di-
rectory peers connect via D-ring, a DHT-based structured overlay, to handle queries coming from
new clients. D-ring relies on a locality- and interest-aware key service that assigns each directory
peer an identifier based on the website and locality it represents.

Instead of querying server ws, a new client located in loc, submits its query to D-ring which
transfers the query to the directory peer in charge of ws in loc i.e., dws,loc. Then, dws,loc tries to
resolve the query while relying on its petal or some neighboring petals related to ws. Figure 2.7
shows a part of D-ring and focuses on the directory peer dβ,1 and three content peers for (β, 1),
namely A, B and C. dβ,1 maintains a directory-index that lists, for each peer in petal (β, 1), their
objects (e.g., A holds objects x and y which are initially provided by website β). Moreover, dβ,1

stores directory summaries received from its direct neighbors, i.e., dβ,0 and dβ,2. Assume that a new
client F of website β enters the system with a query q for some object x. Supposing that client F

is located in loc = 1, q is forwarded to dβ,1 which searches its directory index for x. Then, dβ,1

redirects q to content peer A or C, which hold a copy of x and thus can serve the query. A or C

directly transfer the object to the client to F .
In case the client F has requested object x′ which is not held by any peer in petal (β, 1), dβ,1

first checks its directory summaries for (β, 0) and (β, 2) to see if they might have x′ in their directory
index. If it appears so, dβ,1 forwards q accordingly to either dβ,0 or dβ,2. Otherwise, the client F

redirects q to the website β.
Afterwards, the client F can join petal (β, 1) as a content peer cβ,1. Initially, F gets to know

from dβ,1 content peers like A. F gossips to A to discover other content peers in its petal and to

http://www.morganclaypool.com/action/showImage?doi=10.2200/S00414ED1V01Y201204DTM025&iName=master.img-022.jpg&w=215&h=117

2.3. P2P CONTENT DISTRIBUTION 37

Figure 2.8: Example of petal(β, 1) in PetalUp-CDN.

get updates about their shared content. Therefore, for further queries, F searches directly in its
petal (β, 1) instead of relying on D-ring.

PetalUp-CDN [Dick et al., 2011] addresses the scalability and robustness of Flower-CDN.
PetalUp-CDN allows several directory peers to share the management of the same petal. Directory
peers for each couple (ws, loc) consecutively join D-ring. The number of directory peers in charge
of each petal(ws, loc) increases progressively as the number of clients for ws in loc increases. By
having multiple directory peers in charge of a petal, the failure of one or more of these directory
peers will not lead to a complete loss of directory information, and will allow the system to continue
in a slightly-reduced capacity. Moreover, these additional directory peers are not carrying redundant
information, but each one is responsible for maintaining information about a part of the petal. An
example of PetalUp-CDN configuration is illustrated in Figure 2.8 which focuses on petal(β, 1).
Two directory peers d0

β,1 and d1
β,1 share the management of petal(β, 1). Thus, they each manage a

subset of the content peers cβ,1.
The petals expand progressively as new peers join and shrink as existing ones leave. To keep

the load on directory peers at bay, D-ring follows the evolution of the petals and accordingly may
automatically expand or shrink. Failures and disconnections are detected and recovered via gos-
sip protocols. Gossiping is confined in petals, or in other terms localities, which yields acceptable
overhead in terms of bandwidth consumption and reduced latency.

Discussion
Table 2.1 summarizes the performance behavior of the P2P CDN approaches previously described.
An important observation is that most of the approaches do not focus on scalability, and often target
small local networks.

In CoralCDN, users are not involved in the P2P network: they use the P2P CDN but do not
contribute and share their resources. An increase of the number of users requires more investment by
adding proxy caches to the CoralCDN. OLP is unsuitable for P2P systems as it is not scalable (i.e.,

http://www.morganclaypool.com/action/showImage?doi=10.2200/S00414ED1V01Y201204DTM025&iName=master.img-023.jpg&w=166&h=108

38 2. CONTENT DISTRIBUTION IN P2P SYSTEMS

Table 2.1: Comparison of P2P networks
System Overlay Robustness Scalability Locality Autonomy

CoralCDN hierarchy of proxies yes proxy investment yes -

OLP centralized SPOF server bottleneck no yes

CoopNet centralized SPOF server bottleneck no yes

Proof unstructured randomness flooding overhead no yes

BuddyWeb unstructured SPOF server bottleneck no yes

DHT-Directory structured directory loss yes no yes

DHT-Home structured DHT yes no no

Kache joint overlay replication overhead yes yes

Flower-CDN joint overlay gossip no yes yes

PetalUp-CDN joint overlay gossip yes yes yes

bottlenecks) nor robust (i.e., SPOF) due to its centralized nature, and it does not address locality-
awareness. CoopNet has similar limitations, except that it supports locality-aware redirection of
queries. Proof derives its robustness from the randomness of unstructured overlays, but in return
suffers from their scalability issues due to flooding overhead and lacks locality-awareness. BuddyWeb
does not cope with dynamic and large-scale participation of peers because its construction mechanism
is centralized, and thus is not adapted for real P2P environments. DHT-Directory approaches do
not provide robustness as the performance of query handling is directly affected by peer failures.
In comparison, DHT-Home approaches rely on DHT robustness which incurs high maintenance
costs and breaks the autonomy of peers due to its replication mechanism. Kache addresses most of
the requirements, and most importantly achieves robustness by replicating and gossiping indexing
information. However, Kache’s scalability comes at the cost of a significant storage overhead on every
peer. PetalUp-CDN is designed to achieve scalability at low costs while respecting peer autonomy
and complying with peer localities.

2.4. CONCLUSION 39

2.4 CONCLUSION
The objective of this chapter was to provide a concise, yet comprehensive study of P2P content
distribution.

After a first overview of traditional CDNs, we identified their requirements which are perfor-
mance, scalability,and reliability,and we discussed the mechanisms needed to fulfill each requirement.
We focused on the potential savings and benefits in using P2P technology as a cheap and efficient
alternative for commercial CDNs.

We then presented the recent P2P trends that can improve the performance of P2P content
distribution but incur additional challenges. The trends that we identified are locality-aware and
interest-aware overlay matching, and overlay combination. The challenges are to keep the solutions
simple, avoid centralized management and large overheads, operate fast and dynamically adapt to
changes and massive scales.

Finally, we focused on P2P CDN which have stringent performance requirements. They
should be highly robust, efficient, and scalable, while taking into account the autonomy of peers.
Existing P2P CDNs do not answer all the important requirements. Most importantly, they are not
designed to achieve high scalability as they target small scales.

41

C H A P T E R 3

Recommendation Systems
The explosive growth of web-scale collaboration has increased the amount of information that is
available to users.Therefore, people use a variety of strategies to search for contents and make choices
about what to explore. Recommendation systems have emerged as software applications that help
users to make choices. Recommendation systems have roots in information retrieval (IR). IR deals
with searching for the contents that match a given query, and then retrieve those contents to the
users. IR systems typically return a large number of responses that are related to a given query. Thus,
users get overwhelmed and it becomes hard for them to find the most valuable and relevant contents.

In this chapter,we are concerned with recommendation for decentralized infrastructures where
users wish to keep their contents (documents, items, images, tables, etc.) in their own workspace,
which is typically the case for on-line communities [Cheng and Vassileva, 2005]. An on-line com-
munity refers to a information system where anyone can post content. In this chapter, we consider
on-line communities such as researchers or friends who wish to share data and want to keep their
data in their own workspace instead of storing it in an unknown server. In this context, P2P is ap-
propriate to handle content sharing as the underlying infrastructure. P2P file-sharing systems have
proven to be very efficient at locating content given specific queries. However, file-sharing systems
only provide a very simple keyword search capability, trying to find the contents whose name or
description match the keywords provided by the user. Few solutions exist that are able to recom-
mend the most relevant files. Recently, a significant amount of effort has been given to introduce
recommendation to suggest the most relevant contents.

The goal of this chapter is to show how different P2P techniques may be useful for decentral-
izing recommendation mostly for on-line communities. We present the basis of recommendation
and afterwards we classify the most relevant P2P recommendation solutions. Aberer [2010] lecture
presents interesting recommendation models for Web page retrieval based on data mining tech-
niques. The focus is on how to discover and model users’ interest in order to recommend related
web pages. Notice that the context is different from ours since they are not concerned with on-line
communities.

This chapter is organized as follows. In Section 3.1, we present and discuss the main concepts
related to centralized recommendation systems: collaborative filtering, content-based filtering and
social networks. Next, in Section 3.2, we present the most relevant P2P solutions related to P2P
content management systems as they come with interesting techniques that may be exploited for
P2P recommendation. In Section 3.3, we describe the most important approaches for P2P recom-
mendation. Finally, in Section 3.4, we summarize and conclude the chapter by proposing a general
framework for recommendation.

42 3. RECOMMENDATION SYSTEMS

User’s profiles

User
Recommendations

Item (contents)
Profiles

Recommender System
Aggregate user’s or content
profile

Users’ profiles

Figure 3.1: Overview of Recommendation Systems.

3.1 OVERVIEW OF RECOMMENDATION

Recommendation Systems (RS) are software applications that analyze users’ historical patterns
(ratings, purchases, preferences, etc.) to find and recommend new items that the user might be
interested in and would like to explore or purchase [Resnick and Varian, 1997]. Figure 3.1 provides
a general overview of a recommendation system and its main components. In general, an RS first
collects a users’ historical patterns that may be expressed either explicitly or implicitly. Historical
patterns allow to capture user profiles or user preferences. They may include information about a
user (such as name, age, location, etc.), or users’ activity history (what the user bought, viewed, rated,
etc.), or description of the items the user has seen, purchased, explored or rated. After exploiting
a user pattern, the RS finds and aggregates other users with similar patterns. Finally, the RS uses
the data from those similar users to suggest items the user might be interested in. In this chapter,
depending on the context, we use alternatively the term item, content or document to refer to a
general content.

There are two main kinds of RSs [Goldberg et al., 1992, Malone et al., 1987,
McLaughlin and Herlocker, 2004, Ziegler et al., 2005,?]: collaborative filtering (CF) and content-
based filtering. CFs can recommend items based on the items previously rated by similar users.
Content-based RSs work by suggesting to the user items that are similar to items the user has seen
or rated [Breese et al., 1998]. Finally, social network links can also be exploited as a recommendation
approach in which friendship is taken into account to increase the quality of recommendation. In
the next following subsections, we review each approach.

3.1. OVERVIEW OF RECOMMENDATION 43

Users’ profiles
rated items

u

u1

i1 i2 i3

i1
i2 i3

i4 i5

i4

u’s profile:
Items
Ratings

User u
Recommendations

u2

i1 i2 i3 i4 i5

4 4 5 Θ Θ

Users

Users-Item matrix R

Items

Recommender System
1-Retrieve similar users
2- Suggests items seen by similar
users and not seen by u

Items

4 4 5 5 Θ

4 4 5

Θ Θ Θ3 2

Figure 3.2: Collaborative Filtering.

3.1.1 COLLABORATIVE FILTERING
CF is one of the most popular classes of recommendation algorithms. CF systems try to automate
the process of word-of-mouth, whereby people who have the same preferences most probably have
similar taste and interest. In CF systems, users express their preferences by rating items (photos,
documents, etc.) either explicitly or implicitly. The user ratings, are often represented by discrete
values within a certain range, e.g., between 1 and 5, higher meaning better.

CF has been widely used for building RSs [Resnick et al., 1994], Ringo/Firefly
[Shardanand and Maes, 1995], and Tapestry RS [Goldberg et al., 1992]. It works by measuring
the similarity between users based on their rating behavior. Two users are similar if they rate items
in a similar way (the ratings values are close enough). CF typically works in four steps.

1. Measure the similarity between user u and all the other users in the system.

2. Select those users who are most similar to u, noted neighbors(u).

3. Normalize and compute the weighted sum of the neighbors(u) ratings.

4. Make recommendations based on those ratings, using top-k algorithms (see Chapter 4).

In CF systems, user profiles are managed through a U × I user-item matrix R, as shown in
Figure 3.2, where U represents the set of users and I the set of items in the system. In addition, n is

44 3. RECOMMENDATION SYSTEMS

the number of users and m the number of items. Each entry ru,i of R includes the rating given by
user u for item i, where ru,i = r indicates that user u rated item i by a value of r , and ru,i = ï'†�

indicates that user u did not rate item i yet. Each row ru ∈ R is a user profile that corresponds to the
items rated by u. Data sparsity (missing rates in the user-item matrix) is a well common phenomena
in CF. Thus, another goal of the CF system is to predict missing rates in matrix R. Notice that due
to the size of R, the storage and management of inverted lists used to provide recommendation is
known to be prohibitive space-wise for a single server [Amer-Yahia et al., 2008].

The neighborhood of a user u is defined as the most similar users among all users. Thus,
a similarity measure is necessary. One popular measure is cosine similarity [Linden et al., 2003,
Sarwar et al., 2001]: the similarity between a user u and another user v, noted sim(u, v), is com-
puted by making the product between the ratings that was given by u and v over their items.
Another known similarity measure is the Pearson correlation coefficients [Massa and Avesani, 2004,
Sarwar et al., 2001]. It was first introduced into collaborative filtering as a weighting method in the
GroupLens project [Resnick et al., 1994].

Collaborative filtering systems have proven very successful for recommendation in many e-
commerce applications. However, CF suffers from several drawbacks.

• Data sparsity. Most users rate small numbers of items in the system, thus making it hard to
find similar users and perform rate prediction [Linden et al., 2003].

• Cold start. A new user who has not yet rated any item will not have similar users to provide
with recommendations. On the other hand, when a new item is introduced in the system and
no user has rated that item yet, it is not possible to recommend that item [Schein et al., 2002].

• Privacy. Users give full control of their behavior and shared items (photos, documents, etc.) to
the application provider who can sell it to other and worse, leave such control to third parties
of unknown affiliations [Canny, 2002].

• Limited Scalability. Measuring the similarity between users is space and time consuming,
and increases exponentially as the numbers of items and users increase.This is a major concern
for e-commerce applications which provide a lot of recommendations while serving millions
of users.

3.1.2 CONTENT-BASED FILTERING
Unlike CF, content-based filtering works by suggesting items that are similar to those that the user
has seen or rated. In content-based filtering, the similarity is computed between the items the user
has seen or rated and the items that the user did not see or rate yet. Items with high similarity are
recommended to the user. Notice that here the user profile is defined based on the semantics of the
item the user has seen or rated.

To measure the similarity between items, each item is identified by a set of features and at-
tributes that are usually extracted from its content or description. Therefore, content-based filtering

3.1. OVERVIEW OF RECOMMENDATION 45

systems are designed mostly to recommend text-based items, or items that have text descriptions
(keywords).For instance, the Fab system [Balabanovic and Shoham,1997] (for web page recommen-
dation) represents a web page by identifying the 100 most important keywords of a page. Similarly,
the Webert system [Pazzani and Billsus, 1997] represents documents by identifying the 128 most
informative words.

The profile of item i is represented by a vector of keywords,denoted Vi = {wi,1, wi,2, ..., wi,k},
where k is the total number of unique keywords and wi,j is the weight (importance) of keyword j of
item i. One of the popular metrics used to compute the weight wi,j of a keyword j in an item i, is
the normalized TF-IDF metric which measures the weight of each keyword by taking into account
(in a normalized way) the number of times the most frequent keyword appears in the item, the total
amount of items that contains the keyword j and the total amount of items perceived by the user
(rated, visited items, user purchases). Notice that a user profile can be represented by a matrix where
each row represents an item vector of keywords and includes each weight wi,j defined above.

Users and item profiles may also be extracted using a topic classifier based on machine learning
techniques such as LDA (Latent Dirichlet Allocation) [Blei et al., 2003]. These techniques take as
input a set of items, and produce as output hidden topics (topics of interest). These extracted topics
are used to express both users and items profiles through topic vectors. Again, a user profile can be
represented by a matrix. Thus, once users and items profiles are computed, similarity computation
is possible. There are several known techniques to evaluate the similarity between these vectors
(e.g., user profile and item profile) such as vector-space model, probabilistic models, and fuzzy set
models [Pazzani and Billsus, 1997]. As an alternative to machine learning, data mining algorithms
may also be used to discover and model user’s interests. Gündüz-Ögüdücü [2010] present a complete
lecture in this topic.

Once the profiles are defined (keyword or topic vector of rated items), the similarity of user u

profile and all items that u did not see or rate is computed. Afterwards, the most similar items are
chosen, and rate prediction is done for the items that were not rated yet. Finally, the most similar
and high-rate items are recommended. Notice that similarity computation can be quite space and
time consuming because it may involve the manipulation of huge matrices.

In addition to the drawbacks found in collaborative filtering, content-based filtering also
suffers from overspecialization: a user is limited to receive recommendation for items that are only
similar to the items she has seen or rated, and thus might not explore new interesting contents.

3.1.3 SOCIAL NETWORKS
Social networks (SN) have become very popular in the context of Web.They allow anybody to present
themselves through a profile, and allow them to create, edit, annotate, and share data with other
users. The user maintains links to other users, which indicates trust, friendship or shared interests.
An SN can be modeled as a graph, where nodes represent users, and an edge between two nodes
refers to the relationship between them. In practice, an edge can refer to any type of relationship,
e.g., family, friends, common interest, etc. SN exhibits the small-world phenomena, that is, a user

46 3. RECOMMENDATION SYSTEMS

u can contact any other user v in the system in a few hops. Therefore, SNs give users the ability to
find new users with similar interests, and locate content in an efficient way.

Social network links and data can be exploited to improve the quality of recommendation
results [Shepitsen et al., 2008, Tso-Sutter et al., 2008]. Two main concepts are exploited for rec-
ommendation: trust and tagging . For instance, in order to overcome the cold start problem, the
neighbors of each user u may be selected based on the trust network. In this case, each user u com-
putes the trust value between itself and each user in the system. Then, the top-k trustful users are
chosen as the neighbors of u.

User tagging activities may also be exploited to enhance recommendation qual-
ity [Shepitsen et al., 2008, Tso-Sutter et al., 2008]. A tag is a shared metadata assigned by users
to items they have seen or explored, in order to annotate and categorize those items and facilitate
item sharing. Tags can also be seen as a kind of index. Tagging activities are commonly used to
measure the similarity between users.These systems are known as Collaborative Tagging.That is, the
fact that users tag the same items is taken into account for similarity computation. In addition, like
in content-based filtering, tag contents may be useful to capture the similarity between items.

Amer-Yahia and Yu [2009] describe an interesting and generic system, called community-
driven information exploration, that leverages SocialScope [Amer-Yahia et al., 2009b] architecture
and Jelly language [Amer-Yahia et al., 2009a], in order to build communities, facilitate search and
recommendations. SocialScope is an architecture designed to aggregate data from content and social
sites, while Jelly is a language that provides primitives (rating, tagging, users, and items) that can
be used to find the relations between users and/or contents. Form SocialScope architecture and
Jelly primitives, users can derive topics of interest, community, recommendations, ranking, and
explanations.

Exploiting friendship and trust enriches users’ profiles enabling to compute a trust value for a
given recommendation. In addition, social activities may be taken into account to refine users’ profile,
improving the quality of recommendation. Notice that tagging activities may be used to capture users
profiles. In the remainder of this chapter the term social data refers alternatively to friendship links,
tagging activity, and trust.

3.2 P2P CONTENT MANAGEMENT

Recall that RSs have roots in IR systems. IR deals with searching for the contents that match a
given query, and then retrieve those contents to the users. RSs take advantage of user preferences,
similarities and rates to recommend the best contents.The common feature among these two fields is
search for content. In this section, we give an overview of the P2P solutions for content management
because they use some interesting techniques that may be useful for P2P recommendation.

P2P systems, such as Gnutella and Kaaza [Liang et al., 2006], support a keyword query ca-
pability to search for the contents whose name or description match the keywords. To improve the
quality of content retrieval, instead of basic keyword search, IR techniques (e.g., similarities measures,
topic and profile extraction techniques, clustering, etc.). have been adapted to be implemented on

3.2. P2P CONTENT MANAGEMENT 47

top of P2P overlays.This implementation provides a way to link peers according to the contents they
store and enhances the quality of content retrieval. P2P content management systems are classified
according to the way in which their overlays are built as follows.

• Clustering overlay. These systems group similar peers with respect to the contents they store
in logical clusters.

• Short link overlay. In these systems, peers establish direct links with other peers which are
similar with respect to interests or social data. These links can either be replaced or added
dynamically.

The following sections present existing solutions for these two categories. Section 3.2.1
presents in more detail the clustering overlays. Shortcut links overlays solutions are presented in
Section 3.2.2 .

3.2.1 CLUSTERING OVERLAYS
In these systems, content semantics is exploited as clustering criteria. These systems are classified
into peer clustering and data clustering. In peer clustering, peers that have similar contents are grouped
together, while in data clustering, contents that have some similarity are placed in selected peers.

Peer Clustering. Peers with similar contents are logically grouped into clusters in or-
der to improve search performance [Bawa et al., 2003, Iamnitchi et al., 2002, Jin et al., 2006,
Klampanos and Jose, 2004]. Thus, according to the similarity criteria several clusters are built over
an unstructured overlay. A query is then directed to the cluster that is more likely to have answers
to the query. Within a cluster, the query is flooded to perform document search. For instance,
Garcia-Molina and Crespo [2003] introduce the concept of semantic overlay by using peer cluster-
ing and a specific content classification hierarchy. Each peer that joins the system, identifies which
cluster(s) to join by acquiring the classification hierarchy and classifying its documents against it.
Once a peer identifies which cluster(s) it belongs, through flooding, it is able to locate and join them.

The SETS system [Bawa et al., 2003] clusters peers based on their documents’ topics. A fixed
set C of topic-segments is predetermined, where each topic-segment represents a cluster, and all
peers in a cluster store documents related to the topic-segment of that cluster.

Data Clustering. These systems cluster similar contents, with respect to their semantics, in
selected peers; for instance,peers that belong to the same locality [Bender et al., 2005,Lv and Cheng,
2004, Sahin et al., 2004, Tang et al., 2003]. Typically, these systems use a structured overlay for
document placement. PSearch [Tang et al., 2003] uses a landmark technique to distribute documents
in CAN (Content -Addressable Network) DHT [Ratnasamy et al., 2001] (see Chapter 1 for more
details). Hence, the documents that are semantically similar also appear physically close to each
other in CAN. Accordingly, documents that are relevant to a query are likely to be collocated on a
small number of peers in the same locality.

48 3. RECOMMENDATION SYSTEMS

3.2.2 SHORT LINK OVERLAY
In these systems, each peer establishes logical links (shortcut links) with peers that may have contents
related to its queries. A query is forwarded first to those links. If a user is not satisfied or the search
fails, then the query is routed using flooding. These systems are classified into interest-based and
social-based according to the data that are used to establish the shortcut links. In interest-based,
shortcut links are established according to queries log history, or peer interests. In this case, peer
interests may be defined either explicitly or implicitly. Social-based systems exploit user social data
and behavior, such as tagging activities, friend network, bookmarks, etc. to establish the shortcut
links.

Interested-based. These systems [Sripanidkulchai et al., 2003b], [Busnel and Kermarrec,
2007], [Cholvi et al., 2004], [Iamnitchi and Foster, 2005], [Upadrashta et al., 2005] are based on
the assumption that if a peer pi has content that another peer pj requested or is interested in, then
most probably pi will have other content that may interest pj . Thus, in these systems each peer p

adds links to peers whose interests are similar to p’s, interests, or that have successfully answered
p’s queries. Cholvi et al. [2004] propose a solution that enables each peer to add shortcut links to
similar peers in terms of interests, to enhance Gnutella search performance. In their model, each
peer is interested in a set of categories of interests. A category of interest is defined as a bag that
consists of keywords or topics. Peer categories of interests are either extracted implicitly from peer
documents, or stated explicitly by the user. Whenever a peer submits a query, shortcuts are selectively
exploited. According to their results, the shortcut links reduces response time as well as the number
of exchanged messages.

Similarly, as Sripanidkulchai et al. [2003a] and Upadrashta et al. [2005] propose, each peer
p adds shortcut links to the peers that have most recently and successfully answered p’s queries.
When p searches for contents, it disseminates its query to its shortcuts and, if the search fails, it uses
flooding to search within the underlying P2P overlay.

Social-based. These systems consider social data (e.g., friendship links, tagging activities)
in constructing the overlay and searching for contents [Chirita et al., 2004, Marti et al., 2004,
Upadrashta et al., 2005].

SPROUT [Marti et al., 2004] exploits users’ explicit friends on top of the Chord DHT
(Distributed Hash Table), in order to avoid misrouting, and increases the number of query results.
When a peer p joins the DHT, in addition to its routing table, p adds shortcut links to all its online
friends. Once p issues a query q with key k (hash of the content name), it forwards q to the friend
f whose peer id is closest to, but not greater than k. Recursively, f forwards q in the same manner
until the peer which is responsible for k is found. In case p does not find a friend that satisfies these
conditions, then the regular lookup algorithm is used.

Bai et al. [2010] propose a personalized P2P top-k search for collaborative tagging systems,
called P4Q, is proposed. In P4Q, each user u maintains locally a profile, noted prof ile(u), which
includes the items that u has tagged along with their tags. In addition, it maintains a personal
network,noted network(u), that includes a fixed number n of users with similar interest.network(u)

3.3. P2P RECOMMENDATION 49

consists of two parts: the first includes the c users that have the highest similarity with u, noted
prof ileList (u), along with their profiles such that c � n.The second part includes the less similar
users along with their profiles stored in a space-efficient data structure called bloom filter, noted
bloomf ilter-List (u). Two users are considered similar if they share a common number of tagged
items. Notice that Peer Sampling is used to establish network(u) of a user u.

When a user u issues a query (a set of tags), u (or the system on behalf of u) exploits the user
profiles of its prof ileList (u) to process locally the query. If the search fails, or u is not satisfied with
the results, u gossips its query as follows. First, u selects from its bloomf ilter-List (u) the users
that have tags similar to the query’s tags, and adds them to a list, called remainingList (u). Once
the remainingList (u) is established, u selects randomly a user v from the remainingList (u) and
forwards the query along with the remainingList (u) to v. The remaining list is then recursively
exploited to answer the query based on a sophisticated gossip algorithm.

3.3 P2P RECOMMENDATION

Centralized RS solutions may have limited scalability because the time consumed to compute users
neighbors and the space required to store the user-item matrix increase exponentially with respect
to the number of users and items. Decentralized infrastructures such as P2P systems yield scalability
and have been exploited to build distributed RSs.

In P2P recommendation systems, recommendation data (the user-item matrix, users’ profiles
or social data) are distributed or replicated over the participant users. Therefore, users collaborate
to share their contents and generate recommendations. P2P RSs are classified according to the
recommendation data that is used to generate recommendations, as follows.

• Basic P2P prediction. Recommendations are generated based on users’ ratings only.

• Social P2P prediction. Users’ social data and rates are used in constructing the overlay and
generating recommendations.

3.3.1 BASIC P2P PREDICTION
Recall that in centralized RSs, a single provider is responsible for providing recommendations based
on a huge user-item matrix. In contrast, in basic P2P prediction systems, each peer keeps a fragment
of the user-item matrix. In general, at each peer u, recommendation is done by retrieving and
aggregating u neighbors’ profiles over the P2P overlay based on similarity measures. This process
produces u’s fragment of the user-item matrix.Then,u performs locally a traditionalTop-k algorithm
and generates recommendations with respect to its most similar neighbors contents.

In PocketLens [Miller et al., 2004], recommendation is based on collaborative filtering. The
authors explore four P2P solutions including random discovery (similar to Gnutella), transitive traver-
sal, distributed hash table , and secure blackboard. In the three solutions, Pearson Correlation Coefficient
is used to measure similarity. What differs is the way in which new neighbors are discovered.

50 3. RECOMMENDATION SYSTEMS

Ping: u profile
Pong: v and his

neighbors profiles

u

v

v
1

v
3

v
2

Figure 3.3: Collaborative filtering over an unstructured overlay.

In random discovery, when a user u joins the system, it sends a ping message to each neighbor.
Each neighbor v receives a ping message with u’s profile (rating on items), and returns a pong message
that includes v’s profile as well as v’s direct overlay neighbors profiles.Once u receives a pong message,
it aggregates its similar neighbors from the pong message. In the example of Figure 3.3, u forwards
a ping message to its neighbors v. User v returns to u a pong message that includes v’s overlay
neighbors profiles. Thus, u becomes aware of the existence of new users.

In the transitive traversal, each user u finds new neighbors along with query routing in the
following way. u floods its query over an unstructured overlay, and u considers each user v in the
response path of the query as a potential new neighbour. Notice that in this approach, each peer
only stores profiles of its neighbors (similar peers).

In the DHT solution, a DHT is used to store items and ratings on items. Similar items
with their corresponding profile (user, items rate) are stored together in a same peer over the DHT
using a specific item identification method (similar items have similar keys). For a given user u,
recommendation is done as follows. First u aggregates similar item profiles from the DHT. Then
it generates the recommendation using collaborative filtering techniques. Different from random
discovery and transitive traversal, the DHT solution avoids profile replication. Simulation results
shows that PocketLens recommendation results are close to those obtained by using centralized
recommendation.

Han et al. [2004] propose PipeCF to store users’ rating over a DHT in order to distribute
the user-item matrix. All users that have rated an item with the same rating are grouped in one
cluster, called bucket. These buckets are spread over the DHT. The item’s name and rating are used
to generate the key of each bucket (see Figure 3.4). For a given user u, recommendation is done by
aggregating buckets of u items.

Finally, Kermarrec et al. [2010] use gossiping and random walk for decentralized RS. Gossip
algorithms let each user dynamically retrieve and aggregate its neighbor’s profiles. Recommendation

3.3. P2P RECOMMENDATION 51

Bucket of <i ,5>
Users:
v1

1

3

Bucket of <i ,4>

p responsible for key(i ,4)

4 2p responsible for key(i ,3)

3
p responsible for key(i ,5)

2

Users:
u ; v1 1

1

Bucket of <i ,5>
Users:
u ; v1

2

3

Bucket of <i ,3>
Users:
u 2

2

P1

DHT

Users-Item matrix R

P3

P4

P2

2
p responsible for key(i ,5)

b) Buckets over the DHTa) A snapshot of user-item matrix

u

v1

v2

i1 i2 i3

4 5 Θ

Users

Items

4 5 5

Θ Θ3

Figure 3.4: Collaborative filtering over a DHT overlay.

is provided based on the neighbors’ profiles (items and rates), combined with a specific random walk
algorithm. Notice that cosine similarity is used to measure the similarity between users.

3.3.2 SOCIAL P2P PREDICTION SYSTEMS
These systems leverage user’s preferences (ratings) with user’s social data (friends, trust, etc.) in order
to improve recommendation quality and performance in a distributed manner. Exploiting friendship
network and trust enables each user to have its own user-item matrix because only trusted friends’
rating are aggregated for recommendation. To the best of our knowledge, there are very few social
P2P prediction solutions.

Massa and Avesani [2004] propose a trust-aware collaborative filtering that uses user’s trust
information, in a P2P manner. In this solution, each user u expresses its level of trust, denoted
trust (u, v), to every other user v it has interacted with. The trust (u, v) value is between 0 and
1, where 0 means total distrust and 1 means full trust. The trust network is modeled as a directed
graph G = (U, E), where U is the set of users in the network, and E is the set of edges between
users.There is an edge e(u, v) from user u to user v, if u has expressed its level of trust on user v.The
trust level among unknown users u and v is predicted based on a maximum propagation distance d,
the minimum distance n between u and v, defined as:

trust (u, v) = d − n + 1

d
, (3.1)

where d is computed based on the number of hops. In the example of Figure 3.5, we assume that the
maximum propagation distance d is 4. Then the predicted trust value from u to v is 0.75, and the

52 3. RECOMMENDATION SYSTEMS

v
1

0.45 0.6

0.91.0

0.7

0.8

?

?

v

v
2

u

Figure 3.5: Example of trust network.

predicted trust value from v2 to u is 1. Once u measures the trust level between itself and each user in
the network, it selects the most trustful users to be his trusted neighbors, denoted neighbortrust (u).
Those neighbors profiles are used to compute the recommendation.

P2Prec is a social-based P2P recommendation solution for large-scale content shar-
ing [Draidi et al., 2011a,b]. The main idea is to recommend high relevant documents related to
query topics and contents hold by useful friends (of friends) of the users, by exploiting friendship
networks. P2Prec recommendation model relies on a distributed graph, where each node represents
a user (peer) labeled with the contents it stores and its topics of interests. The topics each peer is
interested in are automatically calculated by analyzing the documents the peer holds. Peers become
relevant for a topic if they hold a certain number of highly rated documents on this topic. A peer v

becomes useful to a peer u, if u’s topics of interest and v’s relevant topics are overlapped. To exploit
friendship links, we rely on Friend-of-A-Friend (FOAF) descriptions 1.To disseminate information
about relevant peers, gossip algorithms are used that provide scalability, robustness, simplicity, and
load balancing.

Each user u exploits its local-view to establish friendship. As shown in Figure 3.6, each user
manages a local-view and each entry of the view corresponds to a specific user information that
includes:

〈 user-id, topics of interests (and relevant topics), friendship network 〉 .

For instance, in user v2’s local-view in v4’s entry, the expression (t2, 1), (t3, 0) means that
user v4’s topics of interests are t2 and t3. However, the value 1 on the right side of t2 (noted (t2, 1))

1http://www.foaf-project.org. Accessed on December 2011

http://www.foaf-project.org

3.3. P2P RECOMMENDATION 53

means that t2 is a relevant topic (topics of the highly rated contents) for v4. In addition, notice that
v4’s friends are v1 and v2.

At each gossip cycle, u goes through each user entry vïƒ^ ∈ local-viewu, and evaluates
whether v may be suggested for friendship as follows: user u computes the similarity between u and
v. The degree of similarity between u and v takes into account the usefulness of v and the overlap of
their friend network. Notice that user u and v may be similar in terms of topics of interest. However,
v may not be useful for u, because the topics of interest of u are not related to v’s relevant topics.The
usefulness of v with respect to u is computed by counting the overlap between u’s topics of interests
and v’s relevant topics.

user

local-view

1) Each user u maintains a
 local-view

2) Each user u periodically
 selects

3) Each user u receives a
 gossip message

a random contact v to
gossip with

a gossip message and
send it to v

Updates its local-view

_

_

_

before gossip

friend(v)T

t(,0)

v1

1v

u

2

v2

u

u

, v4

v4

1 user

local-view before gossip

friend(v)T

t(,1);

v1

2 t(,0)3

t(,1);3 t(,1)3

v

u

4

v5

v5

v, v2

v3

v3

1

t , t21

t1

t2

t , t 32t , t 3

t 3

1

v1

1

user

local-view before gossip

friend(v)T

t(,1);

v1

2 t(,0)3

t(,1);1 t(,1)3

v

v2

4

v5

v, v2

v3

1

1 user

local-view before gossip

friend(v)T

t(,1);

v1

2 t(,0)3

t(,1);1 t(,0)2

v

v2

4

u

v, v2

v1,v2,v3

1

1

gossip

Figure 3.6: Example of gossip exchange.

If u has accepted to establish friendship with v, then it adds v’s profile information in its
FOAF file. The profile information includes v’s relevant topics of interest, a trust value trust (u, v)

between u and v, and a link to v’s FOAF file that is used during query routing.
Different than content-based filtering, P2Prec provides recommendation once a user submits

a keyword query. Once a given peer u submits a query to retrieve documents, the problem is to find
u’s most useful friends who can provide interesting recommendations. Using the FOAF file at u, the
query routing algorithm selects the best peers to recommend documents based on u’s most useful
friends with respect to the query topics.This algorithm is recursively executed at each selected friend
until a specific TTL (Time To Live). These selected peers then propose recommendations to the

54 3. RECOMMENDATION SYSTEMS

Figure 3.7: Recommendation framework.

query initiator. At the query’s initiator, recommendations are selectively chosen based on similarity,
rates, and popularity or other ad-hoc recommendation criteria.

3.4 CONCLUSION

In this chapter, we dealt with recommendation for decentralized infrastructures where users wish to
keep their contents (documents, items, images, tables, etc.) in their own workspace, which is typically
the case for on-line communities. In this context, P2P is appropriate as the underlying infrastructure.
Figure 3.7 summarizes centralized and P2P recommendation techniques, and Figure 3.8 presents a
general system P2P architecture for P2P content management and P2P recommendation.

Decentralized recommendation infrastructures can be classified between P2P content man-
agement and P2P prediction systems. In P2P content management systems, users submit keywords
queries and the system returns a set of contents that are most related to the query. These solutions
strive to reduce responses times and network traffic consumed by query routing, not taking into ac-
count users’ feedbacks and ratings, etc.Therefore, there is no guarantee of the quality of the returned
contents.

P2P content management systems use IR techniques, such as clustering, to enhance responses
times. Two main approaches are identified: clustering overlays and shortcut links overlays.

http://www.morganclaypool.com/action/showImage?doi=10.2200/S00414ED1V01Y201204DTM025&iName=master.img-024.jpg&w=372&h=242

3.4. CONCLUSION 55

Figure 3.8: P2P recommendation architecture.

In clustering overlays, similar peers with respect to their contents are grouped in one cluster
usually on top of an unstructured overlay, or similar contents are placed on the selected peers.
Therefore, a query is routed over the P2P overlay to find the adequate cluster to serve the query.

Shortcut links overlays enables each user to establish logical links to users with similar interests,
usually on top of an unstructured or dynamic overlay (gossip-based). Shortcut link overlays typically
propose specific protocols to search for potential users in order to establish links, exploiting users’
interests or social data. We observed that using users’ social data such as friends, trust, etc. increases
the recommendation quality, and enhances the performance of the system. In unstructured overlays,
flooding is used to search for potential shortcuts. In dynamic overlays, gossip protocols are used to
search for useful shortcuts links by exploiting users local views.The use of gossip protocols facilitates
scalability with acceptable background traffic.

P2P prediction systems proactively return a set of recommendations to users based on their
profiles (item and rates). These solutions focus on how to distribute fragments of the user-item
matrix over users. We identified two categories of P2P prediction systems: Basic P2P prediction
and social-based. In basic P2P RS, a user searches for its neighbors over the P2P overlay to per-
form recommendation. The way neighbor profiles are aggregated depends on the underlying P2P
overlay. Social-based P2P RSs exploit users’ social data such as trust, friends, etc. to provide more
personalization to recommendation.

http://www.morganclaypool.com/action/showImage?doi=10.2200/S00414ED1V01Y201204DTM025&iName=master.img-025.jpg&w=373&h=233

56 3. RECOMMENDATION SYSTEMS

Most of the basic and social P2P prediction systems are built on top of unstructured overlays,
and flooding is used to find neighbors. Again, aggregating neighbors’ profiles (users’ preferences,
FOAF files, etc.), using flooding increases network traffic, and this may deteriorate responses times.
Structured overlay reduces the network traffic for aggregating neighbors’ profiles, but in case of
dynamicity introduces some maintenance overhead. Finally, dynamic overlays (gossip-based) are
simple to implement and have shown nice properties for scalability.

57

C H A P T E R 4

Top-k Query Processing in P2P
Systems

Top-k queries have attracted considerable interest in many different areas such as net-
work and system monitoring [Koudas et al., 2004], information retrieval [Tran et al., 2009],
sensor networks [Wu et al., 2006], probabilistic databases [Soliman et al., 2007], multimedia
databases [Chaudhuri et al., 2004], spatial data analysis [Hjaltason and Samet, 2003], data stream
management systems [Jin et al., 2010], [Das et al., 2007], temporal databases[Li et al., 2010], etc.
Given a dataset D and a scoring function f , a top-k query retrieves the k tuples in D with the
highest scores according to f . In a large-scale P2P system, top-k queries are very useful [Balke et al.,
2005]; they can reduce the network traffic significantly and avoid overwhelming the user with large
numbers of uninteresting answers. As an example, assume a community of car dealers who want to
take advantage of a P2P system to share some data about the used cars they sell. Assume they agree
on a common Car description in relational format. The Cars relation includes attributes such as
car-id, price, mileage, mark, model, picture, etc. Suppose a user wants to submit the following query
to obtain the 10 top answers ranked by a scoring function over price and mileage:

SELECT car-id, price, mileage
FROM Cars
WHERE (price < 3000) AND (mileage < 60000)
ORDER BY scoring-function(price, mileage) ASC
STOP AFTER 10
The user specifies the scoring function according to the criteria of interest. For instance, in

the query above, the scoring function could be (20 × price + mileage).
In this chapter, we present the main algorithms developed for top-k processing in distributed

and P2P systems. The rest of the chapter is organized as follows. In Section 4.1, we describe the
general model of sorted lists, and then based on this model we discuss two fundamental algorithms
which are the base for top-k query processing in many distributed and P2P systems. Afterwards,
in Section 4.2, we present some important work for top-k query evaluation in distributed systems.
Then, in Section 4.3, we review the main top-k algorithms that have been developed for different
P2P overlays, i.e., unstructured, super-peer, and DHT.

58 4. TOP-K QUERY PROCESSING IN P2P SYSTEMS

4.1 GENERAL MODEL FOR TOP-K QUERIES

The problem of answering top-k queries in many centralized,distributed, and P2P systems, especially
in super-peer overlays, can be modeled as follows [Fagin et al., 2003]. Suppose we have m lists of n

data items such that each data item has a local score in each list and the lists are sorted according
to the local scores of their data items. And each data item has an overall score which is computed
based on its local scores in all lists using a given scoring function. Then the problem is to find the k

data items whose overall scores are the highest. This problem model is simple and general. Let us
illustrate with the following examples. Suppose we want to find the top-k tuples in a relational table
according to some scoring function over its attributes. To answer this query, it is sufficient to have a
sorted (indexed) list of the values of each attribute involved in the scoring function, and return the
k tuples whose overall scores in the lists are the highest. As another example, suppose we want to
find the top-k documents whose aggregate rank is the highest with regard to some given keywords.
To answer this query, the solution is to have for each keyword a sorted list of documents, and return
the k documents whose aggregate rank in all lists are the highest.

There has been much work on efficient top-k query processing over sorted lists. A naïve
algorithm is to scan all lists from beginning to end, and maintain the local scores of each data item,
compute the overall scores, and return the k highest scored data items. However, this algorithm is
executed in O(m × n) and thus is inefficient for large lists of data items.

The best known algorithm for answering top-k queries over sorted lists is the Threshold
Algorithm (TA) [Fagin et al., 2001], [Güntzer et al., 2000], [Nepal and Ramakrishna, 1999]. Many
distributed and P2P top-k query processing algorithms are based on the TA algorithm that is itself
based on Fagin’s Algorithm (FA). In this section, we first formally define the sorted lists model, and
then we briefly describe FA and TA.

Sorted Lists Model
The sorted lists can be defined as follows. Let D be a set of n data items, and L1, L2, . . . , Lm be
m lists such that each list Li contains n pairs of the form (d, si(d)) where d ∈ D and si(d) is a
non-negative real number that denotes the local score of d in Li . Any data item d ∈ D appears once
and only once in each list. Each list Li is sorted in descending order of its local scores, hence called
sorted list. Let j be the number of data items which are before a data item d in a list Li , then the
position of d in Li is equal to (j + 1).

In a distributed system, sorted lists may be maintained at different nodes. A node that main-
tains a list is called a list owner. In centralized systems, the owner of all lists is only one node.

For each data item d, there is an overall score that is computed as f (s1(d), s2(d), . . . , sm(d))

where f is a given scoring function. In other words, the overall score is the output of f where the
input is the local scores of d in all lists. In many algorithms, the scoring function is assumed to
be monotonic. A function f is monotonic if f (x1, . . . , xm) ≤ f (y1, . . . , ym) whenever xi ≤ yi for
every i. Many of the popular aggregation functions (such as Min, Max, and Average) are monotonic.

4.1. GENERAL MODEL FOR TOP-K QUERIES 59

The k data items whose overall scores are the highest among all data items, are called the top-k data
items.

In many algorithms two data access modes are used for reading the data from sorted lists.
The first mode is sorted access by which the next data item in the sorted list is accessed. Sorted access
begins by accessing the first data item of the list. The second mode of access is random access by
which a given data item in the list is searched and accessed.

FA
The basic idea of FA (Fagin’s Algorithm) [Fagin, 1999] is to scan the lists until at least k data items
have been seen in all lists, so there is no need to continue scanning the remainder of the lists [Fagin,
1999]. Given sorted lists L1, L2, . . . , Lm, FA works as follows.

1. Do sorted access in parallel to each of the m sorted lists, and maintain each seen data item in
a set S. If there are at least k data items in S such that each of them has been seen in each of
the m lists, then stop doing sorted access to the lists.

2. For each data item d ∈ S, if d has not been seen in some list Li , then do random access to Li

in order to read the local score of d in Li . Compute the overall score of d, and maintain it in
a set Y if its score is one of the k highest scores computed so far.

3. Return Y .

Let us illustrate FA with the following example.

Example 4.1 Consider the database (i.e., three sorted lists) shown in Figure 4.1. Assume a top-3
query Q, k = 3, and suppose the scoring function computes the sum of the local scores of the data
item in all lists. In this example, before position 7, there is no data item that can be seen in all lists,
so FA cannot stop before this position. After doing the sorted access at position 7, FA sees d5 and
d8, which are seen in all lists, but this is not sufficient for stopping sorted access. At position 8, the
set of seen data items is S = {d1, d2, d3, d4, d5, d6, d7, d8, d9, d13}. In S there are 5 items that have
been seen in all lists, i.e., {d1, d3, d5, d6, d8}. Thus, at this position, there are at least k data items
seen by FA in all lists, so it stops doing sorted access to the lists. Then, for the data items that are
seen only in some of the lists (not in all of them), FA does random access and finds their unseen
local scores. This is done for {d2, d4, d7, d9, d13}. For example, d2 has not been seen in L1 so FA
needs a random access to L1 to find the local score of d2 in this list. Finally, FA computes the overall
score of all seen data items, and returns to the user the k highest scored ones.

TA
TA algorithm improves FA by revising the stopping condition, i.e., the condition to stop sorted
accesses. The stopping condition of TA is based on a threshold that is computed using the last local
scores seen under sorted access in each of the lists. The number of sorted accesses done by TA is

60 4. TOP-K QUERY PROCESSING IN P2P SYSTEMS

Position
List 1 List 2 List 3

Data
item

Local
score

d1
d4
d9

d3
d7

d8
d5
d6

d2
d11

1 30
28
27
26
25
23
17
14
11
10
.........

2
3
4
5
6
7
8
9

10

Data
item

Local
score

d2
d6
d7

d5
d9

d1
d8
d3

d4
d14

28
27
25
24
23
21
20
14
13
12
......

Data
item

Local
score

d3
d5
d8

d4
d2

d6
d13
d1

d9
d7

30
29
28
25
24
19
15
14
12
11
......

Figure 4.1: Example of three sorted lists.

always less than or equal to that of FA [Fagin et al., 2003]. Given sorted lists L1, L2, . . . , Lm, TA
works as follows.

1. Do sorted access in parallel to each of the m sorted lists. As a data item d is seen under sorted
access in some list, do random access to the other lists to find the local score of d in every list,
and compute the overall score of d. Maintain in a set Y the k seen data items whose overall
scores are the highest among all data items seen so far.

2. For each list Li , let si be the last local score seen under sorted access in Li . Define the threshold
to be δ = f (s1, s2, . . . , sm). If Y involves k data items whose overall scores are greater than
or equal to δ, then stop doing sorted access to the lists. Otherwise, go to Step 1.

3. Return Y .

Let us illustrate TA with the following example.

Example 4.2 Consider the three sorted lists shown in Figure 4.1 and the query Q of Example 4.1,
with k = 3 and a scoring function that computes the sum of the local scores.TA first looks at the data
items that are at position 1 in all lists, i.e., d1, d2, and d3. It looks up the local score of these data items
in other lists using random access and computes their overall scores. The overall score of each data is
computed by applying the scoring function on its local scores. In this example the scoring function is
sum. Thus, for example the overall score of d1 is computed as f (d1) = 30 + 21 + 14 = 65. Notice
that the local score of d1 in L1 has been seen under sorted access, and its other local scores have been
read by random access. The overall scores of d2 and d3 are 63 and 70, respectively. The threshold
is computed by applying the scoring function on the last scores seen under sorted access. Thus, the
threshold is 30 + 28 + 30 = 88. The overall score of none of the seen data items is as high as the

4.2. TOP-K QUERIES IN DISTRIBUTED SYSTEMS 61

threshold of position 1. Thus, TA does not stop. At this position, we have Y = {d1, d2, d3} that is
the set of k highest scored data items seen so far. At positions 2 and 3, Y involves {d3, d4, d5} and
{d3, d5, d8}, respectively. Before position 6, none of the data items involved in Y has an overall score
higher than or equal to the threshold value. At position 6, the threshold value is 23 + 21 + 19 = 63,
which is less than the overall score of the three data items involved in Y = {d3, d5, d8}. Notice that
the overall scores of d3, d5 and d8 are 70, 70, and 71, respectively. Thus, there are k data items whose
overall scores are higher than or equal to the threshold value, so TA stops at position 6.

4.2 TOP-K QUERIES IN DISTRIBUTED SYSTEMS
In a distributed system, the number of messages that a top-k query processing algorithm commu-
nicates over the network should be as low as possible. In this section, we present three approaches
that have been proposed aiming at optimizing the communication cost of top-k query evaluation
in distributed systems. Their base model is that of sorted lists; they assume that the database is
partitioned vertically and the partitions are distributed over the nodes of the system.

TPUT
The Three Phase Uniform Threshold (TPUT) [Cao and Wang, 2004] is an efficient algorithm to
answer top-k queries in distributed systems. Like TA, TPUT uses a threshold for finding top-k
answers. But, its communication cost is usually much lower than that of a direct utilization of TA
in distributed systems [Cao and Wang, 2004].

Let us assume that the database is vertically partitioned, and each partition is represented by a
sorted list on a node that we call the holder of the list. Then, TPUT executes top-k queries in three
rounds as follows.

1. Each list holder sends to the query originator its k top data items, i.e., the k data items
whose local scores in the list are the highest. Let f be scoring function, d be a received
data item, and si(d) be the local score of d in list i, then the partial sum of d is defined as
psum(d) = s′

1(d) + s′
2(d) + · · · + s′

m(d) where s′
i (d) = si(d) if d has been sent to the query

originator from the holder of list i, otherwise siâŁ™(d) = 0. The query originator calculates
the partial sums for all received data items and identifies the items with the k highest partial
sums. The partial sum of the kth data item is called phase-1 bottom and denoted by λ1.

2. The query originator sends a threshold value τ = λ1/m to every list holder. Then, each list
holder sends to the query originator all its data items whose local scores are not less than τ .
The intuition is that if a data item is not reported by any node in this phase, its score must
be less than λ1, so it cannot be one of the top-k data items. Let D be the set of data items
received from list holders, the query originator calculates the new partial sums for the data
items involved in D, and identifies the items with the k highest partial sums. The partial sum
of the kth data item is called phase-2 bottom, and denoted by λ2. Let the upper bound score of

62 4. TOP-K QUERY PROCESSING IN P2P SYSTEMS

a data item d be defined as uscore(d) = u1(d) + u2(d) + · · · + um(d) where ui(d) = si(d)

if d has been received from the holder of list i, otherwise ui(d) = τ . For each data item d ∈ D,
if the upper bound score of d is less than λ2, it is removed from D. The data items that remain
in D are called the top-k candidate data items.

3. The query originator sends the set of top-k candidate data items to the list holders, and they
return back the scores of these items. Then, the query originator calculates the overall scores,
extracts the k data items with highest scores, and returns the answer to the user.

Let us illustrate TPUT by the following example.

Example 4.3 Consider the three nodes shown in Figure 4.2. Assume L1 and L2 are the lists
maintained by nodes N1 and N2, respectively. Assume node N3 issues a query Q with k = 2, and
suppose the scoring function computes the sum of the local scores of each data item. Let us apply
TPUT on this example. In the first step of TPUT, the nodes N1 and N2 send their k first data items
to N3 who computes the partial sums for the received data as follows. psum(t3) = 70, psum(t2) = 36,
and psum(t1) = 30.The kth partial sum is 36, thus the phase-1 bottom λ1 is equal to 36.Therefore,we
have τ = λ1/m = 36/2 = 18. Notice that m is the number of lists. In Phase 2, the query originator
sends τ to the list holders, and they return all data items whose local scores are higher than τ . The
union of data items received from N1 and N2 is D = {t1, t2, t3, t6}. Now, the partial sums for the
received data are as follows: psum(t3) = 70, psum(t1) = 52, psum(t6) = 51, and psum(t2) = 36. The
partial sum of the kth data item is λ2 = 52. The upper bound scores of the data items involved
in the set D are as follows: uscore(t3) = 70, uscore(t1) = 52, uscore(t6) = 51, and uscore(t2) = 54.
Since the upper bound score of t6 is lower than λ2, the query originator removes it form D, and
the list of candidate data items becomes D = {t1, t2, t3}. Among the data items in D, only t2 has
an unknown score. Thus, in Phase 3, t2 is sent to N1 in order to return the missing score. Then, the
query originator chooses the top-2 results among the candidate data items.

Although TPUT usually works better than TA, there are specific cases where TPUT is not
efficient [Cao and Wang, 2004]. For example, if one of the lists has n data items with the same value
that is greater than the threshold τ , then all data items must be retrieved by the query originator,
while a more adaptive algorithm might avoid retrieving all n data items.

Threshold Join Algorithm
Threshold Join Algorithm (TJA) [Zeinalipour-Yazti et al., 2005] has been proposed for top-k query
processing in the context of sensor networks. There are some similarities between TJA and TPUT.
For example, both of them proceed in three phases. But, the thresholds that they use for reducing the
communication cost are not the same. In addition, with TJA the query messages are forwarded from
the query originator to the list holders (i.e., those that maintain the sorted lists) via intermediate
nodes in a graph, not directly.

4.2. TOP-K QUERIES IN DISTRIBUTED SYSTEMS 63

Figure 4.2: Example of three nodes in a distributed system. The score lists of nodes N1 and N2 are
shown aside them.

Let us shortly describe TJA that works in the following phases: Lower Bounding (LB),
Hierarchal Join (HJ), and Clean-Up (CU):

• In the LB phase, the query originator forwards the query to the list holders, and each list
holder sends to the query originator (via the intermediate nodes) the set of k data items with
highest local scores.

• In the second phase, the query originator creates a set Ltotal that is the union of all received data
items, and forwards it to list holders. Each node looks at its local data and finds the position,
say p, of the lowest scored data item in Ltotal . It returns to its parent the local data items whose
position is higher than p. The parent of a node is the one from which it receives the query.
The intermediate nodes combine the results received from their children, and compute an
upper bound for the data items that are incomplete, i.e., some of their local score are unknown.
The upper bound is computed in a similar way as that of TPUT, by substituting the unknown
scores by the lower bounds.

• Let us denote as exact the data items whose scores are known entirely. In the third phase,
the query originator discards the k data items whose upper bound score is lower than the kth
highest scored exact data item. Then it retrieves the unknown local scores of the remaining

http://www.morganclaypool.com/action/showImage?doi=10.2200/S00414ED1V01Y201204DTM025&iName=master.img-026.jpg&w=349&h=236

64 4. TOP-K QUERY PROCESSING IN P2P SYSTEMS

incomplete data items by requesting from the list holders. After receiving the requested scores,
the query originator computes the overall score of all data items, and returns to the user the k

data items with the highest overall scores.

Although TJA is usually more efficient than TA in distributed systems, there are cases where it can
be very inefficient, particularly when there is a high variance between the positions of data items in
different sorted lists. For example, assume two lists such that the first data of each list is at the end
of the other list. In this case, the second phase of TJA will move all data items of each node to the
query originator.

KLEE
KLEE [Michel et al., 2005] is an approximate TA-style algorithm that aims at gaining much reduc-
tion in communication cost with limited reduction in result quality. In KLEE, the m sorted lists are
distributed over m nodes, and each node divides its list into c cells and maintains statistical informa-
tion about the cells, such as lower bound, upper bound, average, and frequency of local scores that
fall in the cell. KLEE uses Bloom filters to compactly represent, for each cell, the set of data items
whose local scores fall in the cell. This information on cells along with the Bloom filters contribute
to the reduction of the number of local scores that should be communicated over the network, thus
reducing communication cost. However, the results returned by KLEE are approximate, particularly
because of the utilization of Bloom filters that may return false positives about the presence of data
items in the cells.

4.3 TOP-K QUERIES IN P2P SYSTEMS

In this section, we review the main approaches developed for top-k query processing in different
P2P overlays: unstructured, super-peer, and DHT.

4.3.1 TOP-K QUERIES IN UNSTRUCTURED OVERLAYS
A major problem of unstructured overlays is their heavy network traffic [Ripeanu et al., 2002b]. A
main portion of this traffic is caused by the large amount of query answers, a lot of which may not
be of interest to users. One obvious solution to this problem is to send the query only to the peers
that are close to the query originator in the overlay. However, this significantly reduces the quality
of results, in the sense that the user cannot get potentially "good" answers.

Another solution is the usage of top-k queries. In this section, we present the main approaches
developed for top-k query processing in unstructured P2P overlays.

PlanetP
PlanetP [Cuenca-Acuna et al., 2003] is an unstructured P2P overlay that supports top-k queries.
In PlanetP, a content-addressable publish/subscribe service replicates global documents across P2P

4.3. TOP-K QUERIES IN P2P SYSTEMS 65

communities. The peers publish their data to PlanetP, and a term-to-peer index is computed based
on the published data. The index is replicated to all peers using a gossiping technique.

The peers are ranked based on their importance for each term. To rank peers, PlanetP uses
a measure called inverse peer frequency (IPF). Let N be the total number of peers and Nt be the
number of peers that maintain at least one document containing a term t , then IPFt (called IPF of
t) is computed as log (1 + N/Nt). The idea behind IPF is that the more a term is present in peers,
the less it is useful for distinguishing the peers. After computing the IPF of each term, the rank of
peers for a query Q, denoted as Rp(Q), is computed as follows:

Rp(Q) =
∑

t∈Q|(t,p)∈I

(IPFt) ,

where I is the term-to-peer index. Intuitively, Rp(Q) is equal to the sum of IPF of all query terms
that are present at p.

The top-k query processing algorithm works as follows. Given a query Q, the query originator
computes the ranking of peers with respect to Q, contacts them one by one from top of ranking and
asks them to return the set of their k top-scored documents. It maintains in a set Y the k highest
scored documents received so far. If the documents returned by a peer p does not change the content
of Y , then query originator stops contacting the peers, and returns Y to the user. The idea is that
if the score of the documents returned by p is lower than all documents in Y , then the other peers
cannot change Y , because their rank is lower than p.

In order to reduce the size of its index, PlanetP uses Bloom filters such that each peer sum-
marizes its documents’ terms by inserting them in the filter. However, this approach reduces the
accuracy of the top-k algorithm due to the possibility of false positives in Bloom filters. The top-
k approach of PlanetP can work well in moderate-scale systems. However, in a large P2P system,
keeping up-to-date the replicated index is not easy, and this may hurt the performance of the system.

Fully Distributed
The Fully Distributed Algorithm (FD) [Akbarinia et al., 2006] has been developed for applications
in which the data are horizontally partitioned over the peers, i.e., each peer maintains some tuples
or documents about a topic. Horizontal partitioning is in contrast to vertical partitioning in which
each peer maintains the values of one or some attributes of a relation.

FD uses a tree-based structure for processing top-k queries. It proceeds in four phases (see
Figure 4.3): query forward, local query execution, merge-and-backward, and data retrieval.

Query Forward. In this phase, the query originator, say pint , initializes the query message
by including in it the query Q, its identifier (QID), and a T T L (Time-To-Live) that denotes the
number of hops that the query should be forwarded. Then, pint sends the query message to its
reachable neighbors. Each peer p that receives the message performs the following steps: (1) Check
QID: if Q has been already received, then p discards the message else it saves the address of the
sender as its parent ; (2) Decrement T T L by one: if T T L is greater than zero, p makes a new message

66 4. TOP-K QUERY PROCESSING IN P2P SYSTEMS

Q

Q

Q

b

a

P0

Query Originator P1 P2 P3

Initialize

Receive Q

Receive Q Receive Q

Forward

Forward

Forward

Local Query
Execution

Local Query
Execution

Local Query
Execution

Merge and
Backward

Merge and
Backward

Merge and
Backward

Forward

Local Query
Execution

Merge and
Backward

Data Retrieval

end

Wait 0 Wait 0 Wait 0 Wait 0

P1

P2 P3

Q

Score List

Score List

Score List

Figure 4.3: (a) A sample P2P overlay; (b) a diagram showing the execution of the FD algorithm by the
four peers of the overlay.

including Q, QID, new T T L and the query originator’s address, and then it sends the message to
all neighbors (except parent).

Local Query Execution. After sending Q to its neighbors, each peer p retrieves the local data
items that match the query predicate, scores them using a scoring function, selects the k top data
items, and saves them as well as their scores locally. Then, p waits to receive its neighbors’ answers
before starting the next phase. Since some of the neighbors may leave the P2P system and never
send a score-list to p, FD sets a limit for the wait time that is computed mainly based on T T L. The
lower is T T L of the query message at a peer, the lower is its wait time.

4.3. TOP-K QUERIES IN P2P SYSTEMS 67

Merge-and-Backward. After its wait time has expired, each peer p merges its k local top
scores with those received from its neighbors and sends the k best scores to its parent (the peer from
which it received Q) in the form of a score-list. A score-list is simply a list of k pairs (a, s), such that
s is a score and a is the address of the peer owning the data item with score s. In order to minimize
network traffic, FD does not transfer the top data items (which could be large), only their scores
and addresses. If the parent of a peer is no longer available, the score-list is sent directly to the query
originator.

Data Retrieval. When the query originator has produced its merged score-list (called the
final score-list), it directly contacts the peers whose address appears in the score-list.

HPJT
The Hierarchical P2P Join Top-k (HPJT) algorithm [Guan et al., 2009] can be considered as an
adaptation of the TPUT algorithm for unstructured overlays. It assumes a vertical data partitioning.
Query processing proceeds as follows. The query originator forwards the query to the peers whose
hop distance from it is not higher than a T T L. Let parent of a peer p be the first peer from which
p receives the query. Each peer p that receives the query sends to its parent the k data items whose
local scores in the list are the highest. The received data items from children are bubbled up until
reaching the query originator. The query originator computes a partial score for each received data
item, and computes a threshold that is equal to tempKscore/n where tempKscore is the sum of
partial scores, and n the number of peers that have answered the query. The threshold is forwarded
to the peers, and the peers are asked to bubble up all data whose local scores are higher than the
threshold. The query originator computes again the partial score of the received data items. It also
computes an upper bound score for the data items by substituting the unknown local scores with the
maximum possible score. Then, it discards the data items whose upper bound score is lower than
the kth partial score. Let us call the remaining data items as candidate items. The candidate items are
completed by requesting the unknown scores from the peers that maintain the local scores. Then
among the candidate items, the query originator chooses the k highest score items as top-k results.

ASAP
Most of the Top-k query processing solutions in unstructured P2P overlays try to reduce the response
time while avoiding high network traffic.By response time we mean the time that the query originator
is sure that it has found the exact top-k results. In very large P2P systems, even with efficient
algorithms, the response time may be high, thus the user may have to wait much. The objective
of ASAP framework [Dedzoe et al., 2010] is to return to the user high quality answers as soon
as possible (i.e., before returning the final results), in order to reduce the user’s wait for relatively
good results. For this, in addition to response time, ASAP takes into account two new metrics in
processing top-k queries: stabilization time and cumulative quality gap.

68 4. TOP-K QUERY PROCESSING IN P2P SYSTEMS

Assume that the query originator receives the candidate top answers from the other peers
over a time T , then stabilization time and cumulative quality gap can be defined as follows (see
Figure 4.4).

Figure 4.4: Stabilization time and cumulative quality gap wrt response time.

Stabilization time. This is the time at which the query originator has received all final top-k
results, without being sure that they are final top-k results. Notice that the response time may be
much higher than the stabilization time, because some of the queried peers that do not have good
results may return their answers very late.

Cumulative quality gap (Cqg). This is the cumulative gap between the maximum quality
(i.e., that of final answers) and the quality of answers at the query originator over time from the
beginning to stabilization time. Formally, Cqg can be defined as follows. Let Q be a query, and
Y (t) the quality of the answers at time t at the query originator. The quality of answers can be
computed for example as the percentage of the final top-k results in the intermediate results received
up to time t by the query originator. Let S be the stabilization time of Q, then Cqg is defined as:
Cqg = ∫ S

0 (1 − Y (t))dt .
The objective of ASAP is to develop algorithms that focus on minimizing stabilization time

and/or cumulative quality gap while avoiding high communication cost.
Since the objective of ASAP is different from most of other works, its query execution approach

is different as well.The main difference between query execution in ASAP and other algorithms such
as FD is in its bubbling up phase, when the intermediate peers combine the answers received from
their children and send to their parent. In ASPA, intermediate peers do not wait until receiving the
answers from all their children, but they send them gradually. A peer’s decision to send intermediate
results to its parent is based on the improvement impact brought by its current top-k intermediate

http://www.morganclaypool.com/action/showImage?doi=10.2200/S00414ED1V01Y201204DTM025&iName=master.img-027.jpg&w=275&h=177

4.3. TOP-K QUERIES IN P2P SYSTEMS 69

answers over the answers sent so far. The improvement is computed in two ways: score-based and
rank-based.

In the score-based improvement, each peer computes the score gain of its current top-k answer
compared to the answers sent so far. In the rank-based improvement, each peer takes into account
the loss of rank of the previously sent answers. For example, if the current set of answers is the same
as the one sent previously, then the rank-based improvement is zero. For more details about the
computation of score-based and rank-based improvements, the reader is referred to [Dedzoe et al.,
2010]. The experimental results in [Dedzoe et al., 2010] show that ASAP significantly outperforms
baseline algorithms in terms of stabilization time and cumulative quality gap.

4.3.2 TOP-K QUERIES IN SUPER-PEER OVERLAYS
Super-peer overlays typically rely on powerful and highly available peers, called super-peers, to index
the data shared by peers connected to the system. In these networks, the queries of each peer are
usually sent to its responsible super-peer. The super-peer can then find the relevant peers either
directly through its index or indirectly using its neighbor super-peers.

In this section, we present two approaches for top-k query processing in super-peer overlays.

Edutella
Edutella [Balke et al., 2005] is a super-peer overlay in which a small percentage of nodes are super-
peers and are assumed to be highly available with very good computing capacity. It assumes horizontal
data partitioning.

In Edutella, top-k query processing is done as follows. Given a query Q, the query originator
sends Q to its super-peer who forwards it to other super-peers. The super-peers send Q to the
relevant peers connected to them. Each peer that has some data items relevant to Q scores them and
sends only its maximum scored data item to its super-peer. Each super-peer chooses the maximum
scored item from all received data items. For determining the second best item, it only asks the peer
that has returned the first top item, to return its second top scored item.Then, the super-peer selects
the second top item from the previously received items and the newly received item. Then, it asks
the peer that has returned the second top item, to return its next data item. This continues until all
k top items will be retrieved. Finally, the super-peers send their top items to the super-peer of the
query originator, to extract the k top items, and to send them to the query originator.

Skyline-based
SPEERTO [Vlachou et al., 2008] is a framework that supports top-k queries in super-peer overlays,
based on the ideas of Skyline query processing. The data items are assumed to be horizontally
partitioned, and the scoring function is monotonic.The maximum number of query results is limited
to a predefined number K .Like any other super-peer system, in SPEERTO the super-peers maintain
some information about the peers that are associated to them. For processing top-k queries, each
super-peer needs to keep the aggregated K-skyband set of its associated peers.

70 4. TOP-K QUERY PROCESSING IN P2P SYSTEMS

Lest us now present the concept of K-skyband that is used in Skyline query processing. In
Skyline queries, given d dimensions (i.e., attributes), the results of the query are the data that are
not dominated by any other data. A data d1 is dominated by another data d2, if the value of d2 in
each dimension is at least that of d1, and there is at least one dimension in which the value of d2

is higher than d1. A K-skyband query returns the data items that are not dominated by more than
K − 1 other items. An ordinary skyline query is a 1-skyband query.

In SPEERTO, each peer sends to its super-peer the set of its K-skyband, and the super-peers
maintain an aggregate K-skyband set of all received sets. The top-k queries (when k ≤ K) can be
answered by the super-peers using the K-skyband set of its data. The core idea is that if a data is
dominated by K other data items, i.e., it is not in K-skyband, then it can not appear in the results
of a top-K query (notice that the scoring function is monotonic).

The skyline-based approach of SPEERTO can work when the number of dimensions is very
small. For high dimensions, the results of a K-skyband query is almost equal to the set of all data
items, thus the super-peers have to maintain almost all data items of their associated peers.

4.3.3 TOP-K QUERIES IN DHTS
DHTs offer efficient and scalable support for exact match queries. However, it is quite challenging to
support top-k queries on top of DHTs [Blanco et al., 2006]. A simple solution is to retrieve all tuples
of the relations involved in the query, and evaluate the top-k query in a centralize way. However,
this solution cannot scale up to a large number of tuples. Another solution is to store all tuples of
each relation by using the same key, so that all tuples will be stored at the same peer. Then, top-k
query processing can be performed at that central peer using well-known centralized algorithms.
However, the central peer becomes a bottleneck and single point of failure.

It is possible to design a TA-style algorithm for DHTs. In this section, we describe one such
algorithm called DHTop [Akbarinia et al., 2007].

DHTop
Any solution for top-k queries in DHTs depends on the way the data are stored in the peers. We
first describe the data storage mechanism of DHTop, and then present the approach for processing
top-k queries.

Data Storage
DHTop uses a data storage mechanism that stores the data in the DHT with two complementary
methods: tuple storage and attribute-value storage. With the tuple storage method, each tuple of
a relation is entirely stored in the DHT using the tuple identifier as the storage key. This enables
looking up a tuple by its identifier. Let R be a relation name and A be the set of its attributes. Let
T be the set of tuples of R and id(t) be a function that denotes the identifier of a tuple t ∈ T . Let
h be a hash function that hashes its inputs into a DHT key, i.e., a number that can be mapped by
the DHT onto a peer. For storing the relation R, each tuple t ∈ T is entirely stored in the DHT

4.3. TOP-K QUERIES IN P2P SYSTEMS 71

where the storage key is h(R, id(t)), that is the hash of the relation name and the tuple identifier.
Hereafter, the key by which a tuple is stored in the DHT is called tuple storage key.

Attribute-value storage stores in the DHT the attributes that may appear in the query pred-
icates or in the query scoring function. Thus, like database secondary indices, it allows checking for
the existence of tuples using attribute values. The attribute-value storage method has two important
properties: (1) after retrieving an attribute value from the DHT, peers can retrieve easily the corre-
sponding tuple of the attribute value; (2) attribute values that are relatively "close" are stored at the
same peer. To satisfy the first property, the key used for storing the entire tuple is stored along with
the attribute value.

The second property is satisfied by using the concept of domain partitioning as follows.
Consider an attribute a and let Da be its domain of values. Assume there is a total order < on Da .
Da is partitioned into n non-empty sub-domains d1, d2, . . . , dn such that their union is equal to
Da , the intersection of any two different sub-domains is empty, and for each v1 ∈ di and v2 ∈ dj ,
if i < j then we have v1 < v2. Given a value v, the sub-domain to which v belongs is denoted by
sd(a, v). The number of sub-domains of an attribute and the lower bound of each sub-domain are
known to all peers of the DHT. Therefore, given an attribute a and a value v, any peer can locally
compute sd(a, v).

The key that is used for storing an attribute value in the DHT is constructed as follows. Let R

be a relation, a be an attribute of R, and v be the value of a in a tuple t , then the key for storing v in
the DHT is h(R, a, sd(a, v)), i.e., the hash of the relation name, attribute name and the sub-domain
to which v belongs. Therefore, the attribute values that belong to the same sub-domain are stored
with the same key, and are maintained at the same peer.

Algorithm
The DHTop algorithm is based on the TA algorithm. It works as follows. Let Q be a given top-k
query, f its scoring function, and pint the query originator. Let scoring attributes be the attributes
that are used in f . DHTop starts at pint and proceeds as follows. For each scoring attribute α , the
query originator creates a list Lα and adds all sub-domains of α to it. Then it removes from Lα the
sub-domains that do not satisfy Q’s condition, and sorts Lα in descending order of its sub-domains.
Then for each scoring attribute α and in parallel, pint sends Q to the peer p that is responsible
for maintaining the values of α whose sub-domain is Lα[1]. The peer p returns to pint the values
of α that satisfy Q’s condition, one by one in descending order, along with their corresponding
tuple storage key. For each received attribute value, pint retrieves the corresponding tuple of v and
computes its score. If it is one of the k highest scores, then pint maintains it in a list Y . The stop
condition of DHTop is that there are k tuples in Y whose scores are higher than a threshold. If the
stop condition holds, then the set Y is returned to the user. If by using the values returned by p the
stop condition does not hold, then pint sends Q to the peer that maintains the sub-domain Lα[2].
This procedure continues until having k tuples in Y whose scores are higher than the threshold.

72 4. TOP-K QUERY PROCESSING IN P2P SYSTEMS

The threshold of DHTop is inspired by the TA algorithm and is computed as follows. Let α1,
α2, . . . , αm be the scoring attributes. Let v1, v2, . . . , vm be the last values received, respectively, for
attributes α1, α2, . . . , αm. Then, the DHTop’s threshold is defined as δ = f (v1, v2, . . . , vm).

In order to reduce the number of messages, an optimized version of DHTop retrieves the
attribute values from the peers that are responsible sub-domains in a batch way, i.e., n values per
message where n is a predefined value.

Let us illustrate the DHTop algorithm using the following example.

Example 4.4 Consider the top-k query Q below, and assume that the attributes weight and
height are stored in the DHT using the attribute-value storage and by partitioning their domains.
For example, assume that the maximum value of attribute weight is 150 (in Kg), and its domain
has been partitioned into five sub-domains as follows: d1 = [0..40], d2 = (40..60], d3 = (60..80],
d4 = (80..110], d5 = (110..150]. DHTop creates a list of sub-domains for each scoring attribute,
and then removes the sub-domains that cannot satisfy the query. For example, the list of sub-domains
for attribute weight is initially Lweight = (d5, d4, d3, d2, d1). Then the sub-domains d1, d2, and d5

are removed from the list, since the query states that weight should be between 50 and 100.Thus, we
have Lweight = (d4, d3, d2).The query originator pint contacts the peer that is responsible of the first
sub-domain of each list (for example the responsible of d4 for attribute weight) and asks to return
the stored attribute values. Then, pint retrieves the whole tuples, and computes their overall score. If
there are k tuples with overall higher than the threshold, then the algorithm stops. Otherwise, pint

contacts the peer that is responsible for the second sub-domain, and so on.
Q: SELECT *

FROM Patient

WHERE (50 ≤ weight ≤ 110)
ORDER BY scoring-function(weight , height) DESC
STOP AFTER 10

4.4 CONCLUSION
In this chapter, we described the main approaches for top-k query processing in distributed and P2P
systems. They particularly focus on reducing the number of communicated messages, while taking
into account the special features such as the architecture of P2P overlays, and the volatility of peers.

The proposed solutions assume either horizontal or vertical data partitioning. Those that
are designed for vertically partitioned data (e.g., TPUT, TJA, KLEE, HPJT, DHTop) usually use
algorithms that are close to that of the TA algorithm, but adapted to the requirements of the
distributed or P2P systems. They try to develop an efficient threshold-based stop condition in order
to stop the data accesses as soon as possible, while trying to minimize the number of messages used
for accessing the needed data.

4.4. CONCLUSION 73

The solutions that assume horizontal data partitioning (e.g.,FD,ASAP,Edutella,SPEERTO)
generally develop a hierarchical organization for processing top-k queries. For example, FD and
ASAP use a tree structure, which is formed when the query is forwarded to the peers. In Edutella
and SPEERTO, the organization of super-peers is used for efficient query routing and result ranking.
The proposed solutions usually try to not transfer the data for top-k query processing, but only the
scores of the data items. The scores that have no chance to be one of the final k scores are filtered in
the hierarchical structure.

75

Bibliography

K. Aberer. Peer-to-Peer Data Management. Morgan & Claypool, 2010.
DOI: 10.2200/S00338ED1V01Y201104DTM015 Cited on page(s) xii, 41

K. Aberer, P. Cudré-Mauroux, A. Datta, Z. Despotovic, M. Hauswirth, M. Punceva, and R. Schmidt.
P-grid: a self-organizing structured p2p system. ACM SIGMOD Rec., 32(3):29–33, 2003.
DOI: 10.1145/945721.945729 Cited on page(s) 2

R.Akbarinia,E.Pacitti, and P.Valduriez. Reducing network traffic in unstructured p2p systems using
top-k queries. Distrib. Parall. Databases, 19(2-3):67–86, 2006. DOI: 10.1007/s10619-006-8313-5
Cited on page(s) 65

R. Akbarinia, E. Pacitti, and P.Valduriez. Processing top-k queries in distributed hash tables. In Proc.
13th Int. Euro-Par Conf., pages 489–502, 2007. DOI: 10.1007/978-3-540-74466-5_53 Cited on
page(s) 2, 70

S. Amer-Yahia and Cong Yu. Leveraging communities in social content sites. In Advances
in Database Technology, Proc. 12th Int. Conf. on Extending Database Technology, page 1, 2009.
DOI: 10.1145/1698790.1698792 Cited on page(s) 46

S. Amer-Yahia, M. Benedikt, Laks V. S. Lakshmanan, and J. Stoyanovich. Efficient network aware
search in collaborative tagging sites. Proc. 34th Int. Conf. on Very Large Data Bases, 1(1):710–721,
2008. Cited on page(s) 44

S. Amer-Yahia, J. Huang, and C. Yu. Jelly: A language for building community-centric information
exploration applications. In Proc. 25th Int. Conf. on Data Engineering, pages 1588–1594, 2009a.
DOI: 10.1109/ICDE.2009.178 Cited on page(s) 46

S. Amer-Yahia, L.V. S. Lakshmanan, and C. Yu. Socialscope: Enabling information discovery on
social content sites. In Proc. 4th Biennial Conf. on Innovative Data Systems Research, 2009b. Cited
on page(s) 46

D. P. Anderson, J. Cobb, E.Korpela, M. Lebofsky, and D. Werthimer. Seti@. Commun. ACM, 45
(11):56–61, 2002. DOI: 10.1145/581571.581573 Cited on page(s) 1

S. Androutsellis-Theotokis and D. Spinellis. A survey of peer-to-peer content distribution tech-
nologies. ACM Comput. Surv., 36(4):335–371, 2004a. DOI: 10.1145/1041680.1041681 Cited
on page(s) 3

http://dx.doi.org/10.2200/S00338ED1V01Y201104DTM015
http://dx.doi.org/10.1145/945721.945729
http://dx.doi.org/10.1007/s10619-006-8313-5
http://dx.doi.org/10.1007/978-3-540-74466-5_53
http://dx.doi.org/10.1145/1698790.1698792
http://dx.doi.org/10.1109/ICDE.2009.178
http://dx.doi.org/10.1145/581571.581573
http://dx.doi.org/10.1145/1041680.1041681

76 BIBLIOGRAPHY

S. Androutsellis-Theotokis and D. Spinellis. A survey of peer-to-peer content distribution tech-
nologies. ACM Comput. Surv., 36(4):335–371, 2004b. DOI: 10.1145/1041680.1041681 Cited
on page(s) 17, 29

X. Bai, M. Bertier, R. Guerraoui, AM. Kermarrec, and V Leroy. Gossiping personalized queries. In
Proc. 13th Int. Conf. on Extending Database Technology, pages 87–98, 2010.
DOI: 10.1145/1739041.1739055 Cited on page(s) 48

M. Balabanovic and Y. Shoham. Content-based, collaborative recommendation. Commun. ACM,
40(3):66–72, 1997. DOI: 10.1145/245108.245124 Cited on page(s) 45

W.-T. Balke, W. Nejdl, W. Siberski, and U. Thaden. Progressive distributed top k retrieval in
peer-to-peer networks. In Proc. 21st Int. Conf. on Data Engineering, pages 174–185, 2005.
DOI: 10.1109/ICDE.2005.115 Cited on page(s) 57, 69

M. Bawa, G. Singh Manku, and P. Raghavan. Sets: search enhanced by topic segmentation. In Proc.
20th Annual Int. ACM SIGIR Conf. on Research and Development in Information Retrieval, pages
306–313, 2003. DOI: 10.1145/860435.860491 Cited on page(s) 47

M. Bender, S. Michel, P. Triantafillou, G. Weikum, and C. Zimmer. Minerva: Collaborative p2p
search. In Proc. 31st Int. Conf. on Very Large Data Bases, pages 1263–1266, 2005. Cited on page(s)
47

A. Bhargava, K. Kothapalli, C. Riley, C. Scheideler, and M. Thober. Pagoda: a dynamic overlay
network for routing, data management, and multicasting. In Proc. 16th Annual ACM Symp. on
Parallelism in Algorithms and Architectures, pages 170–179, 2004. DOI: 10.1145/1007912.1007938
Cited on page(s) 1

K. Birman. The promise, and limitations, of gossip protocols. Operating Systems Rev., 41(5):8–13,
2007. DOI: 10.1145/1317379.1317382 Cited on page(s) 16, 17

R. Blanco, N. Ahmed, D. Hadaller, L.G.A. Sung, H. Li, and M.A. Soliman. A survey of data
management in peer-to-peer systems. Technical Report CS-2006-18, University of Waterloo,
2006. Cited on page(s) 70

D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent dirichlet allocation. Journal of Machine Learning
Research, 3:993–1022, 2003. Cited on page(s) 45

B.H. Bloom. Space/time trade-offs in hash coding with allowable errors. Commun. ACM, 13(7):
422–426, 1970. DOI: 10.1145/362686.362692 Cited on page(s) 8

J. S. Breese, D. Heckerman, and C. Myers Kadie. Empirical analysis of predictive algorithms for
collaborative filtering. In Proc. 14th Conf. on Uncertainty in Artificial Intelligence, pages 43–52,
1998. DOI: 10.1111/j.1553-2712.2011.01172.x Cited on page(s) 42

http://dx.doi.org/10.1145/1041680.1041681
http://dx.doi.org/10.1145/1739041.1739055
http://dx.doi.org/10.1145/245108.245124
http://dx.doi.org/10.1109/ICDE.2005.115
http://dx.doi.org/10.1145/860435.860491
http://dx.doi.org/10.1145/1007912.1007938
http://dx.doi.org/10.1145/1317379.1317382
http://dx.doi.org/10.1145/362686.362692
http://dx.doi.org/10.1111/j.1553-2712.2011.01172.x

BIBLIOGRAPHY 77

Y. Busnel and AM Kermarrec. Proxsem: Interest-based proximity measure to improve search effi-
ciency in p2p systems. In Proc. 4th European Conf. Universal Multiservice Networks, pages 62–74,
2007. DOI: 10.1109/ECUMN.2007.44 Cited on page(s) 48

R. Buyya, M. Pathan, and A. Vakali. Content Delivery Networks. Springer, 2008.
DOI: 10.1007/978-3-540-77887-5 Cited on page(s) 25, 28, 29

Hailong Cai and Jun Wang. Foreseer: A novel, locality-aware P2P system architecture for keyword
searches. In Proc. ACM/IFIP/USENIX 5th Int. Middleware Conf., pages 38–58, 2004. Cited on
page(s) 21

J. F. Canny. Collaborative filtering with privacy via factor analysis. In Proc. 25th Annual Int. ACM
SIGIR Conf. on Research and Development in Information Retrieval, pages 238–245, 2002.
DOI: 10.1145/564376.564419 Cited on page(s) 44

P. Cao and Z. Wang. Efficient top-k query calculation in distributed networks. In Proc. ACM
SIGACT-SIGOPS 23rd Symp. on the Principles of Distributed Computing, pages 206–215, 2004.
DOI: 10.1145/1011767.1011798 Cited on page(s) 61, 62

M. Castro, M. Costa, and A. I. T. Rowstron. Should we build Gnutella on a structured overlay?
Comp. Comm. Rev., 34(1):131–136, 2004. DOI: 10.1145/972374.972397 Cited on page(s) 21

S. Chaudhuri, L. Gravano, and A. Marian. Optimizing top-k selection queries over multimedia
repositories. IEEE Trans. Knowl. and Data Eng., 16(8):992–1009, 2004.
DOI: 10.1109/TKDE.2004.30 Cited on page(s) 57

R. Cheng and J. Vassileva. User motivation and persuasion strategy for peer-to-peer communities.
In Proc. 40th Annual Hawaii Int. Conf. on System Sciences, 2005. DOI: 10.1109/HICSS.2005.653
Cited on page(s) 41

PA. Chirita, D.Olmedilla, and W. Nejdl. Pros: A personalized ranking platform for web search.
In Proc. 3rd Int. Conf. Adaptive Hypermedia and Adaptive Web-Based Systems, pages 34–43, 2004.
DOI: 10.1007/978-3-540-27780-4_7 Cited on page(s) 48

V. Cholvi, P. Felber, and E. Biersack. Efficient search in unstructured peer-to-peer networks. Euro-
pean Transactions on Telecommunications, 15(6):535–548, 2004. DOI: 10.1002/ett.1017 Cited on
page(s) 48

I. Clarke, S. G. Miller, T. W. Hong, O. Sandberg, and B. Wiley. Protecting free expression online
with Freenet. IEEE Internet Comput., 6(1):40–49, 2002. DOI: 10.1109/4236.978368 Cited on
page(s) 2

E. Cohen and S. Shenker. Replication strategies in unstructured P2P networks. In Proc. Conf. on
Applications, Technologies, Architectures, and Protocols for Computer Communication, pages 177–190,
2002. DOI: 10.1145/964725.633043 Cited on page(s) 17

http://dx.doi.org/10.1109/ECUMN.2007.44
http://dx.doi.org/10.1007/978-3-540-77887-5
http://dx.doi.org/10.1145/564376.564419
http://dx.doi.org/10.1145/1011767.1011798
http://dx.doi.org/10.1145/972374.972397
http://dx.doi.org/10.1109/TKDE.2004.30
http://dx.doi.org/10.1109/HICSS.2005.653
http://dx.doi.org/10.1007/978-3-540-27780-4_7
http://dx.doi.org/10.1002/ett.1017
http://dx.doi.org/10.1109/4236.978368
http://dx.doi.org/10.1145/964725.633043

78 BIBLIOGRAPHY

A. Crespo and H. Garcia-Molina. Routing indices for peer-to-peer systems. In Proc. 22nd Int.
Conf. on Distributed Computing Systems, pages 23–33,2002.DOI: 10.1109/ICDCS.2002.1022239
Cited on page(s) 7

F. M. Cuenca-Acuna, C. Peery, R. P. Martin, and T. D. Nguyen. Planetp: Using gossiping to build
content addressable peer-to-peer information sharing communities. In Proc. 12th IEEE Int. Symp.
High Performance Distributed Computing, pages 236–249, 2003.
DOI: 10.1109/HPDC.2003.1210033 Cited on page(s) 64

F. Dabek, M. F. Kaashoek, D. R. Karger, R. Morris, and I. Stoica. Wide-area cooperative stor-
age with CFS. In Proc. 18th ACM Symp. on Operating System Principles, pages 202–215, 2001.
DOI: 10.1145/502034.502054 Cited on page(s) 17

G. Das, D. Gunopulos, N. Koudas, and N. Sarkas. Ad-hoc top-k query answering for data streams.
In Proc. 33rd Int. Conf. on Very Large Data Bases, pages 183–194, 2007. Cited on page(s) 57

N. Daswani, H. Garcia-Molina, and B. Yang. Open problems in data-sharing P2P systems. In Proc.
9th Int. Conf. on Database Theory, pages 1–15, 2003. Cited on page(s) 3, 30

W. K. Dedzoe, P. Lamarre, R. Akbarinia, and P. Valduriez. Asap top-k query processing in unstruc-
tured p2p systems. In Proc.10th IEEE Int. Conf. on Peer-to-Peer Computing, pages 1–10, 2010.
DOI: 10.1109/P2P.2010.5569974 Cited on page(s) 67, 69

A. J. Demers, D. H. Greene, C. Hauser, W. Irish, J. Larson, S. Shenker, H. E. Sturgis, D. C.
Swinehart, and D. B. Terry. Epidemic algorithms for replicated database maintenance. In Proc.
ACM SIGACT-SIGOPS 6th Symp. on the Principles of Distributed Computing, pages 1–12, 1987.
DOI: 10.1145/41840.41841 Cited on page(s) 14

M. El Dick, E. Pacitti, and B. Kemme. Flower-cdn: a hybrid P2P overlay for efficient query
processing in CDN. In Advances in Database Technology, Proc. 12th Int. Conf. on Extending
Database Technology, pages 427–438, 2009. DOI: 10.1145/1516360.1516410 Cited on page(s) 35

M. El Dick, E. Pacitti, R. Akbarinia, and B. Kemme. Building a P2P content distribution
network with high performance, scalability and robustness. Inf. Syst., 36(2):222–247, 2011.
DOI: 10.1016/j.is.2010.08.007 Cited on page(s) 37

F. Draidi, E. Pacitti, and B. Kemme. P2prec: A p2p recommendation system for large-
scale data sharing. T. Large-Scale Data- and Knowledge-Centered Systems, 3:87–116, 2011a.
DOI: 10.1007/978-3-642-23074-5_4 Cited on page(s) 52

F. Draidi, E. Pacitti, D. Parigot, and G. Verger. P2prec: a social-based p2p recommendation system.
In Proc. 20th ACM Int. Conf. on Information and Knowledge Management, pages 2593–2596, 2011b.
DOI: 10.1145/2063576.2064028 Cited on page(s) 52

http://dx.doi.org/10.1109/ICDCS.2002.1022239
http://dx.doi.org/10.1109/HPDC.2003.1210033
http://dx.doi.org/10.1145/502034.502054
http://dx.doi.org/10.1109/P2P.2010.5569974
http://dx.doi.org/10.1145/41840.41841
http://dx.doi.org/10.1145/1516360.1516410
http://dx.doi.org/10.1016/j.is.2010.08.007
http://dx.doi.org/10.1007/978-3-642-23074-5_4
http://dx.doi.org/10.1145/2063576.2064028

BIBLIOGRAPHY 79

P.T.Eugster,R.Guerraoui,A.-M.Kermarrec,and L.Massoulieacute. Epidemic information dissem-
ination in distributed systems. Comput., 37(5):60–67, 2004. DOI: 10.1109/MC.2004.1297243
Cited on page(s) 14

R. Fagin. Combining fuzzy information from multiple systems. J. Comp. and System Sci., 58(1):
83–99, 1999. DOI: 10.1006/jcss.1998.1600 Cited on page(s) 59

R. Fagin, A. Lotem, and M. Naor. Optimal aggregation algorithms for middleware. In Proc. 20th
ACM SIGACT-SIGMOD-SIGART Symp. on Principles of Database Systems, pages 102–113, 2001.
DOI: 10.1145/375551.375567 Cited on page(s) 58

R. Fagin, A. Lotem, and M. Naor. Optimal aggregation algorithms for middleware. J. Comp. and
System Sci., 66(4):614–656, 2003. DOI: 10.1016/S0022-0000(03)00026-6 Cited on page(s) 58,
60

F. Le Fessant, S. B. Handurukande, A.-M. Kermarrec, and L. Massoulié. Clustering in P2P
file sharing workloads. In Proc. 3rd Int. Workshop Peer-to-Peer Systems, pages 217–226, 2004.
DOI: 10.1007/978-3-540-30183-7_21 Cited on page(s) 20

M. J. Freedman, E. Freudenthal, and D. Mazières. Democratizing content publication with Coral.
In Proc. 1st USENIX Symp. on Networked Systems Design & Implementation, pages 239–252, 2004.
Cited on page(s) 31, 32

J. Gao and P. Steenkiste. An adaptive protocol for efficient support of range queries in dht-
based systems. In Proc. 12th IEEE Int. Conf. on Network Protocols, pages 239–250, 2004.
DOI: 10.1109/ICNP.2004.1348114 Cited on page(s) 2

H. Garcia-Molina and A. Crespo. Semantic overlay networks for p2p systems. Technical Report
2003-75, Stanford InfoLab, 2003. Cited on page(s) 47

D. Goldberg, D. A. Nichols, B. M. Oki, and D. B. Terry. Using collaborative filtering to weave an
information tapestry. Commun. ACM, 35(12):61–70, 1992. DOI: 10.1145/138859.138867 Cited
on page(s) 42, 43

Z. Guan, G. Yan, and H. Huang. A novel top-k query scheme in unstructured p2p networks.
In Proc. 9th IEEE Int. Conf. on Computer and Information Technology, pages 16–21, 2009.
DOI: 10.1109/CIT.2009.86 Cited on page(s) 67

K. Gummadi, R. Gummadi, S. Gribble, S. Ratnasamy, S. Shenker, and I. Stoica. The im-
pact of dht routing geometry on resilience and proximity. In Proc. 2003 Conf. on Applica-
tions, Technologies, Architectures, and Protocols for Computer Communication, pages 381–394, 2003.
DOI: 10.1145/863955.863998 Cited on page(s) 8

Şule Gündüz-Ögüdücü. Web Page Recommendation Models: Theory and Algorithms. Morgan &
Claypool, 2010. DOI: 10.2200/S00305ED1V01Y201010DTM010 Cited on page(s) 45

http://dx.doi.org/10.1109/MC.2004.1297243
http://dx.doi.org/10.1006/jcss.1998.1600
http://dx.doi.org/10.1145/375551.375567
http://dx.doi.org/10.1016/S0022-0000(03)00026-6
http://dx.doi.org/10.1007/978-3-540-30183-7_21
http://dx.doi.org/10.1109/ICNP.2004.1348114
http://dx.doi.org/10.1145/138859.138867
http://dx.doi.org/10.1109/CIT.2009.86
http://dx.doi.org/10.1145/863955.863998
http://dx.doi.org/10.2200/S00305ED1V01Y201010DTM010

80 BIBLIOGRAPHY

U. Güntzer, W.-T. Balke, and W. Kießling. Optimizing multi-feature queries for image databases.
In Amr El Abbadi, Michael L. Brodie, Sharma Chakravarthy, Umeshwar Dayal, Nabil Kamel,
Gunter Schlageter, and Kyu-Young Whang, editors, Proc. 26th Int. Conf. on Very Large Data Bases,
pages 419–428, 2000. Cited on page(s) 58

P. Han, B. Xie, F. Yang, and R. Shen. A scalable p2p recommender system based on distributed
collaborative filtering. Expert Syst. Appl., 27(2):203–210, 2004. DOI: 10.1016/j.eswa.2004.01.003
Cited on page(s) 50

S. B. Handurukande, A.-M. Kermarrec, F. Le Fessant, and L. Massoulié. Exploiting semantic
clustering in the eDonkey P2P network. In Proc. 11th ACM SIGOPS European Workshop, page 20,
2004. DOI: 10.1145/1133572.1133612 Cited on page(s) 20

M. Harren, J. M. Hellerstein, R. Huebsch, B. Thau Loo, S. Shenker, and I. Stoica. Complex queries
in dht-based peer-to-peer networks. In Proc. 1st Int.Workshop Peer-to-Peer Systems, pages 242–259,
2002. Cited on page(s) 2

G. R. Hjaltason and H. Samet. Index-driven similarity search in metric spaces. ACM Trans. Database
Syst., 28(4):517–580, 2003. DOI: 10.1145/958942.958948 Cited on page(s) 57

R. Huebsch, J. M. Hellerstein, N. Lanham, B. Thau Loo, S. Shenker, and I. Stoica. Querying the
internet with pier. In Proc. 29th Int. Conf. on Very Large Data Bases, pages 321–332, 2003. Cited
on page(s) 2

A. Iamnitchi and I.T. Foster. Interest-aware information dissemination in small-world communities.
In Proc. 14th IEEE Int. Symp. High Performance Distributed Computing, pages 167–175, 2005.
DOI: 10.1109/HPDC.2005.1520954 Cited on page(s) 48

A. Iamnitchi, M. Ripeanu, and I. T. Foster. Locating data in (small-world?) peer-to-peer scientific
collaborations. In Proc. 1st Int. Workshop Peer-to-Peer Systems, pages 232–241, 2002. Cited on
page(s) 47

S. Iyer, A. I. T. Rowstron, and P. Druschel. Squirrel: a decentralized P2P web cache. In Proc. ACM
SIGACT-SIGOPS 21st Symp. on the Principles of Distributed Computing, pages 213–222, 2002.
Cited on page(s) 33

M. Jelasity and Ö. Babaoglu. T-Man: Gossip-based overlay topology management. In Proc. 3rd Int.
Workshop on Engineering Self-Organising Systems, pages 1–15, 2005.
DOI: 10.1016/j.comnet.2009.03.013 Cited on page(s) 16

M. Jelasity, R.Guerraoui, A.-M. Kermarrec, and M. van Steen. The peer sampling service: experi-
mental evaluation of unstructured gossip-based implementations. In Proc. ACM/IFIP/USENIX
5th Int. Middleware Conf., pages 79–98, 2004. Cited on page(s) 16

http://dx.doi.org/10.1016/j.eswa.2004.01.003
http://dx.doi.org/10.1145/1133572.1133612
http://dx.doi.org/10.1145/958942.958948
http://dx.doi.org/10.1109/HPDC.2005.1520954
http://dx.doi.org/10.1016/j.comnet.2009.03.013

BIBLIOGRAPHY 81

C. Jin, K. Yi, L. Chen, J. Xu Yu, and X. Lin. Sliding-window top-k queries on uncertain streams.
VLDB J., 19(3):411–435, 2010. DOI: 10.1007/s00778-009-0171-0 Cited on page(s) 57

H. Jin, X. Ning, and H. Chen. Efficient search for peer-to-peer information retrieval using
semantic small world. In Proc. 15th Int. World Wide Web Conf., pages 1003–1004, 2006.
DOI: 10.1145/1135777.1135986 Cited on page(s) 47

V. Kalogeraki, D. Gunopulos, and D. Zeinalipour-Yazti. A local search mechanism for peer-to-peer
networks. In Proc. 11th Int. Conf. on Information and Knowledge Management, pages 300–307,
2002. DOI: 10.1145/584792.584842 Cited on page(s) 5

A.-M. Kermarrec and M. van Steen. Gossiping in distributed systems. Operating Systems Rev., 41
(5):2–7, 2007. DOI: 10.1145/1317379.1317381 Cited on page(s) 14, 17

AM Kermarrec, V. Leroy, A. Moin, and C. Thraves. Application of random walks to decentralized
recommender systems. In Proc. 14th Int. Conf. Principles of Distributed Systems, pages 48–63, 2010.
DOI: 10.1007/978-3-642-17653-1_4 Cited on page(s) 50

I. A. Klampanos and J. M. Jose. An architecture for information retrieval over semi-collaborating
peer-to-peer networks. In Proc. 2004 ACM Symp. on Applied Computing, pages 1078–1083, 2004.
DOI: 10.1145/967900.968119 Cited on page(s) 47

N. Koudas, B. Chin Ooi, K.-L. Tan, and R. Zhang. Approximate nn queries on streams with
guaranteed error/performance bounds. In Proc. 30th Int. Conf. on Very Large Data Bases, pages
804–815, 2004. Cited on page(s) 57

B. Krishnamurthy, J. Wang, and Y. Xie. Early measurements of a cluster-based architecture for P2P
systems. In Proc. 1st ACM SIGCOMM Workshop on Internet Measurement, pages 105–109, 2001.
DOI: 10.1145/505202.505216 Cited on page(s) 19

J. Kubiatowicz, D. Bindel, Y. Chen, S. E. Czerwinski, P. R. Eaton, D. Geels, R. Gummadi, S. C.
Rhea, H. Weatherspoon, W. Weimer, C. Wells, and B. Y. Zhao. Oceanstore: An architecture for
global-scale persistent storage. In Proc. 9th Int. Conf. on Architectural Support for Programming
Languages and Operating Systems, pages 190–201, 2000. DOI: 10.1145/356989.357007 Cited on
page(s) 2

S. Larson, C. Snow, and V. Pande. Folding@home and genome@home: using distributed computing
to tackle previously intractable problems in computational biology. In R. Grant, editor, Modern
Methods in Computational Biology. Horizon Press, 2003a. Cited on page(s) 1

S. M. Larson, C. D. Snow, M. Shirts, and V. S. Pande. Folding@home and genome@home: Us-
ing distributed computing to tackle previously intractable problems in computational biology.
Computational Genomics J., 2003b. Cited on page(s) 1

http://dx.doi.org/10.1007/s00778-009-0171-0
http://dx.doi.org/10.1145/1135777.1135986
http://dx.doi.org/10.1145/584792.584842
http://dx.doi.org/10.1145/1317379.1317381
http://dx.doi.org/10.1007/978-3-642-17653-1_4
http://dx.doi.org/10.1145/967900.968119
http://dx.doi.org/10.1145/505202.505216
http://dx.doi.org/10.1145/356989.357007

82 BIBLIOGRAPHY

F. Li, K. Yi, and W. Le. Top-k queries on temporal data. VLDB J., 19(5):715–733, 2010.
DOI: 10.1007/s00778-010-0186-6 Cited on page(s) 57

X. Li and J. Wu. Searching techniques in peer-to-peer networks. In W. Zheng, X. Liu, S. Shi,
J. Hu, and H. Dong, editors, Handbook of Theoretical and Algorithmic Aspects of Ad Hoc, Sensor, and
Peer-to-Peer Networks. Auerbach Publications, 2006. Cited on page(s) 4

J. Liang, R. Kumar, and K.W. Ross. The fasttrack overlay: A measurement study. Computer Networks,
50(6):842–858, 2006. DOI: 10.1016/j.comnet.2005.07.014 Cited on page(s) 46

G. Linden, B. Smith, and J. York. Industry report: Amazon.com recommendations: Item-to-item
collaborative filtering. IEEE Distributed Systems Online, 4(1), 2003.
DOI: 10.1109/MIC.2003.1167344 Cited on page(s) 44

P. Linga, I. Gupta, and K. Birman. A churn-resistant P2P web caching system. In Proc. ACM
Workshop on Survivable and Self-Regenerative Systems, pages 1–10, 2003.
DOI: 10.1145/1036921.1036922 Cited on page(s) 34, 35

Y. Liu, L. Xiao, X. Liu, L. M. Ni, and X. Zhang. Location awareness in unstructured P2P systems.
IEEE Trans. Parall. Dist. Sys., 16(2):163–174, 2005. DOI: 10.1109/TPDS.2005.21 Cited on
page(s) 19

J. Lv and X. Cheng. Wongoo: A pure peer-to-peer full text information retrieval system based on
semantic overlay networks. In Proc. 3rd IEEE Int. Symp. on Network Computing and Applications,
pages 47–54, 2004. DOI: 10.1109/NCA.2004.1347761 Cited on page(s) 47

Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker. Search and replication in unstructured peer-to-peer
networks. In Proc. 16th Annual Int. Conf. on Supercmputing, pages 84–95, 2002.
DOI: 10.1145/514191.514206 Cited on page(s) 6

D. Malkhi, M. Naor, and D. Ratajczak. Viceroy: a scalable and dynamic emulation of the butterfly. In
Proc. ACM SIGACT-SIGOPS 21st Symp. on the Principles of Distributed Computing, pages 183–192,
2002. DOI: 10.1145/571825.571857 Cited on page(s) 11

T. W. Malone, J. Yates, and R. I. Benjamin. Electronic markets and electronic hierarchies. Commun.
ACM, 30(6):484–497, 1987. DOI: 10.1145/214762.214766 Cited on page(s) 42

B. Maniymaran, M. Bertier, and A.-M. Kermarrec. Build one, get one free: Leveraging the coexis-
tence of multiple P2P overlay networks. In Proc. 27th Int. Conf. on Distributed Computing Systems,
page 33, 2007. DOI: 10.1109/ICDCS.2007.88 Cited on page(s) 21

S. Marti, P. G., and H. Garcia-Molina. Sprout: P2p routing with social networks. In Advances in
Database Technology, Proc. 9th Int. Conf. on Extending Database Technology, pages 425–435, 2004.
Cited on page(s) 48

http://dx.doi.org/10.1007/s00778-010-0186-6
http://dx.doi.org/10.1016/j.comnet.2005.07.014
http://dx.doi.org/10.1109/MIC.2003.1167344
http://dx.doi.org/10.1145/1036921.1036922
http://dx.doi.org/10.1109/TPDS.2005.21
http://dx.doi.org/10.1109/NCA.2004.1347761
http://dx.doi.org/10.1145/514191.514206
http://dx.doi.org/10.1145/571825.571857
http://dx.doi.org/10.1145/214762.214766
http://dx.doi.org/10.1109/ICDCS.2007.88

BIBLIOGRAPHY 83

P. Massa and P. Avesani. Trust-aware collaborative filtering for recommender systems. In Proc.
Int. Conf. on Cooperative Inf. Syst., pages 492–508, 2004. DOI: 10.1007/978-3-540-30468-5_31
Cited on page(s) 44, 51

M. R. McLaughlin and J. L. Herlocker. A collaborative filtering algorithm and evaluation metric
that accurately model the user experience. In Proc. 27th Annual Int. ACM SIGIR Conf. on Research
and Development in Information Retrieval, pages 329–336,2004.DOI: 10.1145/1008992.1009050
Cited on page(s) 42

D. A. Menascé and L. Kanchanapalli. Probabilistic scalable p2p resource location services. Perf.
Eval. Rev., 30(2):48–58, 2002. DOI: 10.1145/588160.588167 Cited on page(s) 8

S. Michel, P. Triantafillou, and G. Weikum. Klee: A framework for distributed top-k query algo-
rithms. In Proc. 31st Int. Conf. on Very Large Data Bases, pages 637–648, 2005. Cited on page(s)
64

B. N. Miller, J. A. Konstan, and J. Riedl. Pocketlens: Toward a personal recommender system. ACM
Trans. Information Syst., 22(3):437–476, 2004. DOI: 10.1145/1010614.1010618 Cited on page(s)
49

C. Mohan. Caching technologies for Web applications. In Proc. 27th Int. Conf. on Very Large Data
Bases, page 726, 2001. Cited on page(s) 25, 26

W. Nejdl, W. Siberski, and M. Sintek. Design issues and challenges for rdf- and schema-based
peer-to-peer systems. ACM SIGMOD Rec., 32(3):41–46, 2003. DOI: 10.1145/945721.945731
Cited on page(s) 3

S. Nepal and M. V. Ramakrishna. Query processing issues in image (multimedia) databases. In
Proc. 15th Int. Conf. on Data Engineering, pages 22–29, 1999. DOI: 10.1109/ICDE.1999.754894
Cited on page(s) 58

W. Siong Ng, B. Chin Ooi, K.-L. Tan, and A. Zhou. Peerdb: A p2p-based system for dis-
tributed data sharing. In Proc. 19th Int. Conf. on Data Engineering, pages 633–644, 2003.
DOI: 10.1109/ICDE.2003.1260827 Cited on page(s) 1

N. Ntarmos and P. Triantafillou. Aesop: altruism-endowed self-organizing peers. In Proc. 2nd
Workshop on Databases, Information Systems, and Peer-to-Peer Computing, pages 151–165, 2004.
DOI: 10.1007/978-3-540-31838-5_11 Cited on page(s) 22

Venkata N. Padmanabhan and Kunwadee Sripanidkulchai. The case for cooperative networking. In
Proc. 1st Int. Workshop Peer-to-Peer Systems, pages 178–190, 2002. Cited on page(s) 32

V. S. Pai, L. Wang, K. Park, R. Pang, and L. Peterson. The dark side of the Web: an open proxy’s
view. Comp. Comm. Rev., 34(1):57–62, 2004. DOI: 10.1145/972374.972385 Cited on page(s) 31

http://dx.doi.org/10.1007/978-3-540-30468-5_31
http://dx.doi.org/10.1145/1008992.1009050
http://dx.doi.org/10.1145/588160.588167
http://dx.doi.org/10.1145/1010614.1010618
http://dx.doi.org/10.1145/945721.945731
http://dx.doi.org/10.1109/ICDE.1999.754894
http://dx.doi.org/10.1109/ICDE.2003.1260827
http://dx.doi.org/10.1007/978-3-540-31838-5_11
http://dx.doi.org/10.1145/972374.972385

84 BIBLIOGRAPHY

G. Pallis and A. Vakali. Insight and perspectives for content delivery networks. Commun. ACM, 49
(1):101–106, 2006. DOI: 10.1145/1107458.1107462 Cited on page(s) 25, 27

M. J. Pazzani and D. Billsus. Learning and revising user profiles: The identification of interesting
web sites. Machine Learning, 27(3):313–331, 1997. DOI: 10.1023/A:1007369909943 Cited on
page(s) 45

W. Rao, L. Chen, A. W. Fu, and Y. Bu. Optimal proactive caching in P2P network: analysis and
application. In Proc. 16th ACM Int. Conf. on Information and Knowledge Management, pages
663–672, 2007. DOI: 10.1145/1321440.1321533 Cited on page(s) 33

S. Ratnasamy, P. Francis, M. Handley, R. M. Karp, and S. Shenker. A scalable content-addressable
network. In Proc. Conf. on Applications, Technologies, Architectures, and Protocols for Computer
Communication, pages 161–172, 2001. DOI: 10.1145/383059.383072 Cited on page(s) 2, 10, 17,
47

S. Ratnasamy, M. Handley, R. M. Karp, and S. Shenker. Topologically-aware overlay construction
and server selection. In Proc. 21st Annual Joint Conf. of the IEEE Computer and Communication
Societies, pages 1190–1199, 2002a. DOI: 10.1109/INFCOM.2002.1019369 Cited on page(s) 19

S. Ratnasamy, I. Stoica, and S. Shenker. Routing algorithms for DHTs: Some open questions. In
Proc. 1st Int. Workshop Peer-to-Peer Systems, pages 45–52, 2002b. Cited on page(s) 19

R. Van Renesse, Y. Minsky, and M. Hayden. A gossip-style failure detection service. Technical
report TR98-1687, Cornell University, 1998. Cited on page(s) 15

P. Resnick and H. R. Varian. Recommender systems - introduction to the special section. Commun.
ACM, 40(3):56–58, 1997. DOI: 10.1145/245108.245121 Cited on page(s) 42

P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom, and J. Riedl. Grouplens: An open architecture
for collaborative filtering of netnews. In Proc 1994 Conf. on Computer Supported Cooperative Work,
pages 175–186, 1994. DOI: 10.1145/192844.192905 Cited on page(s) 43, 44

Sean C. Rhea and John Kubiatowicz. Probabilistic location and routing. In Proc. 21st Annual Joint
Conf. of the IEEE Computer and Communication Societies, pages 1248– 1257, 2002.
DOI: 10.1109/INFCOM.2002.1019375 Cited on page(s) 8

M. Ripeanu, I.T. Foster, and A. Iamnitchi. Mapping the Gnutella network: Properties of large-scale
P2P systems and implications for system design. IEEE Internet Comput., 6(1):50–57, 2002a.
Cited on page(s) 18

M. Ripeanu, A. Iamnitchi, and I. T. Foster. Mapping the gnutella network. IEEE Internet Comput.,
6(1):50–57, 2002b. DOI: 10.1109/4236.978369 Cited on page(s) 64

http://dx.doi.org/10.1145/1107458.1107462
http://dx.doi.org/10.1023/A:1007369909943
http://dx.doi.org/10.1145/1321440.1321533
http://dx.doi.org/10.1145/383059.383072
http://dx.doi.org/10.1109/INFCOM.2002.1019369
http://dx.doi.org/10.1145/245108.245121
http://dx.doi.org/10.1145/192844.192905
http://dx.doi.org/10.1109/INFCOM.2002.1019375
http://dx.doi.org/10.1109/4236.978369

BIBLIOGRAPHY 85

A. Rowstron and P. Druschel. Pastry: Scalable, decentralized object location, and routing for large-
scale P2P systems. In Proc. ACM/IFIP/USENIX 5th Int. Middleware Conf., pages 329–350, 2001a.
Cited on page(s) 19

A. I. T. Rowstron and P. Druschel. Pastry: Scalable, decentralized object location, and routing for
large-scale peer-to-peer systems. In Proc. IFIP/ACM Int. Conf. on Distributed Systems Platforms,
pages 329–350, 2001b. Cited on page(s) 2, 12

A. I.T. Rowstron and P. Druschel. Storage management and caching in past, a large-scale, persistent
peer-to-peer storage utility. In Proc. 18th ACM Symp. on Operating System Principles, pages 188–
201, 2001c. DOI: 10.1145/502034.502053 Cited on page(s) 2

A. I. T. Rowstron and P. Druschel. Storage management and caching in PAST, a large-scale,
persistent peer-to-peer storage utility. Proc. 18th ACM Symp. on Operating System Principles, pages
188–201, 2001d. DOI: 10.1145/502034.502053 Cited on page(s) 17

Y.-S. Ryu and S.-B. Yang. An effective P2P web caching system under dynamic participation of
peers. IEICE Trans., 88-B(4):1476–1483, 2005. Cited on page(s) 32

O. D. Sahin, F. Emekçi, D. Agrawal, and A. El Abbadi. Content-based similarity search over
peer-to-peer systems. In Proc. 2nd Workshop on Databases, Information Systems, and Peer-to-Peer
Computing, pages 61–78, 2004. Cited on page(s) 47

S. Saroiu, P. Krishna Gummadi, R. J. Dunn, S. D. Gribble, and H. M. Levy. An analysis of
Internet content delivery systems. In Proc. 5th USENIX Symp. on Operating System Design and
Implementation, pages 315–327, 2002. DOI: 10.1145/1060289.1060319 Cited on page(s) 18, 25

B. M. Sarwar, G. Karypis, J. A. Konstan, and J. Riedl. Item-based collaborative filtering rec-
ommendation algorithms. In Proc. 10th Int. World Wide Web Conf., pages 285–295, 2001.
DOI: 10.1145/371920.372071 Cited on page(s) 44

A. I. Schein, A. Popescul, L. H. Ungar, and D. M. Pennock. Methods and metrics for cold-start
recommendations. In Proc. 25th Annual Int. ACM SIGIR Conf. on Research and Development in
Information Retrieval, pages 253–260, 2002. DOI: 10.1145/564376.564421 Cited on page(s) 44

M. Schlosser, M. Sintek, S. Decker, and W. Nejdl. Hypercup. Technical report, Stanford University,
2002. Cited on page(s) 12

U. Shardanand and P. Maes. Social information filtering: Algorithms for automating “word of
mouth.” In Proc. SIGCHI Conf. on Human Factors in Computing Systems, pages 210–217, 1995.
DOI: 10.1145/223904.223931 Cited on page(s) 43

Haiying Shen and Cheng-Zhong Xu. Hash-based proximity clustering for efficient load bal-
ancing in heterogeneous DHT networks. J. Parall. and Distrib. Comput., 68(5):686–702, 2008.
DOI: 10.1016/j.jpdc.2007.10.005 Cited on page(s) 22

http://dx.doi.org/10.1145/502034.502053
http://dx.doi.org/10.1145/502034.502053
http://dx.doi.org/10.1145/1060289.1060319
http://dx.doi.org/10.1145/371920.372071
http://dx.doi.org/10.1145/564376.564421
http://dx.doi.org/10.1145/223904.223931
http://dx.doi.org/10.1016/j.jpdc.2007.10.005

86 BIBLIOGRAPHY

A. Shepitsen, J. Gemmell, B. Mobasher, and R. D. Burke. Personalized recommendation in social
tagging systems using hierarchical clustering. In Proc. 2nd ACM Conf. on Recommender Systems,
pages 259–266, 2008. DOI: 10.1145/1454008.1454048 Cited on page(s) 46

M. A. Soliman, I. F. Ilyas, and K. Chen-Chuan Chang. Top-k query processing in uncertain
databases. In Proc. 23rd Int. Conf. on Data Engineering, pages 896–905, 2007.
DOI: 10.1109/ICDE.2007.367935 Cited on page(s) 57

Y. J. Song,V. Ramasubramanian, and E. G. Sirer. Optimal resource utilization in content distribution
networks. Technical report TR2005-2004, Cornell University, 2005. Cited on page(s) 31

K. Sripanidkulchai, B. M. Maggs, and H. Zhang. Efficient content location using interest-based
locality in peer-to-peer systems. In Proc. 22nd Annual Joint Conf. of the IEEE Computer and
Communication Societies, 2003a. DOI: 10.1109/INFCOM.2003.1209237 Cited on page(s) 48

K. Sripanidkulchai, B. M. Maggs, and Hui Zhang. Efficient content location using interest-based
locality in P2P systems. In Proc. 22nd Annual Joint Conf. of the IEEE Computer and Communication
Societies, pages 2166–2176, 2003b. DOI: 10.1109/INFCOM.2003.1209237 Cited on page(s) 20,
48

T. Stading, P. Maniatis, and M. Baker. P2P caching schemes to address flash crowds. In Proc. 1st
Int. Workshop Peer-to-Peer Systems, pages 203–213, 2002. Cited on page(s) 33

A. Stavrou, D. Rubenstein, and S. Sahu. A lightweight, robust P2P system to handle flash crowds.
In Proc. 10th IEEE Int. Conf. on Network Protocols, page 226, 2002.
DOI: 10.1109/ICNP.2002.1181410 Cited on page(s) 33

I. Stoica, R. Morris, D. R. Karger, M. F. Kaashoek, and H. Balakrishnan. Chord: A scalable peer-
to-peer lookup service for internet applications. In Proc. 2001 Conf. on Applications, Technologies,
Architectures, and Protocols for Computer Communication, pages 149–160, 2001.
DOI: 10.1145/964723.383071 Cited on page(s) 2, 10

C.Tang, Z. Xu, and M. Mahalingam. psearch: information retrieval in structured overlays. Computer
Communication Review, 33(1):89–94, 2003. DOI: 10.1145/774763.774777 Cited on page(s) 47

Akamai Technologies. Akamai - the business Internet - a predictable platform for prof-
itable e-business. White paper, 2004. http://www.akamai.com/dl/Whitepapers/Akamai_
Business_Internet_Whitepaper.pdf. Cited on page(s) 28

T. Tran, H. Wang, S. Rudolph, and P. Cimiano. Top-k exploration of query candidates for efficient
keyword search on graph-shaped (rdf) data. In Proc. 25th Int. Conf. on Data Engineering, pages
405–416, 2009. DOI: 10.1109/ICDE.2009.119 Cited on page(s) 57

http://dx.doi.org/10.1145/1454008.1454048
http://dx.doi.org/10.1109/ICDE.2007.367935
http://dx.doi.org/10.1109/INFCOM.2003.1209237
http://dx.doi.org/10.1109/INFCOM.2003.1209237
http://dx.doi.org/10.1109/ICNP.2002.1181410
http://dx.doi.org/10.1145/964723.383071
http://dx.doi.org/10.1145/774763.774777
http://www.akamai.com/dl/Whitepapers/Akamai_Business_Internet_Whitepaper.pdf
http://www.akamai.com/dl/Whitepapers/Akamai_Business_Internet_Whitepaper.pdf
http://dx.doi.org/10.1109/ICDE.2009.119

BIBLIOGRAPHY 87

K. H. L. Tso-Sutter, L. Balby Marinho, and L. Schmidt-Thieme. Tag-aware recommender systems
by fusion of collaborative filtering algorithms. In Proc. 2008 ACM Symp. on Applied Computing,
pages 1995–1999, 2008. DOI: 10.1145/1363686.1364171 Cited on page(s) 46

D. Tsoumakos and N. Roussopoulos. Adaptive probabilistic search (aps) for peer-to-peer networks.
Technical report, University of Maryland, 2003a. Cited on page(s) 6

D. Tsoumakos and N. Roussopoulos. A comparison of peer-to-peer search methods. In Proc. 6th
Int. Workshop on the World Wide Web and Databases, pages 61–66, 2003b. Cited on page(s) 5

Y. Upadrashta, J. Vassileva, and W. K. Grassmann. Social networks in peer-to-peer systems. In Proc.
38th Annual Hawaii Int. Conf. on System Sciences, 2005. DOI: 10.1109/HICSS.2005.546 Cited
on page(s) 48

A. Vlachou, C. Doulkeridis, K. Nørvåg, and M. Vazirgiannis. On efficient top-k query processing
in highly distributed environments. In Proc. ACM SIGMOD Int. Conf. on Management of Data,
pages 753–764, 2008. DOI: 10.1145/1376616.1376692 Cited on page(s) 69

S. Voulgaris and M. van Steen. Epidemic-style management of semantic overlays for content-based
searching. In Proc. 11th Int. Euro-Par Conf., pages 1143–1152, 2005.
DOI: 10.1007/11549468 Cited on page(s) 16

S. Voulgaris, D. Gavidia, and M. Steen. Cyclon: Inexpensive membership manage-
ment for unstructured p2p overlays. J. Network Syst. Manage., 13(2):197–217, 2005.
DOI: 10.1007/s10922-005-4441-x Cited on page(s) 16

M. Waldman, A. D. Rubin, and L. Faith Cranor. Publius: A robust, tamper-evident, censorship-
resistant, web publishing system. In USENIX Security Symposium, pages 59–72, 2000. Cited on
page(s) 3

J. Wang. A survey of Web caching schemes for the Internet. Comp. Comm. Rev., 29(5):36–46, 1999.
DOI: 10.1145/505696.505701 Cited on page(s) 25, 26

X. Wang, W. S. Ng, B. C. Ooi, K. Tan, and A. Zhou. Buddyweb: A P2P-based collaborative web
caching system. In Web Engineering and Peer-to-Peer Computing, Networking 2002 Workshops,
pages 247–251, 2002. DOI: 10.1007/3-540-45745-3_22 Cited on page(s) 33

G. Wiederhold. Mediators in the architecture of future information systems. Comput., 25(3):38–49,
1992. DOI: 10.1109/2.121508 Cited on page(s) 13

M. Wu, J. Xu, X.Tang, and W.-C. Lee. Monitoring top-k query inwireless sensor networks. In Proc.
22nd Int. Conf. on Data Engineering, page 143, 2006. DOI: 10.1109/TKDE.2007.1038 Cited on
page(s) 57

http://dx.doi.org/10.1145/1363686.1364171
http://dx.doi.org/10.1109/HICSS.2005.546
http://dx.doi.org/10.1145/1376616.1376692
http://dx.doi.org/10.1007/11549468
http://dx.doi.org/10.1007/s10922-005-4441-x
http://dx.doi.org/10.1145/505696.505701
http://dx.doi.org/10.1007/3-540-45745-3_22
http://dx.doi.org/10.1109/2.121508
http://dx.doi.org/10.1109/TKDE.2007.1038

88 BIBLIOGRAPHY

B. Yang and H. Garcia-Molina. Improving search in peer-to-peer networks. In Proc. 22nd Int.
Conf. on Distributed Computing Systems, pages 5–14, 2002. DOI: 10.1109/ICDCS.2002.1022237
Cited on page(s) 5, 7

D. Zeinalipour-Yazti, Z. Vagena, D. Gunopulos, V. Kalogeraki, V. J.Tsotras, M. Vlachos, N. Koudas,
and D. Srivastava. The threshold join algorithm for top-k queries in distributed sensor net-
works. In Proc. 2nd Workshop on Data Management for Sensor Networks, pages 61–66, 2005.
DOI: 10.1145/1080885.1080896 Cited on page(s) 62

B. Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D. Joseph, and J. Kubiatowicz. Tapestry: a resilient
global-scale overlay for service deployment. IEEE J. Selected Areas in Comm., 22(1):41–53, 2004.
DOI: 10.1109/JSAC.2003.818784 Cited on page(s) 2, 9, 19

CN. Ziegler, S. M. McNee, J. A. Konstan, and G. Lausen. Improving recommendation lists
through topic diversification. In Proc. 14th Int. World Wide Web Conf., pages 22–32, 2005.
DOI: 10.1145/1060745.1060754 Cited on page(s) 42

http://dx.doi.org/10.1109/ICDCS.2002.1022237
http://dx.doi.org/10.1145/1080885.1080896
http://dx.doi.org/10.1109/JSAC.2003.818784
http://dx.doi.org/10.1145/1060745.1060754

89

Authors’ Biographies

ESTHER PACITTI
Esther Pacitti is a professor of computer science at University
of Montpellier 2 pursuing research in large-scale distributed data
management and head of a research team at Lirmm (University of
Montpellier 2).She has served or is serving as program committee
member of major international conferences and has edited an
co-authored several books. She has also published a significant
amount of technical papers and journal papers in well-known

international conferences and journals.

REZA AKBARINIA
Reza Akbarinia is a research scientist at INRIA, France. He
received his Ph.D. degree in Computer Science from the Univer-
sity of Nantes in 2007. His research focuses on data management
in large-scale distributed systems (P2P, grid, cloud), in partic-
ular, query processing, uncertain data management, replication,
etc. He has authored and co-authored several technical papers in
main database conferences and journals, and has served as PC
member in several important international conferences.

http://www.morganclaypool.com/action/showImage?doi=10.2200/S00414ED1V01Y201204DTM025&iName=master.img-028.jpg&w=107&h=86
http://www.morganclaypool.com/action/showImage?doi=10.2200/S00414ED1V01Y201204DTM025&iName=master.img-029.jpg&w=107&h=114

90 AUTHORS’ BIOGRAPHIES

MANAL EL-DICK
Manal El-Dick received M.S. and Ph.D. degrees in computer
science from the University of Nantes, France in 2006 and 2010,
respectively. She is currently Associate Professor at the Lebanese
University. Her research interests focus on practical and scalable
protocols to cope with the recent and tremendous evolution of
distributed systems. She is the author and co-author of several
publications in peer-reviewed journals and international confer-
ences.

http://www.morganclaypool.com/action/showImage?doi=10.2200/S00414ED1V01Y201204DTM025&iName=master.img-030.jpg&w=106&h=115

	Preface
	Acknowledgments
	P2P Overlays, Query Routing, and Gossiping
	P2P Overlays
	Unstructured
	Structured
	Super-peer
	Comparing P2P Overlays

	Query Routing
	Query Routing in Unstructured Overlays
	Query routing in DHTs
	Query Routing in Super-Peers

	Gossip Protocols
	Replication
	Advanced Features on P2P Overlays
	Locality-Aware Overlays
	Interest-Based Overlays
	P2P Overlay Combination

	Conclusion

	Content Distribution in P2P Systems
	Introduction
	Insights on Traditional Content Distribution
	Background on Web Caching
	Overview of CDN
	Requirements and Open Issues of CDN

	P2P Content Distribution
	Advanced Features Used by Large-Scale P2P CDN
	P2P CDN Solutions

	Conclusion

	Recommendation Systems
	Overview of Recommendation
	Collaborative Filtering
	Content-based Filtering
	Social Networks

	P2P Content Management
	Clustering Overlays
	Short link overlay

	P2P Recommendation
	Basic P2P prediction
	Social P2P Prediction Systems

	Conclusion

	Top-k Query Processing in P2P Systems
	General Model for Top-k Queries
	Top-k Queries In Distributed Systems
	Top-k Queries In P2P Systems
	Top-k Queries in Unstructured Overlays
	Top-k Queries in Super-peer Overlays
	Top-k Queries in DHTs

	Conclusion

	Bibliography
	Authors' Biographies

